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The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape
parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the
weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through
Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including
square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF),
CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of
WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected
Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE)
and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator
according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in

estimating the shape parameters based on the least mean averaged squared error.

1. Introduction

The expected Bayesian estimator is a new criterion for es-
timating the parameters, reliability and hazard functions,
which consist of obtaining the expectation of Bayesian es-
timates with respect to the distributions of hyperparameters
[1]. Monte Carlo simulation is used to compare the
E-Bayesian estimator with the associated Bayesian estimator
in terms of mean averaged squared error (MASE) [2, 3]. The
E-Bayesian estimation method is efficient and easy to im-
plement on real data [4]. Monte Carlo simulation is also used
to compare new methods with corresponding Bayesian and
maximum likelihood techniques [5]. The E-Bayesian
method is used to obtain the likelihood function of the LD in
the right-censored data type II and the parameter estimators
of the LD in the right-censored data type II [6]. A new
method is developed, to estimate failure probability which is
defined based on formulas of the E-Bayesian estimate of the
failure probability by [7]. The estimation under the LLF has a

smaller deviation than the loss of the square error [8]. The
E-Bayesian estimators are attained and built on the balanced
squared error loss function by the gamma distribution as a
conjugate solution prior for the indefinite scale parameter
also using three diverse distributions for the hyper-
parameters [9]. E-Bayesian and hierarchical Bayesian esti-
mation methods are used for estimating the scale parameter
and reversed hazard rate of inverse Rayleigh distribution.
These estimators are derived under squared error, entropy,
and prophylactic loss functions [10]. The main purpose of
this study is to develop a CLLF and use Bayesian and
E-Bayesian estimators to estimate the shape parameters of
the LD. Then, it will compare the proposed estimator with
other methods including, maximum likelihood estimation
(MLE), and Bayesian and E-Bayesian estimators under
SELF, AS LF, ENLF, and CLLF.

LD is a widely used statistical model in reliability and life
test research, especially in analyzing the data of life-testing
experiments in engineering sciences, queuing theory,
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medicine, and physics. The probability density function
(P.D.F) is

-(B+1)
E<1+f> , x20; B,0>0,

[

fxpoy=1" (1)
0, 0.W.
Hence, the C.D.F. is
F(x; /3,0):1—<1+§)7B, x>0, (2)

where >0 is a scale parameter and >0 is a shape pa-
rameter. Also, the reliability function R(t) for the LD has
been specified as follows:

R(t) =<1 +£>_ﬁ, t>0. (3)

2. Maximum Likelihood Estimation (MLE)

Suppose that x = (x;,x,,...,x,), distributed according to
the LD, is defined in (1). The likelihood of 5 can be described
as

L(x|p) = ]‘[§<1 + f)f(ﬁ“) = (f‘j) exp[-y(B+ D],
(4)

where y =", In(1 + (x;/0)) The logarithm of likelihood

(4) is
InL(Bo)=nlnf-nlno- (/3+1)Zln<1+ )
i=1

As the parameter ¢ is assumed to be known, the MLE
estimator of f3 is obtained by solving the equation

dln L(B,0)
o

no < X;
=—— 1n<1+—’>:
AP G

Thus, the maximum likelihood estimates (MLEs) EMLE of
B is given by

-0,
(6)

-~ n
Pwr =571 0 )y )
3. Loss Functions

The Bayes estimation of a parameter 8 is based in mini-
mization of a Bayesian loss (risk) function; L ( ﬁ p) is defined
as an average cost-of-error function:

Risk(B) = ;LGP = | LEOK (B 96 (8)
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3.1. Squared Error Loss Function (SELF). The SELF can be
written as [11]

LB.B) = (B-p). (9)

‘The Bayes estimator of 8 with this loss function, denoted
by Bpse» can be obtained as

Bese = Ei, (B | ). (10)

3.2. LINEX Loss Function (LLF). The LLF can be expressed as
[12, 13]

L(B, ) o< [explc (B~ P)] —c(B-B) - 1],

The Bayes estimator of f3, based on LLF and denoted by
Byys is given by

BBL = —l Ln[E/; exp[—c/}]],

c#0. (11)

c#0, (12)

provided that Ep= (e~ P) exists and is finite.

3.3. Asymmetric Loss Function (ASLF). Asymmetric loss
function is defined as

L(ﬁ/})_<\[ \[> _ﬁ ﬁ 2. (13)

The Bayes estimator of 3, based on ASLF and denoted by
Baas» is given by

_ (E( %) o
Bpas = <—E(ﬁ| %) > . (14)

3.4. Entropy Loss Function (ANLF). The ENLF for 5 can be
expressed as [15]

L(B,p) o (g) - 1n(§) -1 (15)

The Bayes estimator of $, denoted by gy is the value 8
which minimizes equation (15) and is given as

= _ivi-l
Baex = [Eﬁ(ﬁ 1)] > (16)
provided that Eg 2 1) exists and is finite.

3.5. Composite LINEX Loss Function (CLLF). CLLF was
introduced by Zhang [16] as follows:

LB =Lc (BB + L. (B.p) = explc (B, p)]
+exp[c(B.p)] -2,
The Bayes estimator of 8, denoted by By, is given by

=1 E(exp[cf]| x)
Pucr = ZIH<E (expl—cpl | z))’ (19

(17)

c>0.
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3.6. Weighted Composite LINEX Loss Function. The re-
searcher proposes this loss function depending on weighting
CLLF as follows:

Ly, (B, ) = w (BL(B, B) = w(B)L. (B, B) + w(B)L_. (B, )
= w(P)exp[-c (B, B)] + w(Bexplc (B, B)] - 2,

where w(f) represents the proposed weighted function,
which is given by

w(p) = exp[-wpfl. (20)

According to the abovementioned loss function, we
drive the corresponding Bayes estimators for 8 using Risk
function R(f — f), which minimizes the posterior risk:

R(B-B)=E[L,(B.P)] = jm (w(P)exp[-c(B - P)] +explc(B-B)] - 2Dh (B x)dB

c>0,
(19)
OR(B-P) _
op
By letting%ﬁ_ﬁ) =0.

The Bayes estimator for the parameter f under the
WCLLF, denoted by Bypcp, is given by

1. [Esl(exp[-B(w -0l x)]

s = 30| [opparan ] 2

Note: composite CLLF is a special case of WCLLF when
w = 0 in equation (8). It means the WCLLF is a generalizing
of CLLF.

L(B,x)n(B|z,k)

~ (Y + k)n+zﬁn+z—l eXP[—/j()/ + k)]

| expl-aptespl-c (- pn(81 x)a

|+ [ expl-wBlesple B - pIn(s1 x)dp -2 [ expl-wpln (81 x)a8

expl-cBl |~ expl-pw - Olh(8] x)dp

| texp [cB] J:O exp[-B(w+)]h(B| x)dp -2 J:O exp[-wlh(B| x)dp (1)

exp[—cB]Eﬁ [(exp[-B(w-0)]| x)]

>

+ exp[B) B [(exp =B (w+ )] | x)] - 2Eg [exp[(~wB] 2)]]

=— exp[—cﬁ]Eﬁ [(exp[-B(w-0)]] x)] + ¢ exp [CB]Eﬂ [(exp[-B(w+0)]] x)],

4. Bayesian Estimation

This section spotlights to derive Bayesian estimates of the
shape parameter 8 of the LD. We use six different loss
functions, including SELF, ASLF, ENLF, LLF, CLLF, and
WCLLEF. We use the gamma (z, k) as a conjugate prior of f3
and its density function as follows:

kZ

N z,k>0,>0. (23)

n(Blzk) = B exp kP,

Based on equations (4) and (23), the posterior density
function of f3 given as x is

h(Bl x) =

S LB x)m(Blzk)dB

I'(n+z) (24)
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where y = Y7, In(1 + (x;/0)). 4.1. Bayesian Estimation Based on SELF. The Bayesian es-
timator Bygp, of B with SELF, is defined as

BBSE = E(ﬁl &) = J?ﬁh(ﬁl &)dﬁ

_ (o] (y + k)nJrZﬁnJra eXp[—ﬁ (Y + k)]
B Jo I'(n+z) dp (25)
_I’l+Z
_y+k'

4.2. Bayesian Estimation Based on LLF. Based on LLF, we can
give the Bayesian estimation, fB;, of f8 as

BBL = —% Ln[Eﬁ exp[—cﬁ]]

= —% Ln J:O exp[~cBlh (B x)B,

26
B _ _an J»oo (Y+k)n+zf3n+z_1eXp[—ﬁ(y+k+c)] d[j ( )
BL c 0 I'(n+z)
_ntz [, ¢
T " y+k)
4.3. Bayesian Estimation Based on ASLF. Under ASLF, the  where
Bayesian estimation, fzg, of S can be expressed as
- -(12)
- E(B' x I
Bis = 7([{ —) =L (27)
E(Bl x) I,
. © (y+ k)" exp [Py + k)] w L (n+z-1)
I, =E(p* = _ tntz-1)
=B 1) = | oy W=k T
(28)
B [ (p+ k)" exp[-Bly+k)] , n+z
A g
o Bren (ﬁ | E)
© -l
o Nmrz-Dn+2) =J B h(Bl x)dp
Bras = yrk ~ (29) 0
B J~oo (Y+k)n+zﬁn+z_26Xp[—ﬁ(y+k)] 4 -1
= B
0 F(n + Z)
4.4. Bayesian Estimation-Based ENLF. Based on ENLF, the _nrz- 1_
Bayesian estimation, 5, of # can be shown to be y+k

(30)
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4.5. Bayesian Estimation Based on CLLF. Based on CLLF, the  where
Bayesian estimator, fyc;, of B, can be obtained as follows
(16]:
S Eg(exp[cpl| x) I,
Prar = 2cl (Eﬁ (exp[—cBl| x)) Eln<ﬂ>’ (31)
k n+z o
I = Eg(explep | x) = [ explep) Lo op e expl-py+ I
k n+z -

_ (FV(; +)a) | "B explpr+ K- 0lap

~ (Y + k)n+z

- (Y+K— C)n+z>

(32)
00 k)= a
1 = Eg(expl-cBl | x) = [ " expl-c) L0 expl-ly + g
k n+z oo .

- (FV(; +)Z) IO B exp[-B(y + K +0)]dp

~ (Y + k)n+z

S (y+ K+

Iy = Egl(expl-Blw— 0| )

O

ﬁ . ((y+Kk)/(y+k- )"
BCL = 5¢ ((y+ k) (y+k+c)"™

:n+zln(y+k+c>.
2c y+k-c

(33)

4.6. Bayesian Estimation Based on WCLLF. Under the
WCLLF, the Bayesian estimation, Bypc, of f, can be
shown as

[ieripoanan) 5+(7)

Bwacr = b =5
(34)

where

)YH-Z

B exp[—B(y + k)]

:J exp[—(w - 0)] (ry( o

B (y+k)n+z
 T(n+z)
- (y+k)n+z
C(y+K+ow-c

Ig= Eg [(exp[-B(w+0)]] x)]

j:o B Lexp[B(y + K + w - c)1dB

)H+Z’

)YHZ

= [T ewt-plor ol LI gt e iy + WIS

[(n+z)
~ (y+k)n+z
 I'(n+z)

_ (y+k)n+z
(y+K+w+c)

ro B Lexp[-B(y + K + w+¢)]dB
0

n+z*

(35)
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So,
2 N ((y+k)/(y+k+w- o)™
WBCL = 5¢ ((y+k)/(y+k+w+c)™
(36)
n+z (y+k+w+c>
= ln .
2¢c y+k+w-c

5. E-Bayesian Estimation

In this section, we consider the E-Bayes estimates of the
shape parameter 8 of the LD, by using six different loss
functions, including SELF, ASLF, ENLF, LLF, CLLF, and
WCLLF. Based on [17], the prior parameters a and k should
be selected to guarantee that 7 (f|a, k) given in (23) is a
decreasing function of f; the derivative of m(8|z,k) with
respect to f3 is

mBlak) K .,
T—mﬁ exp[-kB] (B -1 -kp),

(37)

Note that z>0, k>0, and > 0; it follows 0 <z <1 and
k>0 due to (dn(Blz,k)/9B)<0, which equals to
z—-1-kB<0, and therefore, n(f|z,k) is a decreasing
function of . Assuming that a and k are independent with
bivariate density function, n(z,k) =, (z)m,(k) can be
written as

Beo = E(B1 x) = [ [ Batebon(zkl x)dadk,  (9)

Brnt = J. JVTBBLT[ (z,k| x)dzdk

1 v
:j Jln+zln<y+k+c)dzdk
oJiv ¢ y+k

v 1
:ij 1n(“k”>J (n + 2)dzdk
cv Jo y+k 0

_2n+1 J 1n(y+k+c>dk
2cv o y+k

2n+1

2cv

{2n+1
1l o2¢

5.3. E-Bayesian Estimation under an ASLF. Based on
equations (29), (38), and (39), the E-Bayesian estimation,
Pege> of f under ASLF is [18]

0<z<1,k>0.

I In(y +k+c) —In(y + k)dk
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where B (2, k) is the Bayes estimator of 8 given by equations
(25), (26), (29), (30), (33), and (36). We can choose uniform
distribution as its prior distribution:

1
n(zklx)=- 0<z<l,0<k<w. (39)
v

5.1. E-Bayesian Estimation of Parameter [ under SELF.
For SELF, the E-Bayesian estimation, fgpgp, of 8 is obtained
according to (25), (38), and (39) as

BEBSE = J JVTBBSE” (z,k| x)dadk

=J' J’ 1n+zddk
1vy+k

lj ! J (n+ z)dzdk
v3]oTy+k
(40)

2

n+1J 1 o

v Joy+k

y+k

=2;1+1J ldx

2v T X

2n+

ln(y +v) —In(yp).

5.2. E-Bayesian Estimation under LLF. The E-Bayesian es-
timation, Sy, of B, under the LLF and based on equations
(26), (38), and (39), is given as follows:

(41)

[(y+c+vn(y+c+v) - (y+c)ln(y+c)—(y+v)ln(y+v)+(y)ln(y)]}
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EEBAS = J JVTBEBSﬂ(Z>k| x)dzdk

dzdk (42)

Jlrl Vin+z-1)(n+z)

0oJov y+k

Lty

Jl Jotz=Dn+2dz.
y Jo

5.4. E-Bayesian Estimation under ENLF. Based on equations
(30), (38), and (39), the E-Bayesian estimation, Bgpg, of
under ENLF is

Bene = J. JVTBEBEH(Zl x)dzdk

1 v _
:j J Inta-1, i
oJov y+k

2n—1 (v 1
= 4
2v Joy+kdk (43)

_2n—1r+V1

—dx
v )y x

2n—

> 1ln(y +v) —In(y).

5.5. E-Bayesian Estimation of Parameter [} under CLLF.
Based on equations (33), (38), and (39), the E-Bayesian
estimation, fppcr, of B under CLLF is [17]

BEBCL = JVTBEBCL” (z,k| x)dzdk

1 v
=J J ln+zln<y+k+c)dzdk
oJiv 2 y+k-c
1 v 1
=_J 1n(y+k+c)J (n + 2)dzdk
2cv Jo \y+k-c/)Jo
:2n+1J 1n(T+k+c>dk
4cv Jo \y+k-c

2n+1 (v
-2 Joln(y+k+c)—ln(y+k—c)dk

1[(y+c+v)ln(y+c+v)—(y+c)ln(y+c)

B {Zn +
4cv

—(y—c+v)1n(y—c+v)+(y—c)1n(y—c)]}.
(44)

5.6. E-Bayesian Estimation WCLLF. Based on proposed loss
function WCLLF and according to equations (36), (38), and
(39), we get the E-Bayesian estimation, Bpypcr, of B as
follows:

BEWBCL = J JVTBEWBCLﬂ (z. k| x)dzdk

1 v

=J' J 1n+zln<y+k+w+c)dzdk
oJ1v 2 y+k+w-c

1 v 1

=—J h(mﬂ (n + 2)dzdk
2cv Jo \y+k+w-c/J)o

2n+1 (V. fy+k+w+c

Ay Joln(T+k+w—c)dk

2 1 (v
ot J In(y+k+w+c)-In(y+k+w-c)dk
4cv 0

[(y+w+c+v)in(y+w+c+v)

{Zn +1
4cv

-(y+tw+cn(y+w+c)-(y+w—-c+v)

ln(y+w—c+v)+(y+w—c)1n(y+w—c)]}.
(45)

6. Simulation and Results

In order to examine the performance of the estimators
obtained in Sections 4 and 5, we used a Monte Carlo
simulation study, according to the following steps:

(1) Select sample size n = 25,50,75, and 100 with the
parameter (8 =1, 1.5, and 2).

(2) Determine the value (v) =1, ¢=(0.5 and 1.5),
(a, k) = (0.6,0.5), and w = 0.5.

(3) For given sample size n, with known ¢ = 3, generate
X)y Xp - .. X, from x; = o[ (1 -U;)” VP —1].

(4) MLE estimation, By, of S is computed from
equation (7).

(5) Bayesian estimation, Bases Bors Pos> Pres Pacrs and
Bwecr» of B is computed from equations (25), (26),
(29), (30), (33), and (36), respectively.

(6) E-Bayesian estimation, gy, Bepr> Bess> Pese> Pescrs
and PpwpcL, of B is computed from equations
(40)-(45), respectively.

(7) Steps 3 to 6 are repeated 10,000 times. We then
compute the average estimates (AE) and the mean
averaged squared error (MASE) for each estimate
(say ) was calculated by using

1 10000 1 10000

-~ _~ 2 - ~
MASE (B) = 15055 i (B;-B) AR (B) = 10000 ; B
(46)

where B is the estimate at the i™ run.

(8) The computational
Tables 1-4.

results are displayed in
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TaBLE 1: The estimates for different Bayesian estimates of the parameter f.

5 > > > BBL EBCL EBWCL
n

P Pose Psa Peex c=0.5 c=15 c=05 c=15 c=0.5 c=15
25 1.044 1.046 1.026 1.006 1.035 1.026 1.047 1.046 1.023 1.025
50 1.022 1.023 1.013 1.003 1.018 1.013 1.023 1.023 1.013 1.012
75 1.012 1.013 1.006 0.910 1.001 1.008 1.013 1.014 1.006 1.007
100 1.001 1011 1.006 1.001 1.008 1.007 1011 1011 1.006 1.006
25 1.567 1.553 1.523 1.493 1.506 1.504 1.556 1.548 1.508 1.501
50 1.527 1.522 1.507 1.492 1.499 1.503 1.522 1.524 1.499 1.501
75 1.519 1.516 1.506 1.496 1.501 1.502 1.516 1.516 1.501 1.501
100 1.514 1.511 1.504 1.496 1.500 1.504 1.511 1.515 1.500 1.503
25 2.088 2.049 2.008 1.969 2.007 1.975 2.050 2.052 1.968 1.969
50 2.038 2.021 2.001 1.981 2.000 1.985 2.021 2.023 1.981 1.982
75 2.031 2.020 2.006 1.993 2.006 1.992 2.020 2.016 1.993 1.989
100 2.017 2.009 1.999 1.989 1.999 1.990 2.009 2.009 1.989 1.989

TaBLE 2: The estimates for different E-Bayesian estimates of the parameter .

n BEBSE BEBSA BEBEN Fean Prsc Frower
c=0.5 c=15 c=0.5 c=15 c=0.5 c=15
25 1.043 1.022 1.002 1.032 1.022 1.043 1.042 1.021 1.021
50 1.021 1.011 1.001 1.016 1.011 1.021 1.021 1.011 1.010
75 1.012 1.005 0.998 1.008 1.006 1.012 1.013 1.005 1.006
100 1.010 1.005 1.000 1.007 1.006 1.010 1.010 1.005 1.005
25 1.548 1.517 1.487 1.501 1.499 1.550 1.542 1.502 1.495
50 1.519 1.504 1.489 1.496 1.500 1.519 1.521 1.496 1.498
75 1.514 1.504 1.494 1.499 1.500 1.514 1.514 1.499 1.499
100 1.510 1.502 1.495 1.498 1.503 1.510 1.513 1.498 1.502
25 2.042 2.001 1.962 2.001 1.968 2.043 2.045 1.961 1.963
50 2.017 1.997 1.977 1.997 1.982 2.017 2.019 1.977 1.978
75 2.017 2.004 1.990 2.003 1.989 2.017 2.014 1.990 1.987
100 2.007 1.997 1.987 1.997 1.989 2.007 2.007 1.987 1.987

TaBLE 3: MASE for different Bayesian estimates of the parameter f3.

ﬁ BL [3 BCL ﬁ BWCL

. R _ _ _
P Pose Psa Poex c=05 c=15 c=05 c=15 c=05 c=15

25 0.0503 0.0485 0.0452 0.0428 0.0456 0.0420 0.0485 0.0470 0.0431 0.0417
50 0.0219 0.0216 0.0208 0.0202 0.0209 0.0203 0.0216 0.0214 0.0203 0.0202

75 0.0139 0.0138 0.0134 0.0132 0.0135 0.0132 0.0138 0.0137 0.0133 0.0132
100 0.0104 0.0103 0.0101 0.0100 0.0102 0.0101 0.0103 0.0104 0.0100 0.0101
25 0.1110 0.1005 0.0943 0.0902 0.0859 0.0841 0.1016 0.0971 0.0865 0.0834
50 0.0498 0.0476 0.0463 0.0454 0.0444 0.0434 0.0478 0.0465 0.0444 0.0432

75 0.0309 0.0300 0.0294 0.0290 0.0286 0.0299 0.0301 0.0313 0.0286 0.0298
100 0.0238 0.0233 0.0230 0.0228 0.0225 0.0218 0.0234 0.0226 0.0225 0.0217

25 0.1952 0.1672 0.1584 0.1532 0.1516 0.1450 0.1679 0.1724 0.1408 0.1442
50 0.0883 0.0822 0.0801 0.0789 0.0784 0.0745 0.0822 0.0807 0.0757 0.0742
75 0.0565 0.0538 0.0527 0.0521 0.0520 0.0516 0.0538 0.0544 0.0507 0.0514
100 0.0414 0.0400 0.0395 0.0393 0.0391 0.0384 0.0400 0.0398 0.0385 0.0383

From Tables 1-4, we have the following observations: the true value of the different estimates decrease as

. . n increases
(1) The estimated values of f3 is very close to the real

values when the sample size increases for all cases; (2) The E-Bayesian estimation of  with the proposed
also, the differences between average estimates and loss function WCLLF has the best estimate due to the
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TaBLE 4: MASE for different E-Bayesian estimates of the parameter f.
2 7 2 BEBL BEBCL BEBWCL
n

p Prnsr Prssa Prse c=05 c=15 c=05 c=15 c=05 c=15
25 0.0478 0.0447 0.0425 0.0450 0.0415 0.0479 0.0463 0.0426 0.0412

1 50 0.0214 0.0207 0.0201 0.0208 0.0202 0.0214 0.0213 0.0202 0.0201
75 0.0137 0.0134 0.0132 0.0134 0.0132 0.0137 0.0136 0.0132 0.0132

100 0.0103 0.0101 0.0100 0.0101 0.0101 0.0103 0.0104 0.0100 0.0101

25 0.0994 0.0936 0.0898 0.0854 0.0836 0.1005 0.0961 0.0860 0.0829

15 50 0.0474 0.0461 0.0453 0.0442 0.0433 0.0475 0.0463 0.0443 0.0431
’ 75 0.0299 0.0293 0.0290 0.0285 0.0298 0.0299 0.0312 0.0285 0.0297
100 0.0233 0.0229 0.0227 0.0225 0.0217 0.0233 0.0225 0.0225 0.0216

25 0.1659 0.1577 0.1530 0.1509 0.1448 0.1667 0.1711 0.1407 0.1440

) 50 0.0818 0.0799 0.0788 0.0782 0.0744 0.0818 0.0803 0.0757 0.0741
75 0.0536 0.0526 0.0520 0.0519 0.0515 0.0536 0.0542 0.0506 0.0513

100 0.0399 0.0395 0.0393 0.0391 0.0384 0.0399 0.0397 0.0385 0.0383

smallest value of MASE’s comparing with all other Data Availabi]ity

estimates

(3) The Bayesian estimation of S under the proposed loss
function WCLLF has the minimum MASE’s com-
paring with all other Bayesian estimates

(4) The E-Bayesian estimation of  with the proposed
loss function WCLLF has the best estimate due to the
smallest value of MASE’s comparing with all other
E-Bayesian estimates

(5) E-Bayesian estimators perform better than the
Bayesian estimator in terms of MASE, for all sample
sizes n and all cases

(6) The results also show that MASE of all estimates of
the shape parameter is increasing for an increase of
the parameter value with all sample sizes

(7) The results showed that the values of all MASE
decrease as n increases

7. Conclusion

In this work, CLLF is developed to estimate the shape pa-
rameter of LD. The development occurred through merging
the weights into the CLLF to generate a new loss function
called the weighted compound LINEX loss function
(WCLLF). We used WCLLF to estimate the LD shape pa-
rameter, through Bayesian and expected Bayesian estima-
tion. Subsequently, six different types of loss functions are
discussed, including SELF, LLF, ASLF, ENLF, and CLLF and
the proposed loss function WCLLF. Then, Bayesian and
expected Bayesian estimations are compared based on
proposed loss function with the other methods, including
MLE, Bayesian, and E-Bayesian estimators under different
loss functions. The simulation results show that the Bayes
estimator according to WCLLF and the E-Bayesian esti-
mator according to WCLLF proposed in this work have the
best performance in estimating the shape parameters based
on the least mean averaged squared error. E-Bayesian es-
timators perform better than the Bayesian estimator in terms
of MASE, for all sample sizes n and all cases. The results of
the simulation showed that the E-Bayesian estimation
method is both efficient and easy to perform.

The data used to support the findings of the study were
generated by simulation done by using mathematical
software.
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