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,is paper studies the target-tracking problem of underactuated surface vessels with model uncertainties and external unknown
disturbances. A composite robust adaptive self-structuring neural-network-bounded controller is proposed to improve system
performance and avoid input saturation. An extended state observer is proposed to estimate the uncertain nonlinear term,
including the unknown velocity of the tracking target, when only the measurement values of the line-of-sight range and angle can
be obtained. An adaptive self-structuring neural network is developed to approximate model uncertainties and external unknown
disturbances, which can effectively optimize the structure of the neural network to reduce the computational burden by adjusting
the number of neurons online. ,e input-to-state stability of the total closed-loop system is analyzed by the cascade stability
theorem. ,e simulation results verify the effectiveness of the proposed method.

1. Introduction

In recent years, the tracking control problem of under-
actuated surface vessels (USVs) has attracted the attention of
many researchers. ,e design of motion controllers for USVs
is extremely important due to their applications in target
search, resource exploration, oceanographic mapping, and
ocean dynamic surveillance [1, 2]. ,e primary difficulty of
USV tracking control is that it cannot satisfy various degrees
of freedom to achieve independent power. Additionally, in the
case of model uncertainties and unknown low-frequency
time-varying external disturbances, the design of the USV
nonlinear tracking controller is particularly difficult [3–5].
,e challenges of controller design are as follows:

(1) At present, general surface vessels can provide two
degrees of freedom: control input surge and yaw.
,ese vessels are underactuated systems in which the
number of independent actuators (input) is less than
the controlled degrees of freedom (output) [6–11].

(2) It is difficult or impossible to design an accurate
vessel model. For example, the Coriolis and

centripetal terms and hydrodynamic damping forces
in the model cannot be accurately determined
[12–14].

(3) ,e external unknown disturbances caused by waves,
wind, and ocean currents seriously affect the stability
and robustness of the USV control system [15].

Model uncertainties have a serious impact on the per-
formance and stability of the control system. When external
unknown disturbances are added, the robustness of the
system worsens. Many model-based USV tracking control
methods have been proposed. ,e tracking control method
was based on the Lyapunov theorem and backstepping
technique in [16]. In [17], the controller was designed
through the nonlinear coordinate transformation of the
vessel model to obtain global uniformity and final bound-
edness. To address the unknown nonlinear components
caused by the uncertainty of the model parameters, the
adaptive control method was proposed to solve the tracking
control problem and improve the system’s robustness
[18, 19]. In [18], by updating the adaptive law, a parameter
compression algorithm was developed to address the
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problems of model uncertainty and unknown disturbances
in a more concise way. Fuzzy control combined with
minimum learning parameters and a fuzzy adaptive control
method with state feedback was proposed to address model
uncertainties in [19]. Recently, in USV tracking control, a
variety of NN adaptive technologies were designed to
compensate for model uncertainties [20–25]. Under the
conditions of uncertain model parameters and unknown
nonlinearity, an adaptive observer based on NNs was de-
veloped to estimate USV speed with uncertain terms [20]. In
[21], a robust controller based on the traditional RBFNNwas
proposed to compensate for the dynamic uncertainty. To
ensure performance, an adaptive NN controller was de-
veloped to compensate for model uncertainties in [22, 23].

In motion control, target control has attracted more
attention [26–28]. In [26], a measuring target velocity ob-
server was developed to assist in tracking the upper target
under the constraints of position, angle, and speed. In [27],
the range and angle of the underwater robot relative to the
tracking target were transformed into a dynamic second-
order model with open-loop error. Multilayer NN and ro-
bust controller with adaptive parameters were used to
achieve target-tracking control. In [28], based on the line-of-
sight (LOS) measurements of angle and range, a target-
tracking controller was proposed. Fuzzy control [29, 30] has
been validated in various practical applications such as the
control of USVs. In [31], an adaptive output-feedback fuzzy
control was proposed by using a fuzzy logic system (FLS) to
approximate the model uncertainties. In particular, during
the target-tracking process, only the target’s instantaneous
movement information is available. ,e above trajectory
control strategy can obtain the required tracking informa-
tion, including position and velocity, but without consid-
ering the unknown target velocity. When addressing model
uncertainties and disturbances, disturbance observations
were used to estimate disturbances to complete robust
tracking control [32], and the NN was used to process
unknown nonlinear functions, which were combined with
model uncertainties and unknown external disturbances
[20–23]. When the NN approximates a nonlinear function,
the number of neurons has a huge impact on the error of the
NN approximation function. In [33, 34], the number of
neurons was very large, and the more neurons there were,
the better the approximations of the nonlinear function.
However, this change also led to an increase in the number
of geometric series in the calculation and a drastic reduction
in the calculation speed. In [35], the adaptive NN com-
pensated for the uncertainty of the model, which used the
proposed self-structure mechanism to optimize the ap-
proximation performance and reduce the computational
burden. In [36], a flexible NN structure was proposed to
solve the unknown nonlinear function for each neuron of
multiple agents. ,e NN with better performance obtained
by optimizing the structure was more suitable for practical
application scenarios.

Inspired by the above observations and research, this
paper proposes a robust target-tracking control method and
a self-structuring NN strategy to solve the problems of
model uncertainties and unmeasurable tracking target

velocity while ensuring satisfactory USV system perfor-
mance. Compared with the previous studies described in
[27, 28, 37], the proposed control method is based on the fact
that the speed of the tracking target cannot be obtained. In
addition, for the target tracker differential explosion prob-
lem, a second-order linear differentiator is added to generate
a smooth motion profile curve. In [38], the problem of input
saturation is solved by introducing a Gaussian error function
to avoid the output fault of the actuator. In this paper,
another method is proposed to design a predefined bounded
control law to guarantee that the system is ISS, to achieve
input boundedness, and to guarantee that the controller is
not complex. In [21, 33, 34], the use of an adaptive NN to
approximate unknown model parameters required a large
number of neurons to ensure the approximation effect.
,en, a self-structuring neural network (SNN) optimization
strategy was proposed to require fewer neurons to obtain the
optimized NN structure and reduce the computational
burden. In our previous work on fully actuated surface
vessels [35], the SNN was first proposed to approximate the
model uncertainties. However, SNNs can complete the
approximation process only by adding neurons because the
controller design of fully actuated surface vessels is simpler.
In this paper, since the control design of underactuated
surface vessels is more complex, a neural network is required
to achieve higher approximation performance. ,erefore, in
this paper, SNNs not only can increase the number of
neurons but also can delete neurons with low activation to
reduce the amount of neural network training calculation on
the premise of ensuring approximation performance.

,e primary contributions of this paper are summarized
as follows:

(1) An expanded state observer is employed to estimate
the nonlinear term including the target speed in-
formation so that the designed controller does not
require the direct target’s speed, which is very dif-
ficult to obtain in practice. In addition, the designed
controller only requires the measurements of the
LOS range and angle, which can receive data through
some simple sensors. ,is ability is desirable in
practice.

(2) An adaptive self-structuring NN is proposed to
approximate the vessel’s unknown nonlinear terms,
including the model uncertainties and external un-
known disturbances. Compared with the RBF neural
network, which has a fixed number of neurons
[33, 34, 39], a self-structure strategy is developed to
adjust the NN structure. ,is approach can optimize
the NN approximation performance by adjusting the
number of effective neurons, effectively reducing the
computational burden.

(3) Compared with other adaptive control algorithms
[18], the proposed control laws are predefined as
bounded and with an a priori bound, which effec-
tively avoids input saturation of the controller.

,e organizational structure of this paper is as follows.
Section 2 introduces the preparation of the USV problem
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formula, NN, and neuron optimization strategy. Section 3
shows the design of the USV robust target-tracking con-
troller and the stability analysis. Section 4 analyses the ef-
fectiveness of the control method through simulation.
Finally, Section 5 provides conclusions and future research.

2. Preliminaries and Problem Formulations

2.1. Preliminaries. Notation: λmax(·) and λmin(·) represent
the largest and smallest eigenvalues of the square matrix (·),
| · | denotes the absolute value of a scalar, ‖ · ‖ stands for the
Euclidean norm, diag ·{ } denotes a block-diagonal matrix,
and sgn(·) is a sign function.

Assumption 1 (see [40]). ,e matrix of the ideal NN weights
is always bounded, where W∗ and S∗ are unknown positive
constants that satisfy ‖W‖≤W∗ and ‖S‖≤ S∗. σu and σr are
the approximate errors, which are bounded by |σi|≤ σ,
i � u, r, and σ is an unknown and small positive constant.

Assumption 2. ,e external disturbance dw � [du, dv, dr]
T is

unmeasurable and time-varying but bounded, and its first
derivative is also bounded, such that |dw|≤d∗w and
| _dw|≤ d∗wn, where d∗w and d∗wn are unknown positive
constants.

2.2. Neural Network. Faced with the unknown dynamic
model, an SNN is proposed. Suppose that f(x): RN⟶ R

is an unknown smooth and bounded nonlinear function and
that it can be approximately expressed as follows [41]:

f(x) � W
T
S(x) + σ, (1)

where N is the number of neurons in the NN. W ∈ RN

denotes the ideal weight vector:

W � argmin sup
x∈R

f(x) − W
T
S(x)



 , (2)

where W is the estimation of W. S(x) � [S1(x), . . . , SN(x)]T

denotes the NN vector, and the activation function is a
Gaussian function.

Si(x) � exp −
x − ci

����
����
2

b
2
i

⎛⎝ ⎞⎠, i � 1, . . . , N, (3)

where ci ∈ Rm represents the center vector and bi ∈ R
represents the width of the Gaussian function. σ is the
bounded approximation error of the NN, namely, |σ|≤ σ,
and σ is an unknown and small constant.

In the traditional RBFNN, additional neurons in the NN
result in a more accurate approximation [33, 34]. However,
in actual function approximation, not all neurons are valid
NN neurons. More NN neurons mean more valid as well as
invalid neurons, but the former is more frequent than the
latter. ,e SNN has the ability to increase and decrease the
number of NN neurons online to achieve the best NN
structure. By increasing the number of effective active
neurons and deleting neurons with lower activation degrees,
better function approximation performance is obtained.

,e SNN neuron strategy has two principal operations:
split and delete. Splitting of neurons is achieved by judging
whether the neuronwith the highest activation function among
the existing neurons is greater than a given activation value.
,e maximum degree Smax among Sκ is defined as follows:

Smax � max
1≤κ≤N

Sκ. (4)

,e activation strength S obtained from (1) is used as the
degree measure, and Smax is defined as the maximum degree
among Sκ. If Sk ≤Gth where Gth ∈ (0, 1) is a preset threshold,
the incoming data are not ideal. In other words, the acti-
vation degree is insufficient. ,erefore, a new neuron with a
strong degree of activation should be split. ,e weight vector
W and the center vector c corresponding to the activation
function of the new neuron are the same as the parameters
corresponding to the S neuron. ,is relationship ensures
that the activation strength of the new split neuron is better.

,e newly divided neuron is labeled as kNew. ,e new
neuron weight parameters are as follows:

c
New
j �

xj + cj

2
,

b
New
j � bj,

W
New
j � 0,

I
New
j � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where xj, cj, and bj are the parameters of the largest acti-
vated neuron Smax, WNew

j is the initial weight value of the
new neuron, and INewj is the flag value used in (6).

If the number of neurons continues to increase, a myriad
of computational pressures will be caused; therefore, the
strategy of neuron deletion is proposed. When the r th
activation strength Sr is smaller than a threshold Pth, neuron
r is not strongly associated with the input. ,en, when Sr

satisfies our setting strategy of continuous neuron deletion,
the value of the Sr reference index gradually decreases. ,e
referring index is as follows:

Ir �
exp(− ς)Ip

r if Sr ≤Pth

I
p
r if Sr >Pth

⎧⎨

⎩ , r � 1, 2, . . . , N, (6)

where Ir is the reference index of the r th neuron, and its
initial value is 1. Pth is the critical value for deletion, and ς is a
positive constant. I

p
r denotes that the final value of Ir. Ith is a

predefined value. If it satisfies Ir ≤ Ith, the r th neuron is
pruned.Moreover, the amount of calculation is also reduced.
In summary, a neuron adjustment schematic diagram is
shown in Figure 1. If Sj ≤Gth, a new neuron Sj

′ � Smax with a
strong degree of activation should be split. If inequality (6) is
satisfied, the neuron is deleted. ,e SNN neuron algorithm
strategy flowchart is shown in Figure 2.

Remark 1. ,e difference between RBFNN and SNN is
that the former requires more neurons but introduces more
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low-effect neurons, which introduces a large number of
invalid calculations; the latter can increase the number of
effective neurons and delete inefficient neurons by judging
the neurons’ activation degree.

Remark 2. If the nonlinear function approximated by the
SNN is more complicated, more neurons are split to obtain
better approximation performance. ,en, by choosing a
larger Gth value, more neurons are generated, and at the
same time, by slightly increasing the Pth value, activation
neurons with lower degrees can be removed.

2.3. Problem Formulation. ,e kinematics and dynamics
model of USVs with disturbances are expressed as
follows [42]:

_x � u cosψ − v sinψ,

_y � u sinψ + v cosψ,

_ψ � r,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

_u �
Fu(u, v, r) + τu + du(t)( 

m11
,

_v �
Fv(u, v, r) + dv(t)( 

m22
,

_r �
Fr(u, v, r) + τr + dr(t)( 

m33
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

η � [x, y,ψ]T represents the vessel position and orien-
tation in the earth-fixed frame.] � [u, v, r]T denotes the
corresponding velocities in surge, sway, and yaw. τu and τr

are the control inputs. m11, m22, and m33 are the mass of the
ship. dw � [du, dv, dr]

T is an external unknown disturbance
vector caused by wind, waves, and ocean currents. Fj(u, v, r)

(j � u, v, r) are the nonlinear function component of the
ship’s model, including the centripetal force and force of the
Coriolis as well as the hydrodynamic damping effects and
unknown dynamic model.

,e target model is as follows:

_xd � ud cosψd − vd sinψd,

_yd � ud sinψd + vd cosψd,

_ψd � rd.

⎧⎪⎪⎨

⎪⎪⎩
(9)

A system composed of the structural relationship be-
tween the target, and the follower is shown in Figure 3.

,e LOS range ze and angle ψn between the target and
the followers are expressed as follows:

ze �

������

x
2
e + y

2
e



,

ψn � a tan 2 ye, xe( ,

⎧⎪⎨

⎪⎩
(10)

where xe � xd − x, ye � yd − y, and the formation tracking
errors are defined by

zd � ze − zn,

zψ � ψn − ψ − φ,

⎧⎨

⎩ (11)

where zn is the desired LOS range and φ � a tan 2(v, u) is the
sideslip angle.

start

Calculate the virtual
velocity and

tracking error

Calculate the NN
output

α, e

Calculate the
maximum degree
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neuron
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Control end?
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end

F

Figure 2: SNN neuron algorithm strategy flowchart.
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Figure 1: Neuron adjustment schematic diagram.
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,e control objective of this paper is to construct a
robust controller for USVs (dynamics (7) and (8)) to track
the desired leader trajectory so that the signals xe, ye, zd, and
zψ are uniformly ultimately bounded (UUB).

3. Main Results

3.1.KinematicControllerDesign. ,e time derivatives of (11)
along (9) and (7) are given by

_zd � Υd(·) − u,

_zψ � Υψ(·) − r,

⎧⎨

⎩ (12)

where

Υd(·) � ud cos ψn − ψd(  + vd sin ψn − ψd(  − v sin ψn − ψ(  + u − u cos ψn − ψ(  − _zn,

Υψ(·) �
ud sin ψn − ψd(  + vd cos ψn − ψd(  − v cos ψn − ψ(  + u sin ψn − ψ(  

ze

− _φ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Remark 3. To facilitate the derivation of the control law,
coordinate transformation (11) is used, and the kinematics
model of USV is rewritten as in (12). Similar error trans-
formations are used in [42, 43].

We make the following assumptions.

Assumption 3. For the function Υd(ud, vd,ψd, u, v,ψ,ψn, zn)

and Υψ(ud, vd,ψd, u, v,ψ,ψn,φ), Υ∗d and Υ∗ψ are two positive
constants, such that | _Υd|≤Υ∗d and | _Υψ|≤Υ∗ψ .

,e kinematic controller is designed according to the error
dynamics in (12). Since ud and vd are unknown, Υd and Υψ are
unavailable. TwoESOs are used to estimateΥd andΥψ as follows:

_zd � − ζ1 zd − zd(  + Υd − u,

_Υd � − ζ2 zd − zd( ,

_zψ � − ζ3 zψ − zψ  + Υψ − r,

_Υψ � − ζ4 zψ − zψ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where ζ1, ξ2, ζ3, and ζ4 are parameters that need to be
designed.

,e observation errors can be expressed as follows:
_zd � − ζ1zd + Υd,

_Υd � − ζ2zd − _Υd,

_zψ � − ζ3zψ + Υψ ,

_Υψ � − ζ4zψ − _Υψ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where zd � zd − zd, Υd � Υd − Υd, zψ � zψ − zψ , and
Υψ � Υψ − Υψ . Let H � [zd, zψ , Υd, Υψ]T and _Υ � [0, 0,
_Υd, _Υψ]T, where ‖ _Υ‖≤R∗ and R∗ is a positive constant.
Formula (15) is expressed as follows:

_H � Λ H − _Υ, (16)

where Λ is a Hurwitz matrix, which is expressed as follows:

Y0

X0

X

YO

Y0

X0

Target

Follower

z n

ψn

ψ

Figure 3: Illustration of USV for target tracking.
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Λ �

− ζ1 0 1 0

0 − ζ3 0 1

− ζ2 0 0 0

0 − ζ4 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

,ere is a matrix P with a unique positive definite that
causes the following equation to be true.

ΛT
P + P

TΛ � − I. (18)

Two types of virtual control laws are proposed to sta-
bilize zd and zψ as follows:

αu �
ε1zd

Ξd
+ Υd − eu,

αr �
ε2zψ

Ξψ
+ Υψ − er,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

where Ξd �

�������
z2

d +Ω2d


and Ξψ �
�������
z2
ψ +Ω2ψ


. Ωd and Ωψ are

positive parameters. ε1 and ε2 are control gain parameters. eu

and er are the error estimations of the tracking trajectory and
angle, respectively.

Let αu and αr pass by the second-order linear TD to
obtain ur and rr, which are the expected values of u and r,
respectively.

_ur � u
r
rm

_u
r
r � − l

2
ur − αu(  − 2lu

r
r,

_rr � r
r
r,

_r
r
r � − l

2
rr − αr(  − 2lr

r
r,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

where pu � ur − αu and pr � rr − αr. pu and pr are defined
as estimation errors. l is the design parameter. ,e con-
vergence of the error is analyzed in [44]; it can summarize
that there exist two small positive numbers p∗u and p∗r that
satisfy |pu|≤p∗u and |pr|≤p∗r for bounded virtual control
signals _αu and _αr, respectively. ,en exist positive small
numbers a∗u and a∗r , such that | _αu|≤ a∗u and | _αr|≤ a∗r .

Substituting (20) into (15), the target-tracking errors can
be rewritten as follows:

_zd �
− ε1zd

Ξd
− ζ1zd + eu − pu,

_zψ �
− ε2zψ

Ξψ
− ζ3zψ + er − pr,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

where eu � u − ur, er � r − rr, eu � eu − eu, and er � er − er.

3.2. Dynamic Controller Design. From equation (8), the
derivatives of eu and er are expressed as follows:

m11 _eu � Fu(·) + τu,

m33 _er � Fr(·) + τr,

⎧⎨

⎩ (22)

where Fu(·) � Fu(u, v, r) + du − m11 _ur and Fr(·) � Fr(u,

v, r) + dr − m33 _rr. Fu(·) and Fr(·) are the unknown non-
linear function components of the ship’s model and the
unknown external disturbances. In the process of deriving
the control law, it is necessary to solve the nonlinear
function, which is composed of unknown disturbances and
uncertainties from the model. Inspired by the SNN, a pa-
rameter adaptive method is proposed to approximate
nonlinear functions Fu(·) and Fr(·).

Fu � W
T
u Su(Z) + σu,

Fr � W
T
r Sr(Z) + σr,

⎧⎨

⎩ (23)

where Z � [ _ur, _rr, eu, er]
T ∈ R4 is the input vector and Su(Z)

and Sr(Z) are the RBF vectors. σu and σr are the approx-
imate errors, which are bounded. Wu and Wr denote the
ideal weights. Wu and Wr are the estimation values of Wu

and Wr, respectively. W∗u , W∗r , S∗u , and S∗r are unknown
positive constants that satisfy ‖Wu‖≤W∗u , ‖Wr‖≤W∗r ,
‖Su‖≤ S∗u , and ‖Su‖≤ S∗u , respectively.

Error estimation models are designed based on the SNN
as follows:

m11
_eu � W

T

u Su(Z) + τu − ε3 + δu( eu,

m33
_er � W

T

r Sr(Z) + τr − ε4 + δr( er,

⎧⎪⎨

⎪⎩
(24)

where ε3, ε4, δu, and δr are the positive constant parameters.
,en, the control laws based on the SNNmodels (24) are

designed as follows:

τu �
− ε3eu

Ξu
− W

T

u Su(Z),

τr �
− ε4er

Ξr
− W

T

r Sr(Z),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

where Ξu �

�������

e2u +Ω2u


, Ξr �

������

e2r +Ω2r


, and Ωu and Ωr are
two positive constants. Design the following adaptive update
laws for Wu and Wr as follows:

_Wu � − Γu Su(Z)eu + ρ1 Wu ,

_Wr � − Γr Sr(Z)er + ρ2 Wr ,

⎧⎪⎨

⎪⎩
(26)

where Γu, Γr, ρ1, and ρ2 are the design parameters.

Remark 4. ,e estimation errors eu are used to replace the
errors eu, which effectively improves the transient perfor-
mance of the control system [45].

,e designed control laws (25) are bounded, and the
bound are a priori, which effectively avoids saturation of the
controller. ,e upper bound of the control laws can be
expressed as follows:

τu


≤ ε3 + W

∗
uS
∗
u,

τr


≤ ε4 + W

∗
r S
∗
r .

⎧⎨

⎩ (27)
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Remark 5. ,e SNN weights Wu ∈ RL and Wr ∈ RL are
trained and self-learned online according to (26). L is the
number of neurons in the SNN, which can be updated
according to the self-structuring strategy.

Substituting (25) into (24) yields

m11
_eu �

− ε3eu

Ξu
− ε3 + δu( eu,

m33
_er �

− ε4er

Ξr
− ε4 + δr( er.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

,e derivatives of Wu, Wr, eu, and er along (26) and (24)
are as follows:

_Wu � − Γu Su(Z)eu + ρ1 Wu ,

_Wr � − Γr Sr(Z)er + ρ2 Wr ,

m11
_eu � − ε3 + δu( eu + W

T

u Su(Z) − σu,

m33
_er � − ε4 + δr( er + W

T

r Sr(Z) − σr,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where Wu � Wu − Wu and Wr � Wr − Wr are the estima-
tion errors. ,e control scheme flow is shown in Figure 4.

3.3. Stability Analysis. ,e closed-loop error system is a
cascade system composed of two estimation error subsys-
tems ((16) and (29)) and a target-tracking error subsystem
((21) and (28)). ,ree lemmas are used to prove its stability.
,e first is the stability of the ESOs observation error system.

Lemma 1. Aere is a matrix P with a positive definite that
satisfies (18), and the error system in (16) is a system for which
the state is H and the input is _Υ.Aen, the error system (16) is
input-to-state stable (ISS) under Assumption 3.

Proof. Define the Lyapunov function concerned with ESOs
error as follows:

V1 �
1
2

H
T
P H. (30)

,e time derivative of V1 along (18) becomes

_V1 � H
T ΛT

P + P
TΛ  H + H

T
P(− _Υ)≤ − ‖ H‖

2
+‖ H‖‖P‖‖ _Υ‖.

(31)

Since

‖ H‖≥
‖P‖‖ _Υ‖

μ1
(32)

renders

_V1 ≤ − 1 − μ1( ‖ H‖
2
, (33)

where 0< μ1 < 1, it follows that the observer error system is
ISS, and

‖ H(t)‖ ≤max β1(‖ H(0)‖, t), c
_Υ
(‖ _Υ‖) , (34)

where β1 is a KL function and

c
_Υ
(r) �

�������
λmax(P)

λmin(P)


‖P‖r

μ1
. (35)

,en, the stability of the error subsystem (24) is given by
Lemma 2. □

Lemma 2. Ae error subsystem (24), considered as a system
with the inputs being σu, σr, Wu, and Wr and the states being
eu, er, Wu, and Wr, is ISS under Assumption 1.

Proof. Assign the Lyapunov function as follows:

V2 �
1
2
m11e

2
u +

1
2
m33e

2
r +

1
2

W
T

uΓ
− 1
u

Wu +
1
2

W
T

r Γ
− 1
r

Wr. (36)

With (29), the derivative of (36) is as follows:

_V2 � eum11
_eu + erm11

_er + W
T

uΓ
− 1
u

_Wu + W
T

r Γ
− 1
r

_Wr

� − ε3 + δu( e
2
u − σueu − ε4 + δr( e

2
r − σrer − ρ1 Wu

����
����
2

− ρ1 Wu

����
���� Wu

����
���� − ρ2 Wr

����
����
2

− ρ2 Wr

����
���� Wu

����
����

� − X
T
1 E1X1 + l

T
1 X1,

(37)

where Χ1 � [eu, er, ‖ Wu‖, ‖ Wr‖]T, E1 � diag ε3+ δu, ε4 + δr,

ρ1, ρ2}, and l1 � [− σu, − σr, ρ1‖Wu‖, ρ2‖Wr‖]T.
Since

Χ1
����

����≥
l1

����
����

μ2λmin E1( 

≥
σu




μ2λmin E1( 
+

σr




μ2λmin E1( 
+

ρ1


 Wu

����
����

μ2λmin E1( 
+

ρ2


 Wr

����
����

μ2λmin E1( 

(38)

renders

_V2 ≤ − 1 − μ2( λmin E1(  X1
����

����
2
, (39)

where 0< μ2 < 1. Consequently, the error subsystem (24) is
ISS, and

X1(t)
����

����≤max β2 X1(0)
����

����, t , c
σu σu


  + c

σu σr


  + c

Wu Wu

����
����  + c

Wr Wr

����
����  , (40)
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where β2 is a KL function and

c
σu (r) �

��������
λmax N1( 

λmin N1( 


r

μ2λmin E1( 
,

c
σr (r) �

��������
λmax N1( 

λmin N1( 


r

μ2λmin E1( 
,

c
Wu (r) �

��������
λmax N1( 

λmin N1( 


ρ1r

μ2λmin E1( 
,

c
Wr (r) �

��������
λmax N1( 

λmin N1( 


ρ2r

μ2λmin E1( 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where N1 � diag m11, m33, Γ− 1u , Γ− 1r .
,e last is the stability of the target-tracking error

subsystems (21) and (28). □

Lemma 3. Subsystems (21) and (28), considered as a system
with the inputs being H, eu, er, pu, and pr and the states being
eu, er, zd, and zψ, are ISS.

Proof. Define the Lyapunov function as follows:

V3 �
1
2
z
2
d +

1
2
z
2
ψ +

1
2
m11e

2
u +

1
2
m33e

2
r . (42)

Substituting (21) and (28) into the derivative of (42), the
following is obtained:

_V3 � −
ε1z

2
d

Ξd
− zd ζ1zd − eu + pu(  −

ε2z
2
ψ

Ξψ
− zψ ζ3zψ − er + pr  −

ε3e
2
u

Ξu
− eu ε3 + δu( eu −

ε4e
2
r

Ξr
− er ε4 + δr( er

≤ −
λmin E2(  X2

����
����
2

�����������

X2
����

����
2

+Ω2max

 + l2
����

���� X2
����

����,

(43)

where l2 � [ζ1|zd| + |eu| + |pu|, ζ3|zψ| + |er| + |pr|, (ε3 + δu)

|eu|, (ε4 + δr)|er|]
T, E2 � diag ε1, ε2, ε3, ε4 , X2 � [zd, zψ ,

eu, er]
T, and Ωmax � max Ωd,Ωψ ,Ωu,Ωr .

Since

X2
����

����
�����������

X2
����

����
2

+Ω2max

 ≥
l2

����
����

μ3λmin E2( 

≥
ζ1 zd




μ3λmin E2( 
+

pu




μ3λmin E2( 
+

ζ3 zψ





μ3λmin E2( 
+

pr




μ3λmin E2( 
+

1 + ε3 + δu(  eu




μ3λmin E2( 
+

1 + ε4 + δr(  er




μ3λmin E2( 
,

(44)

input

USV systeam

Virtual control

Self-structuring neural
network formation controller

LOS TD filtersobserver
zd, zψ αu, αr

ur, rr

τu, τr

η = [x, y, ψ]T

ν = [u, v, r]T

Fu, Fr

zd, zψ
γd, γψ

x0, y0

– –

Figure 4: Control scheme schematic diagram.
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renders

_V3 ≤ −
1 − μ3( λmin E2(  X2

����
����
2

�����������

X2
����

����
2

+Ω2max

 , (45)

where 0< μ3 < 1, it shows that subsystems (21) and (28) are
ISS, and

X2(t)
����

����≤max β3 X2(0)
����

����, t , c
zd zd


  + c

pu pu


  + c

zψ zψ



  + c
pr pr


  + c

eu eu


  + c

er er


  , (46)

where β3 is a KL function and

c
zd (r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


ζ1r

μ3λmin E2( 
,

c
pu (r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


r

μ3λmin E2( 
,

c
zψ(r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


ζ3r

μ3λmin E2( 
,

c
pr (r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


r

μ3λmin E2( 
,

c
eu (r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


1 + ε3 + δu( r

μ3λmin E2( 
,

c
er (r) � ϖ− 1

��������
λmax N2( 

λmin N2( 


1 + ε4 + δr( r

μ3λmin E2( 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

with ϖ(r) � r2/
��������

r2 +Ω2max



and N2 � diag 1, m11, m33 .
,erefore, the stability of the cascade of ESO error

subsystem (16), subsystem (29), and target-tracking error
subsystems (21) and (28) is given by the following
theorem. □

Theorem 1. Ae cascade system composed of ESO error
subsystem (16), subsystem (29), and target-tracking error
subsystems (21) and (28) is ISS under Assumptions 1, 2, and 3.
And all errors of the closed-loop system are uniformly ulti-
mately bounded.

Proof. Lemmas 1–3 prove that observer error subsystems
(16) with input _Υ and state H; subsystems (29) with inputs
σu, σr, Wu, and Wr and states eu, er, Wu, and Wr; and target-
tracking error subsystems (21) and (28) with inputs H, eu, er,
pu, and pr and states eu, er, zd, and zψ are ISS, respectively.
According to cascade stability theory (Lemma 4.6 in [46]),
the closed-loop error system composed of (16), (29), and (21)
and (28) is ISS with states H, eu, er, Wu, and Wr; eu, er, zd,
and zψ ; and inputs _Υ, σu, σr, Wu, Wr, eu, er, pu, and pr. In

conclusion, when t> 0 is satisfied, ‖E(t)‖ satisfies the in-
equality as follows:

‖E(t)‖≤ β(‖E(0)‖, t) + c _Υ, σu, σr, Wu, Wr, eu, er, pu, pr

����
���� ,

(48)

where E � [ H, eu, er,
Wu, Wr, eu, er, zd, zψ]. _Υ, σu, σr, Wu,

Wr, eu, er, pu, and pr are bounded by p∗u , p∗r , and As-
sumptions 1 and 2.

As a consequence, the errors H, eu, er, Wu, Wr, eu, er, zd,
and zψ are all bounded.

zd


 � zd − zd


≤ zd


 + zd


,

zψ



 � zψ − zψ



≤ zψ



 + zψ



,

eu


 � eu − eu


≤ eu


 + eu


,

er


 � er − er


≤ er


 + er


.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(49)

□

Theorem 2. Since zd, zd zψ, zψ eu, eu, er, and er are both
bounded, it means that the tracking errors zd, zψ, eu, and er

are all bounded.

Remark 6. Figure 5 represents the tracking relationship
between leader and follower in target tracking. A formation
has multiple leaders and followers, and a formation can be
decomposed into many subsystems of one leader and one
follower. A similar formation control structure is also
available in [43]. Followers in each subsystem maintain the
desired location of the target, then the desired formation is
established.

4. Simulation Results

In this section, to verify the effectiveness of the control
method, a simulation model is established. Consider a USV
team with two levels of control, which consists of a tracking
target and two followers. USV1 follows the target vessel, and
USV2 follows USV1. ,e USV model parameters are shown
in [10].

,e unknown nonlinear function in the USV model is
expressed as follows:

Fu(u, v, r) � 33.8vr − 12u − 2.5|u|u + gu,

Fv(u, v, r) � − 25.8ur − 0.2r − 17v − 4.5|v|v + gv,

Fr(u, v, r) � − 33.8vr + 25.8uv − 0.5v − 0.5r − 0.1|r|r + gr,

⎧⎪⎪⎨

⎪⎪⎩

(50)
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where the unknown model uncertainties are assumed to be

gu � 0.05v
2
r + 0.035uv

2
,

gv � 0.1u
2
v,

gr � 0.035urv
3

+ 0.032ur
2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(51)

,e external disturbances are simulated as follows:

du(t) � 0.9 sin(0.3t)cos(0.1t) + 0.8 sin(0.2t)sin(0.1t),

dv(t) � 0.1 sin(0.1t),

dr(t) � 1.1 cos(0.3t)sin(0.2t).

⎧⎪⎪⎨

⎪⎪⎩

(52)

,e position velocities of the tracking target are con-
sidered to be ud � 0.25 and vd � 0, and the yaw angle ve-
locity is designed as follows:

rd � − 0.015, if t≤ 210,

rd � 0.015, if 210< t≤ 630,

rd � − 0.015, if 630< t.

⎧⎪⎪⎨

⎪⎪⎩
(53)

,e initial positions of the USVs and target are
[− 25, 10, 0]T and [− 30, − 10, 0]T. ,e desired LOS tracking
position range is expressed as zn1 � zn2 � 5. ,e control
parameters of the SNN are selected as ζ1 � 20, ζ2 � 100,
ζ3 � 20, ζ4 � 100, ε1 � 0.5, ε2 � 0.1, ε3 � 0.5, ε4 � 0.1,
Ωd � 2, Ωψ � 2, Ωu � 2, Ωr � 1, l � 1.4, Γu � 40, Γr � 40,
δu � 120, δr � 40, ρ1 � ρ2 � 0.1, Gth � 0.9, Pth � 0.1, and
ς � 0.7.

,e simulation results are shown in Figures 6–11. Fig-
ure 6 shows the trajectory of the tracking target and the
followers.,e two ships move from different initial positions
to the desired position. ,is result shows that the controller
designed in this paper completes target-tracking control
under uncertain nonlinear terms and unknown external
disturbances. When both followers complete target tracking,
a specific formation is achieved.,e performance of the ESO
is shown in Figure 7. Figure 8 shows that the neural network
fits nonlinear functions composed of unknown dynamic
models and external disturbances. Figure 9 shows the
control input and its bounds. Figure 10 shows the trend in
the number of neurons in the SNN as well as the number
after stabilization. In the beginning, the nonlinear function

changes considerably, so the SNN must continuously split
neurons and delete invalid neural neurons when
approaching it. ,is leads to greater changes in neurons.
When the SNN output approximates the nonlinear function,
the number of neurons gradually stabilizes, and when the
approximation performance reaches the best, the number of
neurons stabilizes. ,e target-tracking error is shown in
Figure 11, and it represents a small neighborhood where the
tracking error will converge to zero.

In addition, to verify the performance of the SNN, the
performances of the RBFNN and SNN using the same pa-
rameters except for the number of neurons are compared.
,e number of neurons in the RBFNN is N1 � 48 ,e
RBFNN control parameters are selected as Γ1u � 40,
Γ1r � 40, and ρ11 � ρ12 � 0.1.

_W1u � − Γ1u Su(Z)eu + ρ11 W1u ,

_W1r � − Γ1r Sr(Z)er + ρ21 W1r .

⎧⎪⎨

⎪⎩
(54)

,e approximation performance of the RBFNN is
shown in Figure 12. ,e SNN and RBFNN approximation
errors are shown in Figure 13. Figures 12 and 13 show
that the approximate performance of the RBFNN with 48
neurons is excellent and that the approximation errors
are small. In Figure 13, the approximation errors of the
SNN are smaller than those of the RBFNN, demon-
strating that the approximation performance of the SNN
is better. Figure 9 shows that the maximum number of
SNN neurons in USV1 exceeds 28 and remains at 24.
Consequently, when guaranteeing approximation per-
formance and when the unknown nonlinear component
is complicated, more neurons are needed, and when the
unknown nonlinear component is simple, only a small
number of neurons is needed. By optimizing the number
of neurons, the approximation performance of the
NN is guaranteed, and the amount of calculation is
reduced.

To verify the performance of the proposed controller, a
comparison with adaptive output-feedback control [18] is
provided. ,e LOS range error, angle tracking error, and
control inputs are shown in Figures 14–17. As seen in
Figure 14, the proposed method’s LOS range tracking error
is smaller than that in [18]. In Figure 15, the angle tracking

Target

USV1 USV3

USV2 USV4 USV5

Figure 5: Formation structure of the leader and follower.
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errors of the two methods are similar. As seen in Figures 16
and 17, the initial values of the control inputs τu and τr in
method [18] are much larger than those of the proposed
method, exceeding 600N and 40N•m, respectively. ,e
control inputs are physically limited by the actuator, and
exceeding the limits can cause actuator saturation,

which may lead to degraded performance, hysteresis, and
instability. In Figure 8, the proposedmethod’s control inputs
τu and τr are less than 15N and 5N•m, respectively. In
conclusion, compared with the method in [18], the proposed
method has smaller tracking errors and no input saturation
problem.
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Figure 6: USV trajectories.
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Figure 7: Dynamic estimation of uncertain targets based on ESO.
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Figure 12: RBFNN performance when approximating unknown nonlinear function F.
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Figure 16: Comparisons of the control input τu.
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5. Conclusions

In this paper, a target-tracking controller for USVs with
model uncertainties and external low-frequency distur-
bances is proposed. ,e speed of the target is unknown, and
only the position and angle are measured. An ESO-based
motion controller is proposed, and it can estimate the un-
known nonlinear function of the target caused by the un-
availability of velocities. ,e proposed NN estimation model
can optimize its structure by adjusting the number of
neurons through a self-structure strategy, which is used to
estimate unknown nonlinear functions caused by unmod-
eled dynamics, uncertain model parameters, and external
unknown environmental disturbances. Based on the SNN
error estimation model, the proposed USV dynamic con-
troller has an a priori bound, which effectively avoids the
saturation of the controller. ,e main result analysis shows
that the whole closed-loop error system is ISS. ,e exper-
imental simulation results verify the effectiveness of the
control algorithm. Further work will consider the influence
of factors such as noise, communication delay, and actuator
failure on the controller.
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