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)e main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape
parameter of the Lomax distribution (LD). )e weights are merged into the CLLF to generate a new loss function called the
weighted compound LINEX loss function (WCLLF). )en, the WCLLF is used to estimate the LD shape parameter through
Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including
square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF),
CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of
WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. )e Bayesian and expected
Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE)
and Bayesian and E-Bayesian estimators under different loss functions. )e simulation results show that the Bayes estimator
according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in
estimating the shape parameters based on the least mean averaged squared error.

1. Introduction

)e expected Bayesian estimator is a new criterion for es-
timating the parameters, reliability and hazard functions,
which consist of obtaining the expectation of Bayesian es-
timates with respect to the distributions of hyperparameters
[1]. Monte Carlo simulation is used to compare the
E-Bayesian estimator with the associated Bayesian estimator
in terms of mean averaged squared error (MASE) [2, 3]. )e
E-Bayesian estimation method is efficient and easy to im-
plement on real data [4]. Monte Carlo simulation is also used
to compare new methods with corresponding Bayesian and
maximum likelihood techniques [5]. )e E-Bayesian
method is used to obtain the likelihood function of the LD in
the right-censored data type II and the parameter estimators
of the LD in the right-censored data type II [6]. A new
method is developed, to estimate failure probability which is
defined based on formulas of the E-Bayesian estimate of the
failure probability by [7].)e estimation under the LLF has a

smaller deviation than the loss of the square error [8]. )e
E-Bayesian estimators are attained and built on the balanced
squared error loss function by the gamma distribution as a
conjugate solution prior for the indefinite scale parameter
also using three diverse distributions for the hyper-
parameters [9]. E-Bayesian and hierarchical Bayesian esti-
mation methods are used for estimating the scale parameter
and reversed hazard rate of inverse Rayleigh distribution.
)ese estimators are derived under squared error, entropy,
and prophylactic loss functions [10]. )e main purpose of
this study is to develop a CLLF and use Bayesian and
E-Bayesian estimators to estimate the shape parameters of
the LD. )en, it will compare the proposed estimator with
other methods including, maximum likelihood estimation
(MLE), and Bayesian and E-Bayesian estimators under
SELF, AS LF, ENLF, and CLLF.

LD is a widely used statistical model in reliability and life
test research, especially in analyzing the data of life-testing
experiments in engineering sciences, queuing theory,
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medicine, and physics. )e probability density function
(P.D.F) is

f(x; β, σ) �

β
σ

1 +
x

σ
 

− (β+1)

, x≥ 0; β, σ > 0,

0, o.w.

⎧⎪⎪⎪⎨
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(1)

Hence, the C.D.F. is

F(x; β, σ) � 1 − 1 +
x

σ
 

− β
, x≥ 0, (2)

where σ > 0 is a scale parameter and β> 0 is a shape pa-
rameter. Also, the reliability function R(t) for the LD has
been specified as follows:

R(t) � 1 +
t

σ
 

− β
, t≥ 0. (3)

2. Maximum Likelihood Estimation (MLE)

Suppose that x � (x1, x2, . . . , xn), distributed according to
the LD, is defined in (1). )e likelihood of β can be described
as

L x | β(  � 
n

i�1

β
σ

1 +
x

σ
 

− (β+1)

�
β
σ

 

n

exp[− c(β + 1)],

(4)

where c � 
n
i�1 ln(1 + (xi/σ)) )e logarithm of likelihood

(4) is

ln L(β, σ) � n ln β − n ln σ − (β + 1) 
n

i�1
ln 1 +

xi

σ
 . (5)

As the parameter σ is assumed to be known, the MLE
estimator of β is obtained by solving the equation

z ln L(β, σ)

zβ
� 0,

⇒
n

β
− 

n

i�1
ln 1 +

xi

σ
  � 0.

(6)

)us, the maximum likelihood estimates (MLEs) βMLE of
β is given by

βMLE �
n


n
i�1 ln 1 + xi/σ( ( 

. (7)

3. Loss Functions

)e Bayes estimation of a parameter β is based in mini-
mization of a Bayesian loss (risk) function; L(β, β) is defined
as an average cost-of-error function:

Risk(β) � Eβ[L(β, β)] � 
∀β

L(β, β)h β | x( dβ. (8)

3.1. Squared Error Loss Function (SELF). )e SELF can be
written as [11]

L(β, β) � (β − β)
2
. (9)

)e Bayes estimator of β with this loss function, denoted
by βBSE, can be obtained as

βBSE � Eh β | x( . (10)

3.2. LINEXLossFunction (LLF). )e LLF can be expressed as
[12, 13]

L(β, β)∝ [exp[c(β − β)] − c(β − β) − 1], c≠ 0. (11)

)e Bayes estimator of β, based on LLF and denoted by
βBL, is given by

βBL � −
1
c
Ln Eβ exp[− cβ] , c≠ 0, (12)

provided that Eβ � (e− cβ) exists and is finite.

3.3. Asymmetric Loss Function (ASLF). Asymmetric loss
function is defined as [14]

L(β, β) �

��
β
β



−

��
β
β



⎛⎝ ⎞⎠

2

�
β
β

−
β
β

− 2. (13)

)e Bayes estimator of β, based on ASLF and denoted by
βBAS, is given by

βBAS �
E β− 1 | x 

E β | x( 
⎛⎝ ⎞⎠

− (1/2)

. (14)

3.4. Entropy Loss Function (ANLF). )e ENLF for β can be
expressed as [15]

L(β, β)∝
β
β

  − ln
β
β

  − 1. (15)

)e Bayes estimator of β, denoted by βBEN is the value β
which minimizes equation (15) and is given as

βBEN � Eβ β− 1
  

− 1
, (16)

provided that Eβ(β− 1) exists and is finite.

3.5. Composite LINEX Loss Function (CLLF). CLLF was
introduced by Zhang [16] as follows:

L(β, β) � Lc (β, β) + L− c(
β, β) � exp[− c(β, β)]

+ exp[c(β, β)] − 2, c> 0.
(17)

)e Bayes estimator of β, denoted by βBCL, is given by

βBCL �
1
2c

ln
E exp[cβ] | x( 

E exp[− cβ] | x( 
 . (18)
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3.6. Weighted Composite LINEX Loss Function. )e re-
searcher proposes this loss function depending on weighting
CLLF as follows:

Lw(β, β) � w (β)L(β, β) � w(β)Lc(
β, β) + w(β)L− c(

β, β)

� w(β)exp[− c(β, β)] + w(β)exp[c(β, β)] − 2,

c> 0,

(19)

where w(β) represents the proposed weighted function,
which is given by

w(β) � exp[− ωβ]. (20)

According to the abovementioned loss function, we
drive the corresponding Bayes estimators for β using Risk
function R(β − β), which minimizes the posterior risk:

R(β − β) � E Lw(β, β)  � 
∞

0
(w(β)[exp[− c(β − β)] + exp[c(β − β)] − 2])h β | x( dβ

�


∞

0
exp[− ωβ]exp[− c(β − β)]h β | x( dβ

+ 
∞

0
exp[− ωβ]exp[c(β − β)]h β | x( dβ − 2

∞

0
exp[− ωβ]h β | x( dβ

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

�

exp[− cβ] 
∞

0
exp[− β(ω − c)]h β | x( dβ

+ exp[cβ] 
∞

0
exp[− β(ω + c)]h β | x( dβ − 2

∞

0
exp[− ω]h β | x( dβ

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

�

exp[− cβ]Eβ exp[− β(ω − c)] | x(  

+ exp[cβ] Eβ exp[− β(ω + c)] | x(   − 2Eβ exp − ωβ | x(   

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

zR(β − β)

zβ
� − c exp[− cβ]Eβ exp[− β(ω − c)] | x(   + c exp[cβ]Eβ exp[− β(ω + c)] | x(  ,

By letting
zR(β − β)

zβ
� 0.

(21)

)e Bayes estimator for the parameter β under the
WCLLF, denoted by βWBCL, is given by

βWBCL �
1
2c

ln
Eβ exp[− β(ω − c)] | x(  

Eβ exp[− β(ω + c)] | x(  
 . (22)

Note: composite CLLF is a special case of WCLLF when
ω � 0 in equation (8). It means the WCLLF is a generalizing
of CLLF.

4. Bayesian Estimation

)is section spotlights to derive Bayesian estimates of the
shape parameter β of the LD. We use six different loss
functions, including SELF, ASLF, ENLF, LLF, CLLF, and
WCLLF. We use the gamma (z, k) as a conjugate prior of β
and its density function as follows:

π(β | z, k) �
k

z

Γ(z)
βz− 1 exp[− kβ], z, k> 0, β> 0. (23)

Based on equations (4) and (23), the posterior density
function of β given as x is

h β | x(  �
L β, x( π(β | z, k)


∞
0 L β, x( π(β | z, k)dβ

�
(c + k)

n+zβn+z− 1 exp[− β(c + k)]

Γ(n + z)
, (24)
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where c � 
n
i�1 ln(1 + (xi/σ)). 4.1. Bayesian Estimation Based on SELF. )e Bayesian es-

timator βBSE, of β with SELF, is defined as

βBSE � E β | x(  � 
∞

0
βh β | x( dβ

� 
∞

0

(c + k)
n+zβn+a exp[− β(c + k)]

Γ(n + z)
dβ

�
n + z

c + k
.

(25)

4.2.BayesianEstimationBasedonLLF. Based on LLF, we can
give the Bayesian estimation, βBL, of β as

βBL � −
1
c
Ln Eβ exp[− cβ] 

� −
1
c
Ln
∞

0
exp[− cβ]h β | x( β,

βBL � −
1
c
Ln
∞

0

(c + k)
n+zβn+z− 1 exp[− β(c + k + c)]

Γ(n + z)
dβ

�
n + z

c
ln 1 +

c

c + k
 .

(26)

4.3. Bayesian Estimation Based on ASLF. Under ASLF, the
Bayesian estimation, βBS, of β can be expressed as

βBS �
E β− 1 | x 

E β | x( 
⎛⎝ ⎞⎠

− (1/2)

�
I1

I2
, (27)

where

I1 � E β− 1
| x  � 

∞

0

(c + k)
n+zβn+z− 2 exp[− β(c + k)]

Γ(n + z)
dβ � (c + k)

n+zΓ(n + z − 1)

(c + k)
n+z− 1 ,

I2 � E β | x(  � 
∞

0

(c + k)
n+zβn+z exp[− β(c + k)]

Γ(n + z)
dβ �

n + z

c + k
,

(28)

so

βBAS �

���������������
(n + z − 1)(n + z)



c + k
. (29)

4.4. Bayesian Estimation-Based ENLF. Based on ENLF, the
Bayesian estimation, βBE, of β can be shown to be

βBEN � E β− 1
| x 

� 
∞

0
β− 1

h β | x( dβ

� 
∞

0

(c + k)n+zβn+z− 2 exp[− β(c + k)]

Γ(n + z)
dβ 

− 1

�
n + z − 1

c + k
.

(30)
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4.5. BayesianEstimationBased onCLLF. Based on CLLF, the
Bayesian estimator, βBCL, of β, can be obtained as follows
[16]:

βBCL �
1
2c

ln
Eβ exp[cβ] | x( 

Eβ exp[− cβ] | x( 
  �

1
2c

ln
I3
I4

 , (31)

where

I3 � Eβ exp[cβ] | x(  � 
∞

0
exp[cβ]

(c + k)
n+z

Γ(n + a)
βn+z− 1 exp[− β(c + k)]dβ

�
(c + k)

n+z

Γ(n + a)

∞

0
βn+z− 1 exp[− β(c + K − c)]dβ

�
(c + k)

n+z

(c + K − c)
n+z,

I4 � Eβ exp[− cβ] | x(  � 
∞

0
exp[− cβ]

(c + k)
n+z

Γ(n + z)
βn+z− 1 exp[− β(c + k)]dβ

�
(c + k)

n+z

Γ(n + z)

∞

0
βn+z− 1 exp[− β(c + K + c)]dβ

�
(c + k)

n+z

(c + K + c)
n+z,

(32)

so

βBCL �
1
2c

ln
((c + k)/(c + k − c))

n+z

((c + k)/(c + k + c))
n+z 

�
n + z

2c
ln

c + k + c

c + k − c
 .

(33)

4.6. Bayesian Estimation Based on WCLLF. Under the
WCLLF, the Bayesian estimation, βWBCL, of β, can be
shown as

βWBCL �
1
2c

ln
Eβ exp[− β(ω − c)] | x(  

Eβ exp[− β(ω + c)] | x(  
  �

1
2c

ln
I5

I6
 ,

(34)

where

I5 � Eβ exp[− β(ω − c)] | x(  

� 
∞

0
exp[− β(ω − c)]

(c + k)
n+z

Γ(n + z)
βn+z− 1 exp[− β(c + k)]dβ

�
(c + k)

n+z

Γ(n + z)

∞

0
βn+z− 1 exp[− β(c + K + ω − c)]dβ

�
(c + k)

n+z

(c + K + ω − c)
n+z,

I6 � Eβ exp[− β(ω + c)] | x(  

� 
∞

0
exp[− β(ω + c)]

(c + k)
n+z

Γ(n + z)
βn+z− 1 exp[− β(c + k)]dβ

�
(c + k)

n+z

Γ(n + z)

∞

0
βn+z− 1 exp[− β(c + K + ω + c)]dβ

�
(c + k)

n+z

(c + K + ω + c)
n+z.

(35)
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So,

βWBCL �
1
2c

ln
((c + k)/(c + k + ω − c))

n+z

((c + k)/(c + k + ω + c))
n+z 

�
n + z

2c
ln

c + k + ω + c

c + k + ω − c
 .

(36)

5. E-Bayesian Estimation

In this section, we consider the E-Bayes estimates of the
shape parameter β of the LD, by using six different loss
functions, including SELF, ASLF, ENLF, LLF, CLLF, and
WCLLF. Based on [17], the prior parameters a and k should
be selected to guarantee that π(β | a, k) given in (23) is a
decreasing function of β; the derivative of π(β | z, k) with
respect to β is

zπ(β | z, k)

zβ
�

k
z

Γ(z)
βz− 2 exp[− kβ](β − 1 − kβ), 0< z< 1, k> 0.

(37)

Note that z> 0, k> 0, and β> 0; it follows 0< z< 1 and
k> 0 due to (zπ(β | z, k)/zβ)< 0, which equals to
z − 1 − kβ< 0, and therefore, π(β | z, k) is a decreasing
function of β. Assuming that a and k are independent with
bivariate density function, π(z, k) � π1(z)π2(k) can be
written as

βEB � E β | x  �  
∀τ

βB(z, k)π z, k | x( dadk, (38)

where βB(z, k) is the Bayes estimator of β given by equations
(25), (26), (29), (30), (33), and (36). We can choose uniform
distribution as its prior distribution:

π z, k | x(  �
1
v
, 0< z< 1, 0< k< v. (39)

5.1. E-Bayesian Estimation of Parameter β under SELF.
For SELF, the E-Bayesian estimation, βEBSE, of β is obtained
according to (25), (38), and (39) as

βEBSE �  
∀τ

βBSEπ z, k | x( dadk

� 
1

0


v

1

1
v

n + z

c + k
dadk

�
1
v


v

0

1
Tc + k


1

0
(n + z)dzdk

�
2n + 1
2v


v

0

1
c + k

dk

�
2n + 1
2v


c+k

T

1
x
dx

�
2n + 1
2v

ln(c + v) − ln(c).

(40)

5.2. E-Bayesian Estimation under LLF. )e E-Bayesian es-
timation, βEBL, of β, under the LLF and based on equations
(26), (38), and (39), is given as follows:

βEBL �  
∀τ

βBLπ z, k | x( dzdk

� 
1

0


v

1

1
v

n + z

c
ln

c + k + c

c + k
 dzdk

�
1
cv


v

0
ln

c + k + c

c + k
  

1

0
(n + z)dzdk

�
2n + 1
2cv


v

0
ln

c + k + c

c + k
 dk

�
2n + 1
2cv


v

0
ln(c + k + c) − ln(c + k)dk

�
2n + 1
2cv

[ (c + c + v)ln(c + c + v) − (c + c)ln(c + c) − (c + v)ln(c + v) +(c)ln(c)] .

(41)

5.3. E-Bayesian Estimation under an ASLF. Based on
equations (29), (38), and (39), the E-Bayesian estimation,
βEBE, of β under ASLF is [18]
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βEBAS �  
∀τ

βEBSπ z, k | x( dzdk

� 
1

0


v

0

1
v

���������������
(n + z − 1)(n + z)



c + k
dzdk

�
1
v
ln

c + v

c

1

0

���������������
(n + z − 1)(n + z)


dz.

(42)

5.4. E-Bayesian Estimation under ENLF. Based on equations
(30), (38), and (39), the E-Bayesian estimation, βEBE, of β
under ENLF is

βEBEN �  
∀τ

βEBEπ z | x( dzdk

� 
1

0


v

0

1
v

n + a − 1
c + k

dzdk

�
2n − 1
2v


v

0

1
c + k

dk

�
2n − 1
2v


c+v

c

1
x
dx

�
2n − 1
2v

ln(c + v) − ln(c).

(43)

5.5. E-Bayesian Estimation of Parameter β under CLLF.
Based on equations (33), (38), and (39), the E-Bayesian
estimation, βEBCL, of β under CLLF is [17]
βEBCL �  

∀τ
βEBCLπ z, k | x( dzdk

� 
1

0


v

1

1
v

n + z

2c
ln

c + k + c

c + k − c
 dzdk

�
1
2cv


v

0
ln

c + k + c

c + k − c
  

1

0
(n + z)dzdk

�
2n + 1
4cv


v

0
ln

T + k + c

c + k − c
 dk

�
2n + 1
4cv


v

0
ln(c + k + c) − ln(c + k − c)dk

�
2n + 1
4cv

[(c + c + v)ln(c + c + v) − (c + c)ln(c + c)

− (c − c + v)ln(c − c + v) +(c − c)ln(c − c)].

(44)

5.6. E-Bayesian EstimationWCLLF. Based on proposed loss
function WCLLF and according to equations (36), (38), and
(39), we get the E-Bayesian estimation, βEWBCL, of β as
follows:

βEWBCL �  
∀τ

βEWBCLπ z, k | x( dzdk

� 
1

0


v

1

1
v

n + z

2c
ln

c + k + ω + c

c + k + ω − c
 dzdk

�
1
2cv


v

0
ln

c + k + ω + c

c + k + ω − c
  

1

0
(n + z)dzdk

�
2n + 1
4cv


v

0
ln

c + k + ω + c

T + k + ω − c
 dk

�
2n + 1
4cv


v

0
ln(c + k + ω + c) − ln(c + k + ω − c)dk

�
2n + 1
4cv

[(c + ω + c + v)ln(c + ω + c + v)

− (c + ω + c)ln(c + ω + c) − (c + ω − c + v)

ln(c + ω − c + v) +(c + ω − c)ln(c + ω − c)].

(45)

6. Simulation and Results

In order to examine the performance of the estimators
obtained in Sections 4 and 5, we used a Monte Carlo
simulation study, according to the following steps:

(1) Select sample size n � 25, 50, 75, and 100 with the
parameter (β � 1, 1.5, and 2).

(2) Determine the value (v) � 1, c� (0.5 and 1.5),
(a, k) � (0.6, 0.5), and ω � 0.5.

(3) For given sample size n, with known σ � 3, generate
x1, x2, . . . , xn from xi � σ[(1 − Ui)

− (1/β) − 1].
(4) MLE estimation, βMLE, of β is computed from

equation (7).
(5) Bayesian estimation, βBSE, βBL, βBS, βBE, βBCL, and

βWBCL, of β is computed from equations (25), (26),
(29), (30), (33), and (36), respectively.

(6) E-Bayesian estimation, βEBSE, βEBL, βEBS, βEBE, βEBCL,
and βEWBCL, of β is computed from equations
(40)–(45), respectively.

(7) Steps 3 to 6 are repeated 10,000 times. We then
compute the average estimates (AE) and the mean
averaged squared error (MASE) for each estimate
(say β) was calculated by using

MASE(β) �
1

10000


10000

i�1

βi − β 
2
,AE(β) �

1
10000



10000

i�1

βi,

(46)

where β is the estimate at the ith run.
(8) )e computational results are displayed in

Tables 1–4.
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From Tables 1–4, we have the following observations:

(1) )e estimated values of β is very close to the real
values when the sample size increases for all cases;
also, the differences between average estimates and

the true value of the different estimates decrease as
n increases

(2) )e E-Bayesian estimation of β with the proposed
loss functionWCLLF has the best estimate due to the

Table 1: )e estimates for different Bayesian estimates of the parameter β.

β n βMLE
βBSE βBSA βBEN

βBL βBCL βBWCL

c � 0.5 c � 1.5 c � 0.5 c � 1.5 c � 0.5 c � 1.5

1

25 1.044 1.046 1.026 1.006 1.035 1.026 1.047 1.046 1.023 1.025
50 1.022 1.023 1.013 1.003 1.018 1.013 1.023 1.023 1.013 1.012
75 1.012 1.013 1.006 0.910 1.001 1.008 1.013 1.014 1.006 1.007
100 1.001 1.011 1.006 1.001 1.008 1.007 1.011 1.011 1.006 1.006

1.5

25 1.567 1.553 1.523 1.493 1.506 1.504 1.556 1.548 1.508 1.501
50 1.527 1.522 1.507 1.492 1.499 1.503 1.522 1.524 1.499 1.501
75 1.519 1.516 1.506 1.496 1.501 1.502 1.516 1.516 1.501 1.501
100 1.514 1.511 1.504 1.496 1.500 1.504 1.511 1.515 1.500 1.503

2

25 2.088 2.049 2.008 1.969 2.007 1.975 2.050 2.052 1.968 1.969
50 2.038 2.021 2.001 1.981 2.000 1.985 2.021 2.023 1.981 1.982
75 2.031 2.020 2.006 1.993 2.006 1.992 2.020 2.016 1.993 1.989
100 2.017 2.009 1.999 1.989 1.999 1.990 2.009 2.009 1.989 1.989

Table 2: )e estimates for different E-Bayesian estimates of the parameter β.

β n βEBSE βEBSA βEBEN
βEBL βEBCL βEBWCL

c � 0.5 c � 1.5 c � 0.5 c � 1.5 c � 0.5 c � 1.5

1

25 1.043 1.022 1.002 1.032 1.022 1.043 1.042 1.021 1.021
50 1.021 1.011 1.001 1.016 1.011 1.021 1.021 1.011 1.010
75 1.012 1.005 0.998 1.008 1.006 1.012 1.013 1.005 1.006
100 1.010 1.005 1.000 1.007 1.006 1.010 1.010 1.005 1.005

1.5

25 1.548 1.517 1.487 1.501 1.499 1.550 1.542 1.502 1.495
50 1.519 1.504 1.489 1.496 1.500 1.519 1.521 1.496 1.498
75 1.514 1.504 1.494 1.499 1.500 1.514 1.514 1.499 1.499
100 1.510 1.502 1.495 1.498 1.503 1.510 1.513 1.498 1.502

2

25 2.042 2.001 1.962 2.001 1.968 2.043 2.045 1.961 1.963
50 2.017 1.997 1.977 1.997 1.982 2.017 2.019 1.977 1.978
75 2.017 2.004 1.990 2.003 1.989 2.017 2.014 1.990 1.987
100 2.007 1.997 1.987 1.997 1.989 2.007 2.007 1.987 1.987

Table 3: MASE for different Bayesian estimates of the parameter β.

β n βMLE
βBSE βBSA βBEN

βBL βBCL βBWCL

c � 0.5 c � 1.5 c � 0.5 c � 1.5 c � 0.5 c � 1.5

1

25 0.0503 0.0485 0.0452 0.0428 0.0456 0.0420 0.0485 0.0470 0.0431 0.0417
50 0.0219 0.0216 0.0208 0.0202 0.0209 0.0203 0.0216 0.0214 0.0203 0.0202
75 0.0139 0.0138 0.0134 0.0132 0.0135 0.0132 0.0138 0.0137 0.0133 0.0132
100 0.0104 0.0103 0.0101 0.0100 0.0102 0.0101 0.0103 0.0104 0.0100 0.0101

1.5

25 0.1110 0.1005 0.0943 0.0902 0.0859 0.0841 0.1016 0.0971 0.0865 0.0834
50 0.0498 0.0476 0.0463 0.0454 0.0444 0.0434 0.0478 0.0465 0.0444 0.0432
75 0.0309 0.0300 0.0294 0.0290 0.0286 0.0299 0.0301 0.0313 0.0286 0.0298
100 0.0238 0.0233 0.0230 0.0228 0.0225 0.0218 0.0234 0.0226 0.0225 0.0217

2

25 0.1952 0.1672 0.1584 0.1532 0.1516 0.1450 0.1679 0.1724 0.1408 0.1442
50 0.0883 0.0822 0.0801 0.0789 0.0784 0.0745 0.0822 0.0807 0.0757 0.0742
75 0.0565 0.0538 0.0527 0.0521 0.0520 0.0516 0.0538 0.0544 0.0507 0.0514
100 0.0414 0.0400 0.0395 0.0393 0.0391 0.0384 0.0400 0.0398 0.0385 0.0383
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smallest value of MASE’s comparing with all other
estimates

(3) )e Bayesian estimation of β under the proposed loss
function WCLLF has the minimum MASE’s com-
paring with all other Bayesian estimates

(4) )e E-Bayesian estimation of β with the proposed
loss functionWCLLF has the best estimate due to the
smallest value of MASE’s comparing with all other
E-Bayesian estimates

(5) E-Bayesian estimators perform better than the
Bayesian estimator in terms of MASE, for all sample
sizes n and all cases

(6) )e results also show that MASE of all estimates of
the shape parameter is increasing for an increase of
the parameter value with all sample sizes

(7) )e results showed that the values of all MASE
decrease as n increases

7. Conclusion

In this work, CLLF is developed to estimate the shape pa-
rameter of LD. )e development occurred through merging
the weights into the CLLF to generate a new loss function
called the weighted compound LINEX loss function
(WCLLF). We used WCLLF to estimate the LD shape pa-
rameter, through Bayesian and expected Bayesian estima-
tion. Subsequently, six different types of loss functions are
discussed, including SELF, LLF, ASLF, ENLF, and CLLF and
the proposed loss function WCLLF. )en, Bayesian and
expected Bayesian estimations are compared based on
proposed loss function with the other methods, including
MLE, Bayesian, and E-Bayesian estimators under different
loss functions. )e simulation results show that the Bayes
estimator according to WCLLF and the E-Bayesian esti-
mator according to WCLLF proposed in this work have the
best performance in estimating the shape parameters based
on the least mean averaged squared error. E-Bayesian es-
timators perform better than the Bayesian estimator in terms
of MASE, for all sample sizes n and all cases. )e results of
the simulation showed that the E-Bayesian estimation
method is both efficient and easy to perform.
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