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In the past, most of the entity prediction methods based on embedding lacked the training of local core relationships, resulting in a
deficiency in the end-to-end training. Aiming at this problem, we propose an end-to-end knowledge graph embedding representation
method. It involves local graph convolution and global cross learning in this paper, which is called the TransC graph convolutional
network (TransC-GCN). Firstly, multiple local semantic spaces are divided according to the largest neighbor. Secondly, a translation
model is used to map the local entities and relationships into a cross vector, which serves as the input of GCN.&irdly, through training
and learning of local semantic relations, the best entities and strongest relations are found. &e optimal entity relation combination
ranking is obtained by evaluating the posterior loss function based on themutual information entropy. Experiments show that this paper
can obtain local entity feature information more accurately through the convolution operation of the lightweight convolutional neural
network. Also, the maximum pooling operation helps to grasp the strong signal on the local feature, thereby avoiding the globally
redundant feature. Compared with the mainstream triad prediction baseline model, the proposed algorithm can effectively reduce the
computational complexitywhile achieving strong robustness. It also increases the inference accuracy of entities and relations by 8.1% and
4.4%, respectively. In short, this new method can not only effectively extract the local nodes and relationship features of the knowledge
graph but also satisfy the requirements of multilayer penetration and relationship derivation of a knowledge graph.

1. Introduction

With the increasing construction of giant knowledge graphs,
graph neural networks (GNNs), graph convolutional net-
work (GCN) [1], and other neural networks that originally
performed well on the graph appear to be incapable, and the
calculation of adjacency matrix with full graph has become a
problem. Inmany task scenarios, the entities in themap have
close and important relationships with surrounding entities
[2–4] and may have nothing to do with entities beyond a few
steps. For example, TransE [5] series mostly only consider
the direct relationship between entities. However, facts show
that the rich and complex multistep relationships between
entities in the knowledge graph are of great value for im-
proving the quality of knowledge graph embedding. In a
sense, the value of an entity lies in its interaction with other
entities. &is relationship can be quantitative or qualitative.

In other words, the same entity has relatively stable char-
acteristic attributes in a fixed scene, and the relationship path
is the necessary information supplement of the entity. &e
multilayer type of the entity mapped by its relationship is
significant in knowledge representation learning or logical
reasoning [6]. Moreover, various works have also been
developed that support entity and relationship prediction
[7–9]. For example, Hogan [10] replaced entities with ca-
nonical labels for solemnising existential nodes. Zhao et al.
[11] proposed an effective method of using local relation-
ships in entity type prediction.

A large number of knowledge graph cases show that a
node often has a strong semantic relationship with a small
number of adjacent nodes. It is not like GCN on “seeing
flowers in the fog” and “finding needles in the sea” on the
entire map, learning some valuable information from the
giant knowledge map. &rough the training and learning of
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the model, we should enable it to accurately classify the types
of entities and predict and judge the attributes of the
classified entities. An example is shown in Figure 1<LeBron
Raymone James, player number, ？>.

&e simple dot product of feature vectors and linear
classification calculations can cause certain feature loss,
which makes the entity classification and attribute predic-
tion ineffective. As such, we propose a lightweight GCN for
nonlinear cross learning of local knowledge graphs. Global
iteration will certainly improve the coverage and accuracy,
but this is often at the expense of the computational effi-
ciency of the algorithm. At the same time, the knowledge
graph structure or the baseline models of knowledge rep-
resentations, such as TransE, TransR [12], and PTransE [13],
considers the 1–3 step relationships and proves that the
algorithm’s reasoning performance can be improved [14].

Given an example of such a set of triples as in Figure 2:
<Titanic, leading actress, Kate Winslet>< Avatar, leading
actress, Zoe Saldana>< Zoe Saldana, bra, Athletic under-
garment><James Cameron, cooperative partner, LeBron
Raymone James>< LeBron Raymone James, play for, Los
Angeles Lakers>< LeBron Raymone James, another name,
LBJ><LeBron Raymone James, another name, Zhan
Huang><LeBron Raymone James, wife, Savannah
James><LeBron Raymone James, player number, 23>.

To sum up, PTransE has a significant impact on the
relational path embedding. It integrates multistep relational
paths into knowledge representation learning, realizes in-
formation reasoning from the relational level, and improves
the performance of knowledge graph completion. In terms
of path selection, we proposed a resource allocation algo-
rithm. Although this algorithm is feasible in quickly
obtaining an effective relationship path, it is easy to cause
resources to move closer to the entity that flows to the first
step. If we select the first step of resource flow to the entity
path, the first step of relationship path fitting will be gen-
erated. &e main reason is that the co-occurrence rela-
tionship of global node features is ignored. &us, a new local
convolution global crossover named TransC-GCN is pro-
posed in this study. It can not only effectively extract the
local nodes and relationship features of the knowledge graph
but also consider the needs of multilayer penetration and
relationship derivation of the knowledge graph.

We are committed to embedding giant graphs and high-
dimensional entities into low-dimensional entity type re-
lationships. Figure 3 presents an example of learning and
crossing through multiple local semantic spaces with similar
classes, finally achieving two goals: (1) entity type judgment
and classification and (2) entity name prediction.

Based on the research goals, we consider further adding
local knowledge relationship path features on the basis of
PTransE. At the same time, we combine multiple local
crosses to realize the combination of local deep learning of
relationship paths and global fusion representation.

&rough the graph convolution learning of local entity
relationship, not only can the hidden entities and re-
lationship features in the local be discovered but also the
local knowledge representation effect can be improved.

&e continuous improvement of local knowledge
representation ability will improve the overall knowl-
edge learning performance and strengthen the
knowledge reasoning ability.
&e small-scale local graph convolution application can
avoid the occurrence of global overfitting while solving
the long calculation time.

In order to achieve the above goals, we need to address
two challenges:

(1) Partial Division Problem. If the part is too small, it
will increase the amount of graph convolution cal-
culation. On the contrary, the local features would be
too rough. &erefore, partial division is the primary
challenge.

(2) Cross Loss Function. &e iterative application of the
local GCN improves the learning effect of local
features by defining the loss function and con-
straining the optimization during the local crossover
process. &is is a key to ensuring the quality of the
model.

Our contributions can be summarized as follows:

(1) Using graph convolution combined with the out
degree and in degree of the knowledge graph to
iteratively calculate the local range, which can pre-
vent the local division from being too large, we limit
the local calculation to a certain threshold range
related to the global graph structure.

(2) &e joint loss function is constructed through
knowledge prior probability, posterior probability,
and local cross entropy, which is calculated by
normalization.

2. Related Works

2.1. GCN Full Graph Reasoning. Kipf et al. [15] introduced
Spectral GCNs for semisupervised classification of spatial
GCN graph structure data and applied convolution opera-
tions to calculate new feature vectors for each node with its
neighborhood information. &e fly in the ointment is that
GCN needs to import the entire image to train the infor-
mation and requires the training data to be unified with the
verification data.

GCN combining features of nearby nodes is dependent
on the structure of the graph, which limits the generalization
ability of the trained model on other graph structures. Ermis
et al. [16] believe that in a graph, predicting the link rela-
tionship between nodes can better study the entire graph
network. For example, Wu et al. [17] used GCN to express
the relationship between users and projects in the user-
project structure diagram.Wang et al. [18] used GCN in KGs
to improve the recommendation effect, while causing the
hidden danger of overfitting and GCN performance deg-
radation due to the lack of regularization. Wang et al. [19]
realized the alignment of cross language knowledge graphs
through graph convolutional networks.
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2.2. Neighbor Sampling Learning. Graph Sample and Ag-
gregate (GraphSAGE) is the most representative method in
terms of uniform sampling of neighbor nodes and local node
aggregation, as shown in Figure 4. By training the function of
neighbors on the aggregated subgraph nodes, GCN is extended
to inductive learning, thereby generalizing unknown nodes [18].

GAT [20] uses the attention distribution metric of
neighbor nodes to weight and aggregate the local implicit
information of the adjacency matrix. &e local graph em-
bedding representation of the central node is composed of

the feature representation of the central node and that of
neighbor nodes. &rough the splicing of node vectors, the
feature representation of the center node can be iteratively
updated, and then the feature representation of all nodes on
the graph can be updated. In essence, GAT uses the feature
aggregation function of the attention weight of neighbor
nodes instead of the normalized function of GCN.

Unlike GCN, GAT allows implicitly assigning different
importance to neighbors of the same node, while learning
that attention is helpful for the interpretability of the model.
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&e operation of GAT is point-by-point, and it is unnec-
essary to visit the global graph structure in advance.
&erefore, it is suitable for inductive tasks. Important nodes
in the graph and relations between nodes help to filter the
noise between the neighbors of nodes and improve the
interpretability of model results.

2.3. Embedding. A wide range of knowledge graph em-
bedding techniques has been proposed. Based on the idea of
TransE, the Trans(D,R) [21] defines the projection matrix
Mr for the relationship r of each triplet <h, r, t> from the
perspective of the relationship difference, and the head and
tail entities are projected into the corresponding relational
space. &en, TransE is used for translation. It is just that the
head entity and the tail entity share Mr in the same triple,
and there is no distinction between the head entity and the
tail entity.

For example, <LeBron Raymone James, work for, Los
Angeles Lakers>, LeBron Raymone James is a person’s
name, and Los Angeles Lakers represents the collective.
According to the above methods, we find that< James
Cameron, director, Titanic> and <James Cameron, director,
Avatar> are two triples with the same head entity and re-
lationship. So, their tail entities are Titanic≈Avatar. Ob-
viously, this is incompatible with the fact. To solve this
problem, TransD considers the difference between the head
and tail entities. Similar to TransR, the head and tail entities
are respectively projected into the relation r space; then, Mrh

h and Mrt are obtained. CrossE [22] uses a relational in-
teraction matrix C to generate the interaction vector of the
head entity and the relationship and then uses the vectors of
these two interaction representations to predict the tail
entity.

3. Algorithm Model

In this section, we propose an end-to-end knowledge map
convolutional cross embedding representation method
(TransC-GCN) as shown in Figure 5. Firstly, multiple
local semantic spaces are divided according to the largest
neighbor, and then a translation model is used to map the
local entities and relationships into a cross vector, which is
used as the input of GCN. &rough training and learning
of local semantic relations, the best entity and the
strongest relationship are found. Finally, the optimal
entity relationship combination output is evaluated
through the posterior loss function based on the mutual
information entropy.

&e framework is mainly composed of 4 parts: (1) partial
knowledge graph learning partitioning and embedding
representation; (2) performing GCN coding on the partial
graph and using the combined node relationship of the
partial graph as input; (3) cross aggregating multiple partial
knowledge graphs along with key relationships into rea-
soning nodes; and (4) sorting prediction nodes for multiple
relationship paths.

3.1. Subgraph Division. &ere are often complex relation-
ships between nodes in a local knowledge graph. &erefore,
the minibatch method is used for reference to the set of local
subgraphs, which is composed of central nodes. Besides, all
nodes at the q-order subgraph of B are presampled and
stored in the traversal. Feature and label propagation are
only propagated in the local map. So, we define the subgraph
division as follows.

Definition 1. Given G � E,R{ }, assume |E| � n, |R| � m.
Define its incidence matrix A ∈ Rn×m as follows:

rij �
1, i ∈ Ej,

0, i ∉ Ej.

⎧⎨

⎩ (1)

Definition 2. &e number of nodes is n<∞. Use one n × n

matrix to represent adjacency matrix G, which is defined as
A(G) � (ai,j), where n is the order of the graph. &e set of
A(G) features is called spectrum of the graph.

ai,j �
1, (i, j) ∈ E,

0, other.
􏼨 (2)

Definition 3. Gc � Ec,Rc􏼈 􏼉 represents a subgraph of the
knowledge graph used for cross learning c, where Ec is a
collection of head and tail entities in the subgraph of C and
Rc is the collection of relations among all nodes. Neighbor
nodes of e

(c)
i are defined as N(e

(c)
ij ) � D(e(c)

i , e(c)
j )≥ d∘􏽮 􏽯.

D e(c)
i , e(c)

j􏼐 􏼑 �
1

1 + e(c)
i − e(c)

j

�����

�����
, (3)

d
∘

�
1

|C|
􏽘

|C|

j�1
e(c)

i + r
∘

− e(c)
j

�����

�����
2

ℓ2
, (4)

where D(e(c)
i , e(c)

j ) denotes the Euclidean distance between
the center node i to the neighbor node j and d∘ is the
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Figure 4: &e local sampling and aggregation process of the graph.
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relational path threshold of global graph. A local subgraph
about the central node i is defined as S(c)

i . &e schematic
diagram of process is shown in Figure 6. Algorithm 1 shows
the details of the calculation process.

3.2. Local Relation Graph Convolutional Coding. GCN can
obtain the local information more accurately. Maximum
pooling operation helps to grasp the strong signal on the
local feature, thereby avoiding noise interference of the
global redundant feature. Average pooling is used for
neurons. &e neighbor nodes connected to the central node
are embedded as the input of a layer of neural network.
Average pooling is used to eliminate the sparseness or
overfitting problems of local nodes and relationship features.
So, we use a layer of fully connected neural network and
maximum pooling. &en, the output vector is multiplied by
the feature vector of the central node to obtain a local
embedding representation.

Yout Gc( 􏼁 � 􏽘
M

m�1
D−1/2

m
􏽢AmD

−1/2
m XW(ℓ)

m , (5)

􏽢Am � Am + Im. (6)

&e connection matrix 􏽢Am is the label of m, m ∈ 1, 2,{

. . . , M}, andD−1/2
m is the degree matrix corresponding to 􏽢Am.

α(c)
ij �

exp LeakReLU W(ℓ)
h H(ℓ)

c + bs􏼐 􏼑 + ϵ°􏼐 􏼑􏼐 􏼑

􏽐k∈exp LeakReLU W(ℓ)
h H(ℓ)

c + bs􏼐 􏼑 + ϵ°􏼐 􏼑􏼐 􏼑
, (7)

where α(c)
ij � (α(c)

i1 , α(c)
i2 , · · · , α(c)

ic ), W(ℓ)
h is the weight matrix

between hidden layers, and bs and ϵ° are the deviations.
&e nonlinear activation function σ is ReLU. Figure 7
shows the partial relationship diagram of the convolu-
tional coding process.

3.3. GraphRelational CrossMatrix. In order to eliminate the
overfitting of some important relationship nodes caused by
the division of local graphs, multiple heads can be used to

calculate C subgraph branches in parallel. &en, all the
subgraph branches can be defined by

αc
ij �

1
|C|

􏽘
jϵNi

αC
ij. (8)

Local cross matrix:

Cα � CαC
T
α � α1ij, α

2
ij, . . . , αm

ij􏽨 􏽩 α1ij, α
2
ij, . . . , αm

ij􏽨 􏽩
T

�

c11 · · · c1m

⋮ ⋱ ⋮

cm1 · · · cmm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(9)

Definition 4. &e graph cross matrix scaling factor is defined
by the matrix mutual interference parameter [23], which
measures the mutual interference parameters between dif-
ferent column vectors of local cross matrix. Specifically, the
similarity relationship between the local graph structures
can be found:

ρ � max
i≠j

ci, cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � max
i≠j

c
H
i , cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (10)

From (9) and (10), the graph cross matrix of the fusion
local graph structure is given by C � ρCα.

3.4. Dynamic Node Prediction. &e normalized attention
coefficient is used to sum the weighted features as the
preliminary output feature of each node:

e
→

i
′ � ReLU 􏽘

jϵNi

αijW e
→

j
⎛⎝ ⎞⎠, (11)

e
→

i
′ � ReLU

1
|C|

􏽘

|C|
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αc
ijW

(ℓ)
e

→
j

⎛⎝ ⎞⎠. (12)
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􏽢Yci e
(c)
ij􏼐 􏼑 � 􏽘

ij∈N e
(c)

ij􏼐 􏼑

1
S

(c)
i e

(c)
j􏼐 􏼑

X e
(c)
j􏼐 􏼑W(ℓ)

e
(c)
j􏼐 􏼑,

(13)

where X(e
(c)
j ) is the characteristic of e

(c)
j ; W(ℓ) is e

(c)
j with

GCN of shared weights on ℓth layer; S(c)
i is the normalized

subset corresponding to all adjacent nodesN(e
(c)
j ) of e

(c)
i ; and

􏽢Yci(e
(c)
ij ) is the target representation vector centered on e

(c)
i .

3.5. Loss Function

3.5.1. Triple Knowledge Embedding Loss Function. Cross
correlation score of entities and relationships within triplet is
used as the object of knowledge representation optimization.
Here, the formal scoring function is given by

LEmb � − 􏽘

e(c)

i
,r°

ij
,e(c)

j􏼐 􏼑

log Pr e(c)
i |r°ij, e

(c)
j􏼐 􏼑􏽨

+ logPr e(c)
j |e(c)

i , r°ij􏼐 􏼑 + log Pr r°ij|e
(c)
i , e(c)

j􏼐 􏼑 + θ°1􏽩.

(14)

3.5.2. Cross Convolution Loss Function. A graph convolu-
tion operator is inside the local knowledge graph, and
multiple local graphs are cross fused based on the

information divergence. &e local knowledge map features
learned from the local convolution model are fed into the
divergence fusion cross model. At the same time, we use
gradient optimization algorithms of AdaGrad and stochastic
gradient descent (SGD) to construct training modules. &e
estimated difference of partial subgraph output is defined as
follows:

min
N

LGCN � CJS D Yci,
􏽢Yci􏼐 􏼑

� KL Yci

Yci + 􏽢Yci

2
􏼠 􏼡 + KL 􏽢Yci

Yci + 􏽢Yci

2
􏼠 􏼡 + θ°2

� 􏽘
i∈A

Yci log
Yci

􏽢Yci
􏼢 􏼣 + 􏽘

i∈B

􏽢Yci log
􏽢Yci

Yci

􏼢 􏼣 + θ°2.

(15)

&e loss function of global cross training error rate for
the supervised training optimization model is shown as
follows:

min
C

LTransC � min
C

1 − 􏽘

c

i�1
􏽘
c∈C

exp − C
T
Yc − C

T 􏽢Yci

����
����
2
2􏼒 􏼓

􏽐l exp − C
T
Yc − C

T 􏽢Yci

����
����
2
2􏼒 􏼓

+ θ°3,

min
C

􏽘

Yc,􏽢Yci( 􏼁∈M

Yc − 􏽢Yci

����
����
2
M

,

s.t. 􏽘

Yc,􏽢Yc( 􏼁∈C

Yc − 􏽢Yc

����
����
2
M
≥ 1, M≥ 0.

(16)

3.5.3. Joint Loss Function. In the training process, to ef-
fectively supervise the feature loss caused by local

(1) S(c)
i ⟵S;

(2) for c � |C|, · · · , 1 do
(3) S(c−1)

i ⟵S
(c)
i ;

(4) for e
(c)
ij ∈ S

(c)
i do

(5) S(c−1)
i ⟵S

(c)
i ⋃Nnew(e

(c)
ij );

(6) end
(7) end

ALGORITHM 1: Subgraph generation algorithm.
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convolution of the knowledge map and the partial filtering
loss.When the divergence fusion crosses, the two tasks in the
model are combined for training. &is can improve the end-
to-end training of the model. In summary, the joint loss
function is written as

LTransC−GCN � LEmb + cLGCN +(1 − c)LTransC + θ°,
(17)

where c ∈ [0, 1] is a hyperparameter that adjusts the ratio of
balanced coding and partial crossover and θ° � θ°1, θ°2, θ°3􏼈 􏼉 is
the adjustment parameter.

4. Experiments

To further verify the effectiveness of TransC-GCN, we
adopt the same experimental setting of Bordes et al. [24] in
terms of entity prediction. In the evaluation index, the
average ranking mean rank (MRR) and 10-hits rate
(HITS@10) predicted by the entity are considered.

According to the experience of Shimaoka et al. [25], we use
the pretrained word vector as the initialization and opti-
mize the parameters with the optimizer Adam [26]. We use
TransC-GCN to generate the representation vector of the
triple. To avoid overfitting, we add dropout to the neurons
of GCN and randomly inactivate neurons of the vector
iteration.

Furthermore, we compare our model with multiple
baseline models under different parameter settings on the
two tasks of entity type classification and entity attribute
prediction. Moreover, we compare it with the baseline model
[27], where ConvKB(https://github.com/daiquocnguyen/
ConvKB) and ConnectE-E2T+TRT(https://github.com/
Adam1679/ConnectE) programs were run.

4.1. Datasets. In order to be more pertinent and compar-
ative, we refer to the datasets extracted from the text rela-
tionship [28] as our research object. &e characteristics of
the three datasets are shown in Table 1.

Table 1: Comparison of characteristics of different datasets.

Dataset #Ent #Rel #Train #Valid #Test
FB15k [24] 14,951 1,345 483,142 50,000 59,071
WN18RR [29] 40,943 18 141,442 2,500 2,500
YAGO43k [30] 42,335 37 331,687 29,599 29,593
FB15kET 14,951 3,851 136,618 15,749 15,780
WN18R 40,501 10 110,341 2,100 2,100
YAGO43kET 41,723 45,182 375,853 42,739 42,750
FB15kTRT 3,851 1,345 2,015,338 — —
YAGO43kTRT 45,128 37 1,727,707 — —
WN18-R 6,501 5 90,341 — —

(a) (b) (c) (d)

Figure 8: Sparse visualization of dataset entities and relationships. (a) Dense entities and lack of relationships of YAGO43k/WN18RR. (b)
Dense entities and rich relationships of YAGO43kET. (c) Sparse entities and lack of relationships of WN18. (d) Sparse entities and rich
relationships of FB15kTRT/FB15kET.

Table 2: &e optimal parameter configuration of the corresponding datasets.

Parameters
Datasets

YAGO43kET WN18RR FB15kET
α 0.1 0.1 0.1
c 0.6 0.5 0.4
q 200 150 250
ℓ 100 100 125
Batch size 4096 4096 4096
Epochs 300 300 300
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&e visualization of the dataset intuitively shows that
the number of entities and relationships and the degree of
association have a greater impact on the local knowledge
graph. Figure 8 shows that in the three datasets, the entities
and relationships of YAGO43kET are dense and rich. On
the contrary, WN18 has sparse entities and lacks
relationships.

4.2. Evaluation Index. In order to verify TransC-GCN, we
refer to two typical evaluation methods [31]. Formally, mean
reciprocal rank (MRR) is defined as

MRR �
1

|N|
􏽘

n

i�1

1
Ranki

, (18)

where N is the triplet number for the training dataset;
Ranki is the score averaged to the ith correct classification
entity; and Hit rate is H_@K (K � 1/3/10), which means
that in traversal training, the ability to obtain the correct
triple entity prediction classification can be obtained once
in K replacements.

4.3. Model Parameters. We conducted experiments on the
training sets and the validation sets, as shown in Table 2.

We conducted cross explorations of different combi-
nations in the setting of various parameters. According to
the validation set effect of the corresponding dataset, the
average ranking score will be the best.

4.4. Classification Prediction. Compared with tail entity and
head entity prediction baseline models of the Bilinear, MLP
and Trans series are shown in Table 3. WN18RR with dense
entities and poor relationships and YAGO43kETwith dense
entities and rich relationships are selected. For relationship

prediction verification, sparse entities and rich relationships
of FB15kET are used.

4.4.1. Entity Prediction. As shown in Figures 9 and 10,
TransC-GCN is better than the compared entity prediction
models in both recall and quality indicators.&e aggregation
and intersection of key paths on the local knowledge graph
can effectively improve the efficiency and quality of node
prediction. Prediction index results of the head entity and
tail entity of the triple completion are close to each other,
which shows that the aggregation of critical paths based on
local graphs has strong applicability for node prediction.

4.4.2. Relationship Prediction. Figure 11 shows that TransC-
GCN also performs well in predicting the recall rate and
quality of relationship evaluation. It not only considers the
relationship path but also, more importantly, learns the
characteristics of the knowledge graph through GCN, which
can eliminate the random prediction of the model proba-
bility caused by the lack of triple entities or relationships to a
certain extent. &is provides richer necessary information
for relationship path and entity prediction.

4.4.3. Robustness. As shown in Figure 12, on the same
dataset, two different training optimization methods of
TransC-GCN_SGD and TransC-GCN_AdaGrad are com-
pared. We can observe from Table 4 and Figure 13 that the
number of entities and the number of relationships have a
significant impact on the convolution and crossover of local
knowledge graphs. In addition, the comparison result proves
that the maximum pooling is indeed better than the average
pooling in solving feature redundancy. In a graph with
sparse entities and lack of relationships, there is a serious
data sparse problem, which leads to the long-tail distribution
of entities and relationships. However, we take advantage of

Bilinear MLP TransD TransE TransH TransR PTransE Ours
(h,r,?) Recall 0.936 0.97 0.942 0.96 0.935 0.964 0.944 0.992
(h,r,?) Quality 0.828 0.791 0.838 0.796 0.826 0.872 0.841 0.921

0
0.2
0.4
0.6
0.8

1
Tail entity prediction_WN18RR evaluation results

Figure 9: Comparison of baseline models for tail entity prediction.

Bilinear MLP TransD TransE TransR PTransE Ours
(?,r,t) Recall 0.973 0.978 0.954 0.959 0.972 0.957 0.993
(?,r,t) Quality 0.909 0.844 0.853 0.786 0.868 0.863 0.912

0
0.2
0.4
0.6
0.8

1
Head entity prediction_YAGO43kET evaluation results

Figure 10: Comparison of baseline models for head entity prediction.
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the critical path in the local graph, and the structure of the
global graph is used.

4.5. Case Study. We have shown that our TransC-GCN can
handle large-scale knowledge graph and entity-relationship

representation learning. In Figure 14, we provide an example
of cross inference about local relationship paths. &e core
entity Savannah James is found through local cross learning.
Two weak-strength relations (pay attention or like) are
obtained by reasoning. We can find that Savannah James
likes the 23 athletic undergarment bra of Zoe Saldana.

Bilinear MLP TransD TransE TransR PTransE Ours
(h,?,t) Recall 0.904 0.912 0.909 0.927 0.921 0.973 0.977
(h,?,t) Quality 0.807 0.735 0.804 0.759 0.829 0.888 0.932

0
0.2
0.4
0.6
0.8

1
Relationship prediction_FB15kET evaluation results

Figure 11: Comparison of relationship prediction of baseline models.

70
80
90

100

TransC-GCN_ AdaGrad TransC-GCN_ SGD

YAGO43kET (%)
FB15kET (%)

WN18RR (%)
Mean (%)

Figure 12: Robustness comparison of relationship prediction model on three datasets.

Table 4: Comparison of baseline models of entity type prediction accuracy.

Dataset YAGO43kET (%) FB15kET (%) WN18RR (%)
TransE 85.36 92.15 75.04
TransE-ET 90.76 93.23 77.13
PTransE 88.53 92.79 78.25
ETE 90.82 94.01 79.31
ConnectE-(E2T+0) 91.78 94.45 81.07
ConnectE-(E2T+TRT) 92.33 94.49 81.22
TransC-GCN_ AdaGrad 91.63 94.61♣ 83.27
TransC-GCN_ SGD 92.75♣ 94.58 84.55♣

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TransE

TransE-ET

PTransE

ETE

ConnectE-(E2T+0)

ConnectE-(E2T+TRT)

TransC-GCN_ AdaGrad

TransC-GCN_ SGD

Mean Prediction_3Datasets
WN18RR (%)

FB15kET (%)
YAGO43kET (%)

Figure 13: Comparison of baseline models of entity type prediction accuracy.
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Because Savannah James like Zoe Saldana, she appre-
ciated Avatar. Maybe she likes the bra of Athletic under-
garment, which is of the brand Zoe Saldana. Of course,
Savannah James must pay more attention to the player
number of 23, so she may be want a signed 23 athletic
undergarment bra of Zoe Saldana.

5. Conclusion and Future Work

In this paper, we propose a TransC-GCN method based on
local convolution and global crossover for knowledge graph
completion.①&is is the first time that local GCN and TransC
are combined for knowledge graph representation learning.
②TransC-GCN can not only divide the huge knowledge graph
into several local knowledge graphs and use convolutional
neural network coding for more intelligent and subtle local
knowledge graph feature learning with strong semantic rela-
tions but also realize the volume of adjacent nodes and rela-
tionship features.③Pooling and filtering data noise provide a
new and efficient method for node relationship prediction and
classification.④TransC-GCN considers the information value
of nearby local knowledge graphs. We propose a parallel
method of cross fusion of local knowledge graphs based on
divergence, which combines local knowledge graphs and global
knowledge graphsmore flexibly in representation learning. In a
number of challenging baseline model test comparisons.
TransC-GCN has excellent performance in entity reasoning
accuracy and generalization ability and is lightweight. How-
ever, there are deficiencies in entity diversity learning:

(1) When the gradient adopts AdaGrad to start training,
the square of the accumulated gradient is found,
which causes the effective learning rate of GCN to

decrease prematurely and excessively. After inacti-
vating neurons with small gradients, ReLU is used as
the activation function, resulting in loss of diversity.

(2) Although experiments show that there is no sig-
nificant difference between the maximum pooling
and the average pooling in the results, there is still a
loss of sparse entities in the test.

(3) TransC-GCN is not efficient due to repeated cal-
culations of neighbor nodes across subgraphs.

For future work, we will try to combine the pattern
sequence ordering and the graph context to optimize
TransC-GCN.Meanwhile, based on TransC-GCN, we intend
to propose a new scene recommendation algorithm based on
the combination of graph embedding and collaborative
filtering.
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