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+is article studies the robust tracking control problems of Euler–Lagrange (EL) systems with uncertainties. To enhance the
robustness of the control systems, an asymmetric tan-type barrier Lyapunov function (ATBLF) is used to dynamic constraint
position tracking errors. To deal with the problems of the system uncertainties, the self-structuring neural network (SSNN) is
developed to estimate the unknown dynamics model and avoid the calculation burden. +e robust compensator is designed to
estimate and compensate neural network (NN) approximation errors and unknown disturbances. In addition, a relative threshold
event-triggered strategy is introduced, which greatly saves communication resources. Under the proposed robust control scheme,
tracking behavior can be implemented with disturbance and unknown dynamics of the EL systems. All signals in the closed-loop
system are proved to be bounded by stability analysis, and the tracking error can converge to the neighborhood near the origin.
+e numerical simulation results show the effectiveness and the validity of the proposed robust control scheme.

1. Introduction

Many practical systems can be represented by the El system,
such as robotic manipulator [1], hydraulic system [2], and
underwater marine system [3]. +erefore, due to its wide
application, nonlinear Euler–Lagrange systems are a sig-
nificant class of nonlinear systems. However, because of the
unknown disturbances, the model uncertainties and the
actuator communication limit always exist, and some tra-
ditional control methods are difficult to obtain satisfactory
control performance. +erefore, innovation and develop-
ment with high precision and high applicability control
methods are urgent.

+e research on robust control of the El system has
always been a hot topic [4–7]. Generally, when a system
works under uncertain disturbances, we need to improve the
robustness of the control as much as possible. Some scholars
have studied the trajectory tracking method of EL systems;
the common methods include the backstepping technique
[8], dynamics surface control (DSC) [9], robust control

[10, 11], adaptive control [12, 13], sliding mode control [14],
and learning control [15]. Among them, the error restriction
method can effectively enhance the robustness of the con-
trol. In addition, considering the control security issues
cannot be ignored, generally in the form of output con-
straints. Violation of these constraints not only leads to
performance degradation but also causes system corruption.
In most studies, BLF is an effective solution for the con-
straint problem [16–18]. In [19], the guaranteed perfor-
mance control problem for EL systems with actuator faults is
investigated, and the BLF is introduced to handle the per-
formance constraints problems. In [20, 21], a log-type BLF is
employed to ensure that the full-state constraints for an EL
system with uncertain dynamics. In [22], the BLF-based
control method is proposed for robotic systems with full-
state constraints, which demonstrated that the BLF design
method has advantages in dealing with state constraint
problems of the El system. For research position constraint
problems, a BLF-based controller is proposed for the marine
vessel with uncertainty in [23], which also demonstrates the
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superiority of BLF in the El system design. +e BLF tech-
nique can dynamically constrain the error within the
specified range and guaranteed the performance of tracking
control, which enhances the robustness of the control.

In practice, the influence of unknown disturbances on
control is a serious problem. Some identification methods
have been proposed to estimate the effects of uncertainties,
such as the adaptive observers and compensate methods.+e
disturbance observer [24, 25] is a useful tool for nonlinear
systems to identify unknown external disturbances, and
some works have been applied to solve the problem of El
system resisting disturbances [26, 27]. However, EL system
model parameters are typically dynamically changed; they
are difficult to obtain dynamics parameters accurately. +e
uncertainty seriously affects the stability and control accu-
racy of the EL system; therefore, the problem of identifi-
cation of uncertain models is needed to be studied urgently.
Some learning estimation methods have been proposed to
approximate the system uncertainty, such as neural net-
works, fuzzy logic, and machine learning. +e NN is often
used to estimate unknown nonlinear dynamics models
because of its good approximation ability. In [28–30], the
adaptive method is combined with NN to design control
strategies for a class of uncertain nonlinear systems. In
[31, 32], the adaptive NN is used to estimate the uncertainty
of El system in tracking or cooperative control. An adaptive
multilayer NN is developed to estimate the uncertainty and a
novel saturated prescribed performance controller for EL
dynamic systems in [33]. In [34], to reduce the calculation
burden, the adaptive NNs with the epsilon-modification
updating laws are developed to approximate the com-
pounded uncertain vector for EL systems. In [35], a self-
structuring NN is designed to estimate the uncertain dy-
namics of each node of multiagents. Because NN has good
learning performance, it has become the main tool to es-
timate system uncertainty.

Furthermore, in most cases, the bandwidth of the ac-
tuator communication network is limited. In order to use
available resources reasonably, it is very important to design
save resource controllers. It is worth noting that the event-
triggered strategy is an effective way to reduce the actuator
resources. In the event-triggered strategy, the control signal
is updated only on some discrete trigger time to implement
the aperiodic signal update. +e trigger time is calculated
based on some condition of the system state, which is also
known as a trigger condition.+is strategy makes the system
have no complete transmission state throughout the time
period and reduces the calculation workload and the use of
communication channels [36, 37]. In [38], an adaptive
control method is utilized to solve the unknown system
parameters, and the new triggering mechanism is proposed
to increase the executive efficiency of the controller. An
event-triggered observer was designed for the estimation of
the system states, and the dynamic event-triggered sliding
mode controller is designed for a class nonlinear dynamic
systems [39]. +e sliding mode control method combines
with event-triggered strategy, and a robust trajectory
tracking controller is designed for uncertain EL systems [40].
In [41], a fully distributed event-triggered finite-time

consensus controller is designed for EL systems, which can
enable each agent to complete consistency tracking after a
settling time.

Inspired by the above researches, the purpose of this
paper is to design a robust track control strategy for EL
systems with uncertainties. +e ATBLF method is employed
to constraint tracking errors, which can enhance the ro-
bustness of the tracking control. +e adaptive NN is used to
estimate the uncertainties of EL systems, and the self-
structure mechanism is designed to reduce the calculation
burden. +e compensator is designed to estimate NN ap-
proximate error and the disturbances, which can improve
the tracking accuracy. An event-triggered strategy is adopted
to save actuator resources. +e main contributions are
summarized as follows:

(1) To ensure the robustness of the tracking control, the
control strategy design is divided into two layers.+e
ATBLF method is introduced to construct virtual
control law at the kinematic level, it makes the
position error guaranteed in a certain boundary, and
the robustness of tracking is enhanced. In terms of
kinetics, the adaptive NN is employed to estimate the
uncertainty of EL systems. +e NN approximate
errors and unknown disturbances can compensate
by a designed compensator, which ensures tracking
stability

(2) In order to improve the practicability of the control
systems, a self-structure mechanism is developed to
adjust NN approximation performance, which can
appropriately find optimal NN structures and avoid
excessive calculation burden. In addition, an event-
triggered strategy is adopted to reduce the com-
munication bandwidth and effectively save com-
munication resources

+is paper is organized as follows. +e problem for-
mulation of EL systems is introduced in Section 2. +e main
results of the design of SSNN and the robust tracking control
strategy on the EL systems are in Section 3. Section 4
presents numerical simulation results. +e conclusions of
this paper are presented in Section 5.

Notation: λmax(·) and λmin(·) denote the largest and
smallest eigenvalue, respectively. Rn and Rn×n denote n

dimensional column vectors and the n × n real matrices,
respectively. ‖ · ‖F and ‖ · ‖ represent the Frobenius norm
and the Euclidean norm. diag ·{ } represents a block-diagonal
matrix.

2. Problem Formulation

2.1. System Model. Consider the uncertain EL systems with
external disturbances, which is

M(q)€q + C(q, _q) _q + G(q) � τ(t) − d(t), (1)

where q, _q, and €q ∈ Rn denote the position, velocity, and
acceleration vectors, respectively; G(q) ∈ Rn denotes the
gravitational force, C(q, _q) ∈ Rn denotes the Coriolis and
centripetal torques, M(q) ∈ Rn×n denotes a symmetric
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inertia matrix, d(t) ∈ Rn is the external disturbances of the
systems caused by the environment and human beings, and
τ ∈ Rn is the control input.

Property 1 (see [42]). M(q), C(q, _q), and G(q) in the dy-
namic system are all bound, and the matrix _M(q) − 2C(q, _q)

is skew-symmetric; i.e., ςT[ _M(q) − 2C(q, _q)]ς � 0 for any
ς ∈ Rp.

2.2. Control Objective. +e reference trajectory is defined as
qd � [qd1, . . . , qdn]T, which is time-varying twice-differen-
tiable, and the tracking errors are defined as ep � q − qd. +e
goal is to design a robust tracking controller for the EL
systems to track the reference trajectory and to keep the
tracking error ep constraints within a time-varying asym-
metric bounded range as follows:

−LL(t)< ep(t)<LU(t), ∀t> 0, (2)

where LL ∈ Rn and LU ∈ Rn denote the constraint bounded
functions on the tracking error ep, and the initial condition
satisfies −LL(0)< ep(0)< LU(0).

Assumption 1. +e disturbance di and its first derivative _di

are bounded, such that ‖di‖∞≤ di and ‖ _di‖∞≤did, where di

and did are unknown positive constants.

Remark 1. Disturbance may occur in the form of variable
friction or load, which is often variable and unpredictable,
and the energy is limited. If it is infinite energy, it will destroy
the control system. +erefore, Assumption 1 is reasonable.

3. Main Results

In this section, the design process of the robust tracking
control strategy for EL systems based on BLF and SSNN is
introduced. +e SSNN is developed to estimate unknown
model dynamics. +e TABLF is applied to deal with error
time-varying constraint problems. +e compensator is
designed to estimate unknown disturbances and NN esti-
mate errors. An event-triggered strategy is adopted to reduce
actuator communication pressure.

3.1. Self-Structuring Neural Networks. In this article, the
radial basis function (RBF) NN is applied to approximate
unknown nonlinear dynamics. +e RBFNN is composed of
the output layer, hidden layer, and input layer, and its
structure is shown in Figure 1.

+e RBFNN output is expressed as

f(χ) � W
∗Tσ∗(χ) + ε, (3)

where σ∗(χ) � [σ∗1(χ), σ∗2(χ), . . . , σ∗k (χ)]T is the activation
function vector, χ � [χ1, χ2, . . . , χm]T ∈ Rm is the input
vector, there are k neurons here, and
W∗ � [W∗1 , W∗2 , · · · , W∗k ]T is the ideal NN weight vector. ε
represents the NN approximation error, where the activa-
tion function is selected as the Gaussian function:

σ∗j (χ) � exp −
χ − μj

�����

�����
2

hj
2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, j � 1, . . . , k, (4)

where μj and hj represent the center and width of the
Gaussian function, respectively.

About RBFNN, the more the neuron nodes are selected,
the more accurate the approximation. However, more
neurons mean that the system has a more computational
burden, and some neurons are invalid when the nonlinear
function is not complex. +erefore, we design a self-struc-
turing mechanism for NN to change the approximation
structure, which can determine whether to split neurons or
eliminate neurons depending on the complexity of the actual
nonlinear function. +e aim is to split more effectively
activation neurons and delete less activated neurons to
obtain good approximation performance of NN.

+e optimization method of NN is proposed. Define a
splitting threshold Ss ∈ (0, 1) and eliminate threshold
Se ∈ (0, 1), where Ss > Se.

+e splitting strategy is to judge whether the neuron with
the highest activation function is more than the threshold,
which defines the maximum degree σM � max

1≤j≤k
σj; if σM ≤ Ss,

that means the activity does not reach the ideal value; then,
the new neurons need to be split. +e newly splitting neuron
is defined as j′; the parameter of the new neuron is

μj′
�
χ + μj

2
,

hj′
� hj,

Wj′
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

+e neuron decay parameter is defined as Ij; it follows
the rules

Ij �
ψIj, if σj ≤ σe,

1, if σj > σe,

⎧⎨

⎩ j � 1, . . . , k, (6)

where ψ is a proportion parameter and σe denotes the in-
active bounded function. +e elimination strategy is pro-
posed. When the activation function σj is less than a
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Figure 1: Structure of the NN.

Computational Intelligence and Neuroscience 3



threshold σe, the neuron decay parameter Ij will decrease.
When Ij ≤ Se, the jth neuron is pruned.

+e logic block diagram of self-structuring strategy is
shown in Figure 2.

Assumption 2 (see [43]). +e ideal NN weight is bounded
such that ‖W‖F ≤Wm, where Wm are unknown positive
constants.

Remark 2. Some existing works [29, 30] show that the more
the number of neurons, the better the approximation effect
of NN. It is worth noting that not all neurons are effective
neurons, which will bring more calculation burden to the
control system. +erefore, a self-structuring mechanism
with a flexible structure is proposed in this paper. +e ad-
vantages of SSNN including the structuring of NN can be
adjusted online without new membership functions and
rules, and the computation can be effectively reduced.

3.2.ControllerDesign. +edesign process is divided into two
steps.

Step 1. +e asymmetrical errors virtual controller is
designed.

Define the tracking error vector z1 ∈ Rn and z2 ∈ Rn as

z1 � ep,

z2 � _q − vd,
 (7)

where z1 � [z11, . . . , z1n]T, z2 � [z21, . . . , z2n]T, and vd ∈ Rn

is a filtered control signal to be specified later.
Taking the time derivation of tracking error combined

with EL system (1) yields

_z1 � _q − _qd,

M _z2 � τ − d − C _q − G − M _vd,
 (8)

and the time-varying error constraint problem can be solved
by the BLF method. Consider the asymmetric tan-type BLF
(ATBLF) as follows [44]:

V1 � 
n

i�1 1 − q z1i( ( 
LLi

2

π
tan

πz1i
2

2LLi
2 

+ q z1i( 
LUi

2

π
tan

πz1i
2

2LUi
2 ,

(9)

q z1i(  �
1, z1i > 0,

0, z1i ≤ 0,
 i � 1, . . . , n. (10)

Computing the time derivative of V1 yields

_V1 � 
n

i�1
1 − q z1i( ( 

2LLi
_LLi

π
tan

πz1i
2

2LLi
2  + ΛLi _z1i − ΛLiz1i

_LLi

LLi

  + q z1i( 
2LUi

_LUi

π
tan

πz1i
2

2LUi
2  + ΛUi _z1i − ΛUiz1i

_LUi

LUi

 , (11)

where ΛLi � z1i/cos2(πz1i
2/2LLi

2),ΛUi � z1i/cos2(πz1i
2/

2LUi
2), the initial state satisfies −LLi(0)< z1i(0)<LUi(0), and

LLi and LUi are the presetting boundaries. Define
ΞΛi � (1 − q(z1i))ΛLi + q(z1i)ΛUi.

Remark 3. For the formation of asymmetric tan-type BLF,
which is shown in (9), we have

lim
z1i⟶ 0+

V1 � lim
z1i⟶ 0−

V1 � 0,

lim
z1i⟶ LLi

V1 � lim
z1i⟶ LUi

V1 �∞,

⎧⎪⎪⎨

⎪⎪⎩
(12)

where V1 is differentiable and continuous and the state z1i

follows −LLi(t)< z1i(t)<LUi(t). When there are system
states without constraints, such as LLi⟶∞ and
LUi⟶∞, using L’Hospital theory:

lim
LLi⟶∞,LUi⟶∞

V1 �
1
2



n

i�1
z
2
1i. (13)

+en, we proposed the constraint virtual controller as

αi �
− k1i + 2ΞLi(  1 − q z1i( ( L

2
Li sin πz

2
1i/L

2
Li  + q z1i( L

2
Ui sin πz

2
1i/L

2
Ui  

2πz1i

+ ΞLiz1i + _qdi, i � 1, . . . , n, (14)

where k1i > 0 is a positive design constant,
ΞLi � (1 − q(z1i))(

_LLi/LLi) + q(z1i)(
_LUi/LUi), and

k1 � diag k11, . . . , k1n  is a positive gain matrix.
In order to avoid the differential explosion of virtual

control law, the DSC method is introduced. +e filtered
control signal vd is as follows:

td _vd + vd � αd, vd(0) � αd(0), (15)

where αd � α + tdΞΛ, and td is a time constant. Define the
filtering error ef � vd − α ∈ Rn, and take derivatives of ef:

_ef � −
ef

td

− ΞΛ − N(·), (16)
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where _α ≜ N(·) with N(q, _q, LL, _LL, LU, _LU, z1, z2, ef) ∈ Rn

being an unknown continuous function which has a max-
imum value N ∈ Rn.

Substituting (14) and (15) into (11), the following can be
obtained:

_V1 ≤ 
n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2LLi
2  + q z1i( 

L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   + ΞΛi z2i + efi . (17)

Consider the following Lyapunov function:

V2 � V1 +
1
2
e

T
fef. (18)

And, take the derivative of V2 and combine with (15) and
(16) to obtain

_V2 ≤ 

n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2L
2
Li

  + q z1i( 
L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   + ΞΛiz2i −
e
2
fi

td

− efiNi(·). (19)

Step 2. +e robust controller based on SSNN and event
triggers is designed.

Consider the following Lyapunov function:

V3 � V2 +
1
2
z

T
2 Mz2. (20)

According to (7) and (8), EL system (1) can be written as

M(q) _z2 + C(q, _q)z2 � τ − M(q) _vd − C(q, _q)vd − G(q) − d.

(21)

Taking the derivative of V3, we can obtain

_V3 � _V2 +
1
2
z

T
2

_Mz2 + z
T
2 M _z2. (22)

Combined with Property 1, one has
zT
2 [ _M(q) − 2C(q, _q)]z2 � 0. Moreover, substituting (21)

into (22) yields

_V3 ≤ 
n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2L
2
Li

  + q z1i( 
L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   + ΞΛiz2i −
e
2
fi

td

− efiNi(·)

+ z
T
2 τ − M(q) −

ef

td

− ΞΛ  − C(q, _q)vd − G(q) − d .

(23)

Define function f � M(q)(−ef/td − ΞΛ)+
C(q, _q)vd + G(q) ∈ Rn . However, the parameters G,
C(q, _q), and M are hard to obtain in the practice scene.
Hence, the NN is employed to handle the uncertainty
model as follows:

f � W
Tσ(χ) + ε, (24)

where the input of NN is selected as χ � [q, _q, vd, _vd]T, W �

[W1, . . . , Wi]
T is the NN weight matrix, and ε denotes the

estimated error, which is bounded and satisfied, |ε|≤ ε,
where ε � [ε1, . . . , εn]T is an unknown positive constant
vector. In addition, define the unknown parameters vector
δ � [δ1, . . . , δn]T, where δi � εi + di is the unnecessary sys-
tems error. +en, a compensator is designed as follows:

start
Calculate the

activation function σj

splitting
neuron

eliminate
neurons

end
if σj ≤ σe

or
σj > σe

σM = max σj
1≤j≤k

Ij

σM if σM ≤ Ss

if Ij ≤ Se

Figure 2: Self-structuring algorithm flowchart.
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caux,i � −
δi

2wi

z2i, i � 1, . . . , n. (25)

+e robust control laws are designed as follows:

ϖi(t) � − 1 + Δi(  αvitanh
z2iαvi

κi

  + mitanh
z2imi

κi

  ,

(26)

αv � −k2z2 − ΞΛ + W
Tσ(χ) + caux, (27)

where k2 � diag k21, . . . , k2n , ΞΛ � [ΞΛ1, . . . ,ΞΛn]T,
W � [ W1, . . . , Wn]T is the NN weight matrix estimate value,
and caux � [caux,1, . . . , caux,n]T .

+e updated law W and δ are given as
_Wi � −Υw,i σ(χ)z2i + kw,i

Wi ,

_δi � Υδ,i

z2i
2

2wi

− kδ,i
δi ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i � 1, · · · , n. (28)

+e event-triggering mechanism is designed as

τi(t) � ϖi t
i
k ,∀t ∈ t

i
k, t

i
k+1 ,

t
i
k+1 � inf t ∈ R| eτi


≥Δi τi(t)


 + mi ,

⎧⎪⎨

⎪⎩
(29)

where eτi(t) � ϖi(t) − τi(t) is the event-triggering errors.
+e controller update time is defined as ti

k, k ∈ R+, and
designed parameters κi, 0<Δi < 1mi > 0, and
mi >mi/(1 − Δi) are positive. When time ti

k ∈ [ti
k, ti

k+1), the
controller holds as ϖi(ti

k) . When triggering condition (29) is
triggered, the control signal will be updated and it is marked
as ϖi(ti

k+1). +us, there exist two continuous time-varying
parameters ρ1i(t) and ρ2i(t) such that
ϖi(t) � (1 + ρ1i(t)Δi)τi(t) + ρ2i(t)mi , where |ρ1i(t)|≤ 1 and
|ρ2i(t)|≤ 1. +erefore, one gets

τi(t) �
ϖi(t) − ρ2i(t)mi

1 + ρ1i(t)Δi

. (30)

+us, substituting (30) into (23), the following inequality
holds:

_V3 ≤ 
n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2L
2
Li

  + q z1i( 
L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   + ΞΛiz2i −
e
2
fi

td

− efiNi(·) + z2i

ϖi(t) − ρ2i(t)mi

1 + ρ1i(t)Δi

− fi − di .

(31)

In view of |ρ1i(t)|≤ 1 and |ρ2i(t)|≤ 1, we have

z2iϖi(t)

1 + ρ1i(t)Δi

≤
z2iϖi(t)

1 + Δi

,

−ρ2i(t)mi

1 + ρ1i(t)Δi

≤
ρ2i(t)mi

1 − Δi




.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

+e main results of this paper are given as follows.

Theorem 1. EL system (1) with uncertainties and As-
sumptions 1 and 2 are satisfied. Under the actual controller
(29) with control law (14), (15), and (25)-(28), the asymmetric
constraint tracking control of EL systems can be achieved. All
signals in the closed-loop control system are semiglobally
uniformly ultimately bounded (SGUUB), and the position
error satisfies design objective conditions (2), which can

converge to a neighborhood near of origin, and the interex-
ecution intervals ti

k+1 − ti
k are lower bounded by a nonzero

time t
i > 0, provided that the control parameter satisfies

k1i > 0,

k2i > 0,

td < 2,

⎧⎪⎪⎨

⎪⎪⎩
i � 1, . . . , n. (33)

Proof. Consider a new Lyapunov function:

V � V3 + 
n

i�1

1
2

W
T

i Υ
−1
w,i

Wi +
1
2
Υ−1
δ,i

δi
2
. (34)

Taking the time derivative of (34) and using (31) and (32), we
have

_V≤ 
n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2L
2
Li

  + q z1i( 
L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   + ΞΛiz2i −
e
2
fi

td

− efiNi(·)

+ z2i

z2iϖi(t)

1 +(t)Δi

+
ρ2i(t)mi

1 − Δi




− fi − di  − W

T

i σ(χ)z2i + kw,i
Wi  + δi

z
2
2i

2wi

− kδ,i
δi .

(35)
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+e approximate error and disturbances are bounded,
and the following equation can be derived:

z
T
2 ε + d + caux( ≤ 

n

i�1
z2iδi −

δi

2wi

z
2
2i ≤ 

n

i�1

1
2wi

z
2
2i +

wi

2
 δi −

δi

2wi

z
2
2i ≤ 

n

i�1
−

δi

2wi

z
2
2i +

wi

2
δi. (36)

+e following inequalities are based on Young’s in-
equality theory, which can be derived as

−kw,i
W

T

i
Wi ≤ −

kw,i

2
Wi

����
����
2
F

+
kw,i

2
Wi

����
����
2
F
,

−kδ,i
δi

δi ≤ −
kδ,i

2
δ
2
i +

kδ,i

2
δ2i ,

−efiNi(·)≤
e
2
fi

2
+

N
2
i

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

According to |p| − ptanh(p/c) ≤ 0.2785c, for a given
variable p ∈ R and c> 0; substituting (26) into (35) gives

_V≤ 
n

i�1
− k1i(  1 − q z1i( ( 

L
2
Li

π
tan

πz
2
1i

2L
2
Li

  + q z1i( 
L
2
Ui

π
tan

πz
2
1i

2L
2
Ui

   − k2iz
2
2i −

1
td

−
1
2

 e
2
fi −

kw,i

2
Wi

����
����
2
F

−
kδ,i

2
δ
2
i

+
1
2

N
2
i + kw,i Wi

����
����
2
F

+ kδ,iδ
2
i + wiδi  + 0.557κi.

(38)

Equation (38) can be expressed as
_V(t)≤ − c1V(t) + c2, (39)

where

c1 � min k1i,
2k2i

λmax(M)
,
2 − td

td

, kw,iΥw,i, kδ,iΥδ,i ,

c2 � 
n

i�1

1
2

N
2
i + kw,i Wi

����
����
2
F

+ kδ,iδ
2
i + wiδi  + 0.557κi.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

By integration of (39), we have

V(t)≤V(0)e
− c1t

+
c2

c1
1 − e

− c1t
 . (41)

+erefore, the equation is held as follows:

0≤V1 ≤V≤
c2

c1
+ V(0) −

c2

c1
 e

− c1t
. (42)

+e opposite solution of equation (43) is obtained:

z
2
1i ≤

2L
2
Ui

π
tan− 1 π

L
2
Ui

c2

c1
+ V(0) −

c2

c1
 e

− c1t
  <L

2
Ui, z1i > 0,

2L
2
Li

π
tan− 1 π

L
2
Li

c2

c1
+ V(0) −

c2

c1
 e

− c1t
  < L

2
Li, z1i ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(43)

+erefore, z1(t) remains in the open set z1i ∈ (−LLi, LUi),
∀t> 0, if the initial state satisfies z1i(0) ∈ (−LLi, LUi). +en,
the tracking error ep constraints in the time-varying
boundary can be implemented.

Motivated by [38, 45], we can prove that there exists time
t
i > 0 such that triggering intervals ti

k+1 − ti
k is lower bounded

by t
i. Considering eτi(t) � ϖi(t) − τi(t), one has

d

dt
eτi


 � sign eτi(  _eτi ≤ _ϖi


. (44)

All the signals mentioned above are bounded, and we
can get | _ϖi|≤ϖi, where ϖi is a positive parameter. We can
obtain that eτi � 0 and lim

t⟶tk+1
eτi(t) � Δi|τi(t)| + mi is hold.

+e lower bound t
i satisfies t

i ≥Δi|τi(t)| + mi/ϖi. +at is,
Zeno’s behavior is avoided.

+is completes the proof. □

Remark 4. +e main characteristics of this design are as
follows. On the one hand, different from the DSC method
[28] without error constraint requirements and the error
constant constraint method [22], the error time-varying
constraint tracking controller is proposed in this paper,
which is stronger in robustness caused by applying the
ATBLF technique. On the other hand, different from the
fixed structure NN design in [33], the proposed adaptive
SSNN can adjust the structure to approximate the nonlinear
function with different complexity, and it can reduce the
calculation pressure of the system.
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4. Simulation Results

In this section, the effectiveness of the proposed approach is
validated by some simulations. In order to verify the validity
of the proposed scheme for EL systems with unknown
disturbances and uncertainties, a pendulum and a two-de-
gree-of-freedom robotic manipulator are considered as the
experimental plant.

Example 1. +e dynamics model of the pendulumwith mass
changes is as follows:

ml
2
€q + mglq � τ. (45)

+e model parameter is selected as m � 2 + 0.5sin(t),
l � 1, and g � 9.8. +e reference trajectories are selected as
qd � sin(0.5t). +e main control parameter is selected as
k1 � 8, k2 � 28, Υw � 50, kw � 0.1, Υδ � 5, kδ � 0.1,
w1 � 0.04, Δ1 � 0.1, κ1 � 2.1, m1 � 0.1, and m1 � 0.08.
LL1 � 0.5e− 0.8t + 0.03, and LU � 0.4e− 0.8t + 0.02. Compared
with the traditional PID control, the PID parameter is se-
lected as P � 300, I � 20, and D � 9. +e initial state is
[q(0), _q(0)]T � [0.3, 0]T.

+e simulation results of the pendulum tracking are
shown in Figures 3–5 . Figure 3 shows the effect of the two
different methods on position tracking. It can be seen that
the proposed strategy can stably track the reference tra-
jectory, while the PID control shows some jitter at the
beginning, and some steady-state errors exist. +e tracking
error of two different methods is shown in Figure 4, the error
of the proposed strategy converges to near-zero quickly and
stably, and the error of PID control exceeds the preset
boundary in some time periods. It can be seen that the
proposed tracking control strategy is stronger robustness.
+e control inputs of the twomethods are shown in Figure 5.
It can be seen that the control input signal of the proposed
strategy is updated at intervals, which saves the system
communication resources.

Example 2. +e dynamics model of the robotic manipulator
can be expressed as (1), where

M(q) �
M11 M12

M21 M22
 , C(q, _q) �

C11 C12

C21 C22
 , G(q) �

G11

G21
 ,

(46)

·

M11 � Φ1 +Φ2 + 2Φ3 cos q2,

M12 � Φ2 +Φ3 cos q2,

M21 � M12,

M22 � Φ2,
C11 � −Φ3 _q2 sin q2,

C12 � −Φ3 _q1 + _q2( sin q2,

C21 � Φ3 _q1 sin q2,

C22 � 0,

G11 � Φ4g cos q1 +Φ5g cos q1 + q2( ,

G21 � Φ5g cos q1 + q2( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

with Φ1 � J1 + p2l
2
1 Φ2 � J2 + 0.25p2l

2
2, Φ3 � 0.5p2l1l2,

Φ4 � (0.5p1 + p2)l1, and Φ5 � 0.5p2l2 [4]. +e model pa-
rameters are selected as l1 � 1, l2 � 0.95, p1 � 0.96,
p2 � 1.15, J1 � 0.21, J2 � 0.4, and g � 9.8.

+e reference trajectories are given as follows:

qd1 � sin(0.5t),

qd2 � 2 cos(0.5t).
 (48)

+e disturbances are assumed as

d1 � 1 + 0.5 sin(0.5t),

d2 � 0.5 + 0.5 cos(0.5t).
 (49)

5 10 150
t (s)
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q 
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ad
)
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Figure 3: Position tracking of different methods.
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Figure 4: Tracking error of different methods.
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Let the tracking error constraint boundary is selected as

LL1 � 0.5e
− 0.3t

+ 0.05, LU1 � 0.4e
− 0.3t

+ 0.08,

LL2 � 0.3e
− 0.3t

+ 0.05, LU2 � 0.5e
− 0.3t

+ 0.07.

⎧⎨

⎩ (50)

+e initial state of the robot is given as q(0) � [0.3, 1.7]T

and _q(0) � [0, 0]T. +e control parameter is selected:
k1 � diag 8, 5{ }, k2 � diag 28, 21{ }, Υw,i � 50, kw,i � 0.1,
Υδ,i � 5, kδ,i � 0.1, wi � 0.05, Δi � 0.15, κi � 2.1, mi � 0.1,
and mi � 0.08, where i � 1, 2. +e parameter of self-struc-
turing mechanism is selected: Ss � 0.75, Se � 0.1, σe � 0.3,
and ψ � 0.5; the initial neurons were two.

In order to exhibit the superior performance of the
proposed robust tracking control scheme, two existing re-
sults are selected for comparison:

(1) DSC: this is a general backstepping technique, filter,
and adaptive NN, without error constraints, self-
structuring methods, and compensators. +e main
parameters of the DSC controller are given as
k1 � diag 8, 5{ }, k2 � diag 28, 21{ }, Υw,i � 50, and
kw,i � 0.1.

(2) Strategy [22]: this is selected as a log-type BLF, filter,
and adaptive NN, without self-structuring methods
and compensators. +e main parameters of the
controller are given as k1 � diag 8, 5{ },
k2 � diag 28, 21{ }, Υw,i � 50, kw,i � 0.1, LL1 � 0.55,
LU1 � 0.48, LL2 � 0.35, and LU2 � 0.57.
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Figure 5: Control input of different methods.
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+e experimental conditions of the comparative ex-
periment are the same; in the same initial states, there are
also inaccurate dynamics models and subject disturbances.
+e compared method NN uses eleven neurons.

Simulation results of the designed control strategy are
shown in Figures 6–12. Figure 6 shows the movement tra-
jectories of joint 1 and joint 2; we can observe that all the
control schemes can track reference trajectories, but it can be
seen that the designed control strategy has better tracks ac-
curately.+e tracking errors of all control strategies are shown
in Figure 7, although there is no violation of the predesign
constraint conditions, and the DSC technique and the pro-
posed strategy have a rapid converged rate. However, the
proposed method can be tracked accurately and has better
robustness when it is subjected to large disturbances. +e

uncertainties can be accurately estimated by SSNN, as shown
in Figure 8. Figure 9 shows the compensator signal, which
proves that the disturbances and the NN estimate errors are
bounded. Figure 10 shows the number of neurons, and the
number of neurons after fitting is stable. In the beginning, the
initial neuron did not reach the ideal activation value and then
the new neurons are split to obtain a better estimate effect.
When SSNNs fit the nonlinear part, some redundant neurons
are removed to complete an accurate approximation with the
optimal number of neurons. Compared with the other two
methods, the proposed method not only achieves better
tracking performance but also uses fewer neurons on average.
Figure 11 shows the control input, which indicates that it is
updated at intervals and is stable and bounded. +e trigger
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Figure 9: +e compensator signed.
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times and the trigger intervals of joint 1 and joint2 are shown
in Figure 12, and the advantage of cost-saving for the event-
triggered controllers is shown.

Consider that the control system is subjected to
different disturbances and different dynamics models of
the robotic manipulator to verify the robustness of the
system and the validity of the SSNN. Another manipu-
lator model is visible in [22]. +e three groups’ distur-
bances are set as

d11 � 0.5 sin(t),

d12 � 0.5 cos(t),


d21 � 0.5 + 2 sin(t)cos(t),

d22 � 0.3 + 3 sin(t)cos(t),


d31 � 1 + 0.5 sin(0.5t) + 0.5(2rand(1) − 1),

d32 � 0.5 + 0.5 cos(0.5t) + 0.5(2rand(1) − 1).


(51)

+e results are shown in Figures 13 and 14 . From
Figure 13, one can find that the system still maintains good
tracking performance in response to different disturbances.
Figure 14 shows that the structure of SSNN changes
according to the complexity of the nonlinear part, but the
number of neurons is stable.
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Consider a step experiment that switches the tracking
signal every 2.5 seconds, and the simulation results are
shown in Figures 15 and 16 . Figure 15 shows the tracking
effect of the step signal. It can be seen that the tracking is
smooth and the steady-state error is small. Figure 16 shows
that the number of neurons is also stable in the step ex-
periment. +ese results show that the proposed strategy has
good performance.

5. Conclusions

+is paper studies robust tracking control of EL systems
based on BLF and SSNNs with uncertainties. +e proposed
robust tracking control law consists of the ATBLF method,
the SSNNs, the compensator, and the event-triggered
methods.+e results of stability analysis show that all signals
are SGUUB in the closed-loop system. Simulation results
show the effectiveness and superiority of the proposed
strategy, such as strong robustness and high precision.
Further work will include practical experiments and the
application of SSNN in the multi-EL system.
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