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In reliability theory or life testing, exponential distribution and Weibull distribution are frequently considered to model the
lifetime of the components or systems. In this paper, we design a control chart based on the lifetime performance index using Type
II censoring for exponential and Weibull distributions. Average run length helps to measure the performance of the proposed
control chart. +e optimal values of the number of failure items and decision criteria used to decide whether the process is in-
control or out-of-control based on the sample results are determined such that the in-control average run length is as close as to
the specified average run length values. We simulate the data to illustrate the performance of the proposed control chart.

1. Introduction

In all production processes, the most important task for each
manufacturer is to maintain the process stability because
products with uniform quality can be achieved only when
the process is stable. Process stability is defined as a state in
which a process has shown a certain degree of consistency in
history and is expected to continue the same state in the
future. To maintain process stability, the cause of process
variation should be detected and controlled because the
process may be affected by either common causes or by
assignable causes. Under this situation, the most important
tool of statistical process control, namely, the control chart,
helps the manufacturer. Specifically, a control chart is a
graphical representation that shows the process variation
over a period of time. Control charts can be used to achieve
and maintain process stability via monitoring, analyzing,
and understanding the process variations. +ere are two
types of control charts available such as attribute control
chart and variable control chart. +e former is applicable

where the quality characteristic of the sample is nonmea-
surable, and the latter is used to monitor the measurable
quality characteristic. One can find more applications of
control charts in the production field (see, for example,
Bersimis et al. [1]; Zhu et al. [2]; Chong et al. [3]; Jeyadurga
et al. [4]; Ali et al. [5]). It is to be mentioned that statistical
distributions play an important role in designing control
charts. In particular, normal distribution was frequently
used when designing variable control charts in earlier years.
But, in recent years, numerous distributions such as ex-
ponential, Weibull, gamma, etc. are involved in designing
control charts (see, for example, Aslam et al. [6, 7]; Ali and
Pievatolo [8]; Ali et al. [5, 9]). In this study, we consider the
designing of the control chart under exponential and
Weibull distributions.

+e lifetime is considered as the most essential char-
acteristic of a product among other quality characteristics.
For this reason, the producers concentrate on the lifetime
of the products during the manufacturing process and a life
test is conducted to determine the reliability of the
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products. However, the testing on the entire product is not
possible due to time and cost constraints, whereas the test
must be conducted to inspect the reliability. Under this
situation, a time-censored life test (Type I) or failure-
censored life test (Type II) is performed. In Type I cen-
soring, the test termination time is prescribed in advance
and it is observed that how many sample items failed until
the time is attained. But, in Type II censoring, the number
of failures is specified rather than the time. +at is, the life
test is terminated immediately if the specified number of
failed items is attained. In this work, we consider Type II
censoring in which a random sample of n items is placed in
the life test and the test is terminated at the failure of the sth
sample item.

Process capability indices measure the ability of an in-
control process to produce the products within the specifi-
cation limits. One can obtain the relationship between the
actual performance of the process and the specification limit by
such measure. +ese indices are considered process im-
provement techniques. Similarly, Montgomery [10] introduced
the lifetime performance index CL, which is utilized to evaluate
the lifetime performance of a process with respect to a lower
specification limit L. Some authors investigated the uniformly
minimum variance unbiased estimator and hypothesis testing
procedure of CL under various distributions (see, for example,
Tong et al. [11]; Wu et al. [12]; Lee et al. [13]; Lee et al. [14]; Lee
et al. [15]; Lee [16]; Ahmadi et al. [17], Jafari and Bafekri [18]).
In general, a normal distribution is considered as suitable to
model the measurable quality characteristic of the products.
But, the normal distribution is not appropriate to model the
random variable that represents the time-to-failure (i.e., life-
time T) of electronic components since such random variable
takes only positive values. In this circumstance, exponential or
Weibull distribution is preferred as a suitable lifetime model
rather than the normal distribution.+erefore, in this study, we
consider exponential and Weibull distributions to evaluate the
lifetime performance of a process. Numerous authors designed
acceptance sampling plans using the lifetime performance
index under exponential, gamma, and Weibull distributions
(see, for example, Aslam et al. [19]; Wu et al. [20]; Lee et al.
[21]). But, the study on designing control charts for exponential
andWeibull distributions based on CL under Type II censoring
is not available in the literature.+erefore, we attempt to design
such a control chart to monitor the lifetime performance of a
process. +e performance of the proposed control chart is
measured by average run length (ARL) and is defined as the
number of plotted points in the control chart before the out-of-
control indication. In this work, the simultaneous minimiza-
tion of out-of-control ARL and the number of failures to be
observed under inspection are considered.+e performance of
the proposed control chart is explained by using simulated
data.

2. Designing of the Control Chart under
Lifetime Distributions

In this section, we discuss the designing of the control charts
under exponential and Weibull distributions based on the
lifetime performance index.

2.1. Designing of the Proposed Chart under Exponential
Distribution. Suppose that the lifetime of the products is
defined by the random variable Tand μT and σT are themean
and standard deviation of lifetimes, respectively. +e index
CL measures the performance of the process and is defined
by (see Tong et al. [11])

CL �
μT − L

σT

, (1)

where L is a lower lifetime limit. Suppose that the random
variable T follows an exponential distribution with param-
eter λ> 0 and have the probability density function (pdf) as
follows:

f(t; λ) � λe
− λt

, t≥ 0. (2)

For exponential distribution, the mean and standard
deviation are same. +e exponential distribution with pdf
given in equation (2) has mean 1/λ (i.e., μT � 1/λ) and
standard deviation 1/λ (i.e., σT � 1/λ). Hence, by the sub-
stitution of µT and σT in equation (1), CL can be simplified
and rewritten as follows:

CL �
1/λ − L

1/λ
�
1/λ
1/λ

−
L

1/λ
� 1 − λL, − ∞<CL < 1. (3)

+e lifetime-nonconforming rate is defined by

p � P(T≤ L) � 1 − e
− λL

� 1 − e
CL − 1

. (4)

In practice, λ is usually unknown. In Type II censoring, s
failures t(1), t(2), . . . , t(s) are noted from t(1), t(2), . . . , t(n).
Wu et al. [20] provided the estimator of λ under Type II right
censoring which is given by

􏽢CL � 1 − 􏽢λL � 1 −
(s − 1)L

􏽐
s
i�1 t(i) +(n − s)t(s)

. (5)

Suppose that W � 􏽐
s
i�1 t(i) + (n − s)t(s). For this case, s is

predefined so the statistic W is sufficient for λ which leads
that 2λW follows a chi-squared distribution with 2s degrees
of freedom (i.e., 2λW ∼ χ22s).

When designing a control chart under exponential and
Weibull distributions, we need two parameters such as H1
and H2 instead of control limits used in traditional control
charts. +at is, instead of finding control limit coefficients in
the traditional designing procedure, the optimal values ofH1
and H2 are found so that the in-control ARL is as close as to
the specified ARL and the statistic obtained from the process
is compared with these optimal values of such parameters.
+en, the process is said to be in-control if the statistic lies
betweenH1 andH2; otherwise, the process is declared as out-
of-control. +e construction of the proposed control chart is
as follows.

Step 1. Select a random sample of size n from the production
process for the life test. Record first s(n≥ s) failure times
t(1), t(2), . . . , t(s).

Step 2. Calculate 􏽢CL � 1 − ((s − 1)L/􏽐
s
i�1 t(i) + (n − s)t(s))

(see Wu et al. [20]). Declare the process is out-of-control if
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either 􏽢CL ≥H2 or 􏽢CL ≤H1. Declare the process is in-control
state if H1 ≤ 􏽢CL ≤H2.

+e probability that the process is to be declared as out-
of-control is given by

Pout � P 􏽢CL ≥H2􏼐 􏼑 + P 􏽢CL ≤H1􏼐 􏼑 � 1 − P 􏽢CL ≥H1􏼐 􏼑 + P 􏽢CL ≥H2􏼐 􏼑,

Pout � 1 − P 1 −
(s − 1)L

􏽐
s
i�1 t(i) +(n − s)t(s)

≥H1􏼠 􏼡 + P 1 −
(s − 1)L

􏽐
s
i�1 t(i) +(n − s)t(s)

≥H2􏼠 􏼡.

(6)

By following Wu et al. [20], Pout can be written as

Pout � 1 − P χ22s ≥
2(s − 1) 1 − CL( 􏼁

1 − H1( 􏼁
􏼠 􏼡 + P χ22s ≥

2(s − 1) 1 − CL( 􏼁

1 − H2( 􏼁
􏼠 􏼡. (7)

+e probability that the process is declared to be out-of-
control, when the process is at CL � C0

L � 1 − λ0L, is given by

P
0
out � 1 − P χ22s ≥

2(s − 1) 1 − C
0
L􏼐 􏼑

1 − H1( 􏼁
|λ � λ0⎛⎝ ⎞⎠ + P χ22s ≥

2(s − 1) 1 − C
0
L􏼐 􏼑

1 − H2( 􏼁
|λ � λ0⎛⎝ ⎞⎠. (8)

+e in-control ARL of the proposed control chart when
CL � C0

L is denoted by ARL0 and given as follows:

ARL0 �
1

P
0
out

. (9)

Suppose that the manufacturing process has shifted from
λ0 to λ1 � kλ0, where k is a shift constant.+e probability that
the process is declared to be out-of-control when the process
is at λ� λ1 is given by

P
1
out � 1 − P χ22s ≥

2(s − 1) 1 − C
1
L􏼐 􏼑

1 − H1( 􏼁
|λ � λ1⎛⎝ ⎞⎠ + P χ22s ≥

2(s − 1) 1 − C
1
L􏼐 􏼑

1 − H2( 􏼁
|λ � λ1⎛⎝ ⎞⎠, (10)

where C1
L � 1 − λ1L � 1 − kλ0L � 1 − k(1 − C0

L). (When
preparing tables, specify C0

L and k. +en, C1
L can be obtained.)

+e ARL for the shifted process is denoted by ARL1 and
given by

ARL1 �
1

P
1
out

. (11)

To construct the proposed control chart for exponential
andWeibull distributions based on the lifetime performance
index under Type II censoring, we determine the optimal
parameters s (number of failures to be observed),H1, andH2
such that the in-control ARL (ARL0) is very close to the
specified ARL (say, r0). In addition, we minimize both ARL1
and s while finding the optimal parameters since the control
chart is considered as effective if it detects the process shift
quickly and uses the minimum number of observations to
detect the shift. +e following optimization problem can be
utilized in determining the optimal parameters:

minimizeARL1 and s

subject toARL≥ r0, n≥ s, H2 >H1.
(12)

+e optimal parameters are determined for two specified
in-control ARLs such as 300 and 370, and four different
values for the lifetime performance index are considered as
C0

L � 1.33, 1.50, 1.67, and 2.0 when the process is in-control.
For various shift constant values, the out-of-control ARL
(i.e., ARL1) is calculated using the optimal parameters and
the shift constant k is taken from 0.9 to 0.1. Tables 1 and 2
provide the out-of-control ARL values along with the op-
timal parameters, and it should be noted that the perfor-
mance of the process will decrease when there is a shift in the
process. In particular, such performance decreases if there is
a decrement in shift. +e decreasing trend of out-of-control
ARLs is observed from Tables 1 and 2 when the shift value
decreases.
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2.2. Designing of the Proposed Control Chart under Weibull
Distribution. Suppose that the random variable T follows
the Weibull distribution with shape parameter δ and scale
parameter θ. +e Weibull distribution is the generalization
of the exponential distribution. +e pdf of the Weibull
distribution is given by

f(t; θ, δ) �
δ
θ

t

θ
􏼒 􏼓

δ− 1
exp −

t

θ
􏼒 􏼓

δ
􏼠 􏼡, t≥ 0, θ> 0, δ > 0.

(13)

+e mean (µT) and variance (σT) of the Weibull dis-
tribution are obtained as

μT � θ Γ 1 +
1
δ

􏼒 􏼓,

σ2T � θ2 Γ 1 +
2
δ

􏼒 􏼓 − Γ2 1 +
1
δ

􏼒 􏼓􏼔 􏼕.

(14)

+e lifetime index for theWeibull distribution is given as

CL �
μT − L

σT

�
1
A
Γ 1 +

1
δ

􏼒 􏼓 −
L

θ
􏼔 􏼕. (15)

where − ∞<CL < Γ(1 + (1/δ))/A and
A �

�����������������������
Γ(1 + (2/δ)) − Γ2(1 + (1/δ))

􏽰
.

+e lifetime-conforming rate r is given by

r � P(T≥L) � exp −
L

θ
􏼒 􏼓

δ
􏼠 􏼡

� exp − Γ 1 +
1
δ

􏼒 􏼓 − ACL􏼒 􏼓
δ

􏼢 􏼣 � 1 − p,

(16)

where p is the lifetime-nonconforming rate. In Type II
censoring, s failures t(1), t(2), . . . , t(s) are noted from
t(1), t(2), . . . , t(n). Wu et al. [20] provided the estimator forCL
when δ is known under Type II right censoring which is
given by

􏽢CL �
1
A
Γ 1 +

1
δ

􏼒 􏼓 −
LΓ(s)

D
1/δΓ(s − (1/δ))

􏼢 􏼣, (17)

where D � 􏽐
s
i�1(n − i + 1)(tδ(i) − tδ(i− 1)), and according to

Wu et al. [20], for Type II censored data, we have
2􏽐

s
i�1 Zi � 2θ− δD ∼ χ22s. +e probability that the process is

declared to be out-of-control is given as in equation (6).
+erefore,

Table 1: ARLs of the proposed control chart under exponential distributions when r0 � 300.

k s� 5, H1 � 1.000, H2 �1.100 s� 3, H1 � 1.000, H2 �1.102 s� 3, H1 � 0.108, H2 �1.137 s� 3, H1 � 0.932, H2 �1.204
C0

L � 1.33 C0
L � 1.5 C0

L � 1.67 C0
L � 2.0

1.0 308.85 307.58 301.88 307.58
0.9 121.01 139.32 137.05 139.32
0.8 49.33 64.35 63.44 64.35
0.7 21.10 30.43 30.07 30.43
0.6 9.59 14.83 14.69 14.83
0.5 4.70 7.51 7.45 7.51
0.4 2.55 4.00 3.98 4.00
0.3 1.57 2.29 2.28 2.29
0.2 1.15 1.45 1.45 1.45
0.1 1.01 1.08 1.08 1.08

Table 2: ARLs of the proposed control chart under exponential distribution when r0 � 370.

k s� 5, H1 � 1.000, H2 �1.098 s� 4, H1 � 0.579, H2 �1.127 s� 5, H1 � 1.000, H2 �1.199 s� 3, H1 � 1.000, H2 �1.199
C0

L � 1.33 C0
L � 1.5 C0

L � 1.67 C0
L � 2.0

1.0 375.51 377.22 374.95 376.28
0.9 143.34 154.12 143.16 166.39
0.8 56.94 64.86 56.88 75.03
0.7 23.74 28.31 23.72 34.65
0.6 10.52 12.93 10.51 16.49
0.5 5.04 6.26 5.03 8.16
0.4 2.66 3.27 2.66 4.25
0.3 1.62 1.90 1.61 2.38
0.2 1.16 1.27 1.16 1.48
0.1 1.01 1.03 1.01 1.09
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Pout � 1 − P
1
A
Γ 1 +

1
δ

􏼒 􏼓 −
LΓ(s)

D
1/δΓ(s − (1/δ))

􏼢 􏼣≥H1􏼠 􏼡

+ P
1
A
Γ 1 +

1
δ

􏼒 􏼓 −
LΓ(s)

D
1/δΓ(s − (1/δ))

􏼢 􏼣≥H2􏼠 􏼡,

Pout � 1 − P χ22s ≥
2 Γ(1 +(1/δ)) − ACL􏼂 􏼃

δΓδ(s)

Γ(1 +(1/δ)) − AH1􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠

+ P χ22s ≥
2 Γ(1 +(1/δ)) − ACL􏼂 􏼃

δΓδ(s)

Γ(1 +(1/δ)) − AH2􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠.

(18)

+e probability that the process is declared to be out-of-
control when the process is at CL � C0

L � (1 /A)[Γ (1 +

(1/δ)) − (L/θ0)] is given by

P
0
out � 1 − P χ22s ≥

2 Γ(1 +(1/δ)) − AC
0
L􏽨 􏽩

δΓδ(s)

Γ(1 +(1/δ)) − AH1􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠

+ P χ22s ≥
2 Γ(1 +(1/δ)) − AC

0
L􏽨 􏽩

δ
Γδ(s)

Γ(1 +(1/δ)) − AH2􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠.

(19)

+e in-control ARL of the proposed control chart under
Weibull distribution is obtained by using equation (10).
Suppose that the manufacturing process has shifted from θ0
to θ1 � kθ0, where k is a shift constant. +en, the probability
that the process is declared to be out-of-control when the
process is at θ� θ1 is given by

P
1
out � 1 − P χ22s ≥

2 Γ(1 +(1/δ)) − AC
1
L􏽨 􏽩

δ
Γδ(s)

Γ(1 +(1/δ)) − AH1􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠

+ P χ22s ≥
2 Γ(1 +(1/δ)) − AC

1
L􏽨 􏽩

δ
Γδ(s)

Γ(1 +(1/δ)) − AH2􏼂 􏼃
δΓδ(s − (1/δ))

⎛⎝ ⎞⎠.

(20)

where CL � C0
L � (1/A)[Γ(1 + (1/δ)) − (L/θ0)] and C1

L � (1
/A)[Γ(1 + (1/δ)) − (L/θ1)] � (1/A)[Γ(1+ (1/δ)) − (L/kθ0)].
+e value of C1

L can be obtained fromC0
L as follows:

C1
L � (1/A)(Γ(1 + (1/δ))(1 − (1/k))) + (C0

L/k).
One can obtain the ARL for the shifted process under

Weibull distribution using equation (12). Also, the opti-
mization problem given in equation (13) is used to deter-
mine the optimal parameters for the proposed control chart
construction under Weibull distribution. +e optimal pa-
rameters are determined under Weibull distribution for the
same two specified in-control ARLs such as 300 and 370, and
three different values C0

L � 1.33, 1.50, and 1.67 are considered

Table 3: ARLs of the proposed control chart under Weibull distribution with shape parameter δ � 2 when r0 � 300.

k s� 5, H1 � 0.676, H2 �1.612 s� 4, H1 � 0.927, H2 �1.714 s� 3, H1 � 1.214, H2 �1.808
C0

L � 1.33 C0
L � 1.5 C0

L � 1.67

1.00 302.64 303.42 306.86
0.95 219.49 237.78 258.95
0.90 143.77 167.78 198.44
0.85 91.24 114.05 146.14
0.80 56.99 76.05 105.40
0.75 35.16 49.91 74.72
0.70 21.47 32.26 52.06
0.65 13.03 20.56 35.60
0.60 7.91 12.94 23.89
0.55 4.84 8.08 15.72
0.50 3.04 5.05 10.15

Table 4: ARLs of the proposed control chart under Weibull distribution with shape parameter δ � 2 when r0 � 370.

k s� 5, H1 � 0.644, H2 �1.614 s� 6, H1 � 1.088, H2 �1.690 s� 7, H1 � 1.457, H2 �1.777
C0

L � 1.33 C0
L � 1.5 C0

L � 1.67

1.00 373.51 370.50 376.73
0.95 271.45 250.85 236.85
0.90 177.09 153.11 135.96
0.85 111.76 90.91 76.45
0.80 69.36 53.30 42.65
0.75 42.46 30.97 23.73
0.70 25.70 17.92 13.26
0.65 15.42 10.39 7.51
0.60 9.23 6.09 4.38
0.55 5.56 3.67 2.68
0.50 3.42 2.32 1.77
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Table 5: Simulated data for exponential distribution.

1 2 3 4 5 6 7 8 9 10
0.056 0.020 0.016 0.010 0.122 0.021 0.020 0.076 0.015 0.010
0.105 0.037 0.030 0.050 0.137 0.050 0.020 0.081 0.044 0.051
0.143 0.042 0.072 0.056 0.165 0.082 0.125 0.102 0.055 0.060
0.229 0.054 0.257 0.087 0.174 0.098 0.142 0.105 0.064 0.104
0.349 0.078 0.260 0.147 0.285 0.194 0.156 0.112 0.074 0.108
0.387 0.081 0.276 0.172 0.286 0.206 0.221 0.148 0.139 0.111
0.400 0.135 0.278 0.257 0.289 0.254 0.298 0.181 0.160 0.132
0.408 0.166 0.298 0.313 0.294 0.280 0.314 0.281 0.161 0.166
0.428 0.237 0.349 0.339 0.406 0.366 0.330 0.329 0.237 0.206
0.445 0.275 0.467 0.372 0.438 0.397 0.372 0.470 0.255 0.215
0.473 0.286 0.573 0.533 0.463 0.455 0.427 0.509 0.290 0.221
0.531 0.316 0.611 0.580 0.512 0.474 0.510 0.513 0.313 0.286
0.581 0.319 0.625 0.617 0.559 0.561 0.636 0.618 0.338 0.297
0.684 0.327 0.672 0.622 0.783 0.633 0.664 0.622 0.438 0.312
0.724 0.374 0.679 0.818 0.843 0.651 0.666 0.808 0.519 0.338
0.777 0.424 0.875 0.842 0.843 0.652 0.727 0.916 0.545 0.354
0.790 0.527 0.883 0.988 0.933 0.703 0.808 1.036 0.594 0.466
0.797 0.681 1.026 1.021 0.960 0.715 0.906 1.071 0.673 0.498
0.988 0.788 1.056 1.157 1.034 0.758 0.983 1.077 0.751 0.684
1.017 0.816 1.091 1.536 1.044 0.979 1.021 1.089 0.904 0.715
1.061 1.225 1.109 1.567 1.075 1.015 1.044 1.394 0.909 0.937
1.115 1.368 1.148 1.578 1.314 1.213 1.206 1.476 0.993 1.306
1.186 1.434 1.149 1.634 1.331 1.534 1.229 1.481 1.017 1.382
1.386 1.823 1.221 2.757 1.351 1.635 1.290 1.557 1.112 1.488
1.437 1.925 1.248 3.343 1.457 1.640 1.316 1.628 1.244 1.878
1.679 1.980 1.905 3.417 1.760 2.148 1.447 1.690 1.690 2.353
1.852 2.172 1.948 3.541 1.877 2.261 1.775 1.904 2.328 2.413
2.360 3.211 3.054 5.071 2.299 2.571 2.001 2.175 2.345 3.235
2.881 3.233 3.409 5.134 2.380 4.046 2.065 2.279 2.745 3.937
2.948 5.987 4.790 5.317 4.535 4.149 2.379 2.282 5.069 4.114
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Figure 1: Performance of the proposed control chart.
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as the case of exponential distribution. Here, the out-of-
control ARL is calculated for shift constant k� 0.95(0.05)0.5.
+e optimal parameters and the corresponding out-of-
control ARL values are reported in Tables 3 and 4. From
these tables, it can be understood that the out-of-control
ARLs decrease when the shift value decreases. In addition, it
is observed that the ARL decreases if there is an increment in
the required number of failure items.

3. Industrial Application

+e contribution of control charts in producing high-reli-
ability products through monitoring and detecting the
process variation is an important one. Most of the indus-
trialists have considered that this control chart is one of the
useful tools to make the business as profitable. Suppose that
themanufacturer of the electronic component wants that the
lifetime of producing products should be very high and he
decides to use the control chart for process monitoring. +e
proposed control chart under exponential distribution will
be appropriate for monitoring the lifetime since it is con-
sidered that exponential distribution is the suitable model to
represent the lifetime of electronic components. +e per-
formance of the proposed control chart in detecting the
process shift is investigated by using simulated data, and data
are given in Table 5. Such data have been simulated for
exponential distribution, for the following specifications: in-
control ARL is 300 (i.e., r0 � 300) and sample size n� 30, and
we assume thatCL � C0

L � 1.67 (i.e., the process is in-control)
where the lower limit is L� 0.387. +e optimal values ob-
tained for these specifications are as follows: s� 3,H1 � 0.108,
and H2 �1.137. To compute the performance index, the first
three failure times of sample items in each of the 10 sub-
groups is considered, and such index is calculated and
plotted in Figure 1. It can be observed from the figure that
the performance index of each subgroup lies between de-
cision criteria. +erefore, the process is declared to be in-
control. Similarly, we can show the lifetime performance of
the process by using simulated data where the lifetime
follows Weibull distribution.

4. Conclusion

A number of variable-control chart designing methods are
available for monitoring the mean, standard deviation, etc.
Similarly, some studies are available on designing the control
charts for monitoring the performance of the manufacturing
process using the capability index. We have also investigated
the lifetime performance of the process using one of the
capability indices, namely, lifetime performance index with
the help of control chart. +e designing of the proposed
control chart for both the exponential and Weibull distri-
butions has been discussed, and to reduce the time con-
sumption, Type II censoring scheme is used. We have
minimized the out-of-control average run length and the
number of failure items which are some of the important
parameters helpsto decide whether the process is in-control
or out-of-control. +e performance of the proposed control
chart has been explained by using simulated data. It is

concluded that the proposed control chart will be very
helpful to the manufacturer for monitoring the performance
of the process. +e proposed chart has the limitation that it
can be applied when the lifetime follows the Weibull dis-
tribution and cannot be applied for normally distributed
data. In this study, designing of the control chart is given for
monitoring the lifetime performance of the process where
the lifetime follows exponential and Weibull distributions.
As a result, there can be a future study on designing control
charts for other lifetime distributions and also, an economic
designing of the proposed control chart will also be
considered.
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