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As a result of long-term pressure from train operations and direct exposure to the natural environment, rails, fasteners, and other
components of railway track lines inevitably produce defects, which have a direct impact on the safety of train operations. In this
study, a multiobject detection method based on deep convolutional neural network that can achieve nondestructive detection of
rail surface and fastener defects is proposed. First, rails and fasteners on the railway track image are localized by the improved
YOLOv5 framework. (en, the defect detection model based on Mask R-CNN is utilized to detect the surface defects of the rail
and segment the defect area. Finally, the model based on ResNet framework is used to classify the state of the fasteners. To verify
the robustness and effectiveness of our proposed method, we conduct experimental tests using the ballast and ballastless railway
track images collected from Shijiazhuang-Taiyuan high-speed railway line. (rough a variety of evaluation indexes to compare
with other methods using deep learning algorithms, experimental results show that our method outperforms others in all stages
and enables effective detection of rail surface and fasteners.

1. Introduction

In recent years, rail transportation has become one of the
most important modes of travel. As the total mileage of rail
transit continues to increase, how to ensure safe railway
operation has become a dominant issue that has attracted
public attention. As shown in Figure 1, the rail is the main
component of the railway track and is utilized to guide the
wheels of the train forward and bear the pressure of the
wheel set. (e rail and its fasteners in the service are affected
by contact forces such as extrusion and impact of the train
wheel-rail, poor environment, and material aging. (ese
problems have led to the continuous deterioration of rail-
ways, inducing the formation of rail surface defects such as
peeling, collapse, abrasion, and corrosion, as well as fastener
defects such as fracture and loosening [1]. Research results
show that many rail fractures or train derailments are caused

by rail surface or fastener defects. (erefore, it is crucial to
ensure that the rail and its fasteners are in a healthy state that
maintains the safety and stability of train operation. At
present, state detection of the rail and its fasteners on the
railway track line is mainly conducted through inspections
by railway staff. Although this inspection method has the
advantages of simplicity and low cost, it also has disad-
vantages such as low detection efficiency, high missed de-
tection rate, and poor real-time performance. In recent
years, defect detection technology based on computer vision
has been widely used in industry [2–6]. Some scholars have
begun to employ computer vision technology to detect the
defects of rails and their fasteners, so that the problems of
manual inspection can be solved.

Using a localization algorithm is necessary to improve
the accuracy of defect detection and localize the track
components to be inspected, so that the influence of
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redundant information such as background can be reduced.
Commonly used localization methods are template
matching [7], pixel statistics [8], and edge detection [9].
However, localization methods of pixel statistics and edge
detection are susceptible to uneven lighting and complex
backgrounds. (e traditional template matching method is
difficult to use in localizing deformed or damaged track
parts. To solve this problem and localize the track fasteners,
Qiu et al. [10] proposed a double-template matching
method. First, the rail template is used to localize the rail in
the horizontal direction and then use the fastener template
to localize the fastener in the vertical direction. In addition,
Li et al. [11, 12] used the geometric characteristics of track
components to localize fasteners, andWei et al. [13] used the
variance projection and wavelet transform to localize the
edges of the rail, fasteners, and backing plates based on the
fixed positional relationship between the track components.

(e detection method of rail fasteners based on tradi-
tional vision mainly uses artificially designed features to
extract the features within the fastener area and then inputs
the extracted features into a classification model based on
shallow learning to classify the state of the fasteners. (e
shallow features used in the research articles on fastener
detection mainly include Haar-like feature [7, 14], Dense-
SIFT feature [13], direction field feature [15], edge feature
[16], HOG feature [17], Gabor filter feature [18], and Hough
transform feature [11, 12]. Classification models mainly
include AdaBoost classifier [7, 19], support vector machine
(SVM) [17, 18, 20], probabilistic graphical models (PGM)
[13], and multilayered perception neural classifier [21, 22].
However, this type of detection method extracts features for
the fastener area rather than the detection object. (e
extracted features are susceptible to the influence of back-
ground information, with low robustness and low accuracy
for the identification of fasteners in abnormal states. In
recent years, as the application of deep learning technology
in image processing has achieved great success, many
scholars have also begun to try to apply deep learning
technology to rail fastener detection. Li et al. [23] used a
method based on semantic segmentation algorithm to detect
the state of fasteners First, the saliency model is used to

localize the track fastener area, and then PSPNet is used to
semantically segment the fastener subimages. Finally, the
state of the fastener is judged by the vector geometry
measurements of the fastener. Gibert et al. [24] used a
customized fully convolutional network to extract the highly
abstract features of fasteners and identify fastener types and
then utilized customized support vector machines to classify
the state of fasteners for various types of fasteners. Ma et al.
[25] cropped out the bolt area subimages that were not
related to the identification of the fastener state on the
fastener area image and then used the CNN network for
classification. (rough this approach, the accuracy rate is
improved compared to that with the classification directly in
the fastener area. To address the impact of the imbalance
problem of the dataset samples on the performance of the
detection model, Liu et al. [26] proposed a similarity-based
deep network, which obtains a large number of training
samples by combining an abnormal sample with multiple
normal samples. Liu et al. [27] proposed to use U-Net to
generate a large number of defective fastener samples, after
which the fasteners were detected using convolutional
neural network.

In the last decade, many scholars have conducted re-
search on the detection methods of rail surface defects.
(ese methods mainly solve three problems, namely, the
classification of rail surface defects [28, 29], location of rail
surface defects [30–33], and pixel-level segmentation of
rail surface defects [34–37]. Among them, the pixel-level
segmentation of rail surface defects is a key research
problem. Nieniewski [34] proposed a detection method
based on morphological processing for pixel-level ex-
traction of rail surface defects. (e main advantage of this
method is the fast detection speed that can reach 50ms/
frame. Yu et al. [35] proposed a three-stage coarse-to-fine
model. At the first stage, the background subtraction
model is used to filter the images of the defect-free rail
surface area; at the second stage, the region extraction
model is used to localize the defective area; and at the last
stage, a pixel subtraction model is used to detect the de-
fective contours and perform pixel-level extraction.
However, this method involves many steps and is sensitive
to noise. Niu et al. [36] applied a binocular line-scanning
system to the detection of rail surface defects and used
global low-rank, nonnegative reconstruction saliency al-
gorithm, and depth outlier detection to combine the two-
dimensional saliency map and the three-dimensional
defect contour to obtain the final output result. In recent
years, there has been a great development of the detection
of rail surface defect using deep learning techniques.
Faghih-Roohi et al. [38] proposed to use DCNN to classify
images of rail surface areas with defects. Shang et al. [39]
used traditional object positioning algorithms to localize
the rail surface area on the original track image and then
used a fine-tuned CNN network to divide the rail surface
subimages into two categories: defective and intact.
However, the aforementioned two methods did not detect
the specific location of the defect. Song et al. [40] used the
YOLOv3 network to localize the defect on the rail surface,
but this method did not obtain the specific size and shape
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Figure 1: Railway track line.
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information of the defect. Liang et al. [41] used the SegNet
network to identify and segment the defects, but the
segmentation accuracy of this method needs to be im-
proved. James et al. [42] proposed TrackNet, which in-
tegrates U-Net and ResNet for defect semantic
segmentation and classification, respectively. (is method
improves the accuracy of defect recognition, but the ac-
curacy of semantic segmentation needs to be improved.

(e aforementioned methods are mainly aimed at
detecting a single railway track component. However, the
track images collected in the railway line usually contain
both rails and fasteners. If both are detected at the same
time, the detection efficiency can be greatly improved. To
the best of our knowledge, only one article considers the
defect detection problem of rail surface and fasteners si-
multaneously. Wei et al. [43] used the improved YOLOv3
model to realize the simultaneous detection of rail surface
defects and fasteners in the railway track line image and
obtained high detection accuracy. However, the types of
fasteners considered in this article are different from those
considered in our study. (is method cannot detect the
specific location and size of the rail surface defects, and the
detection speed is difficult to meet the actual needs of the
project. Realizing the pixel size detection of the surface
defect area of the rail helps the inspector judge the degree
of the rail disease. For this reason, we propose a detection
method based on convolutional neural network (CNN) to
automatically detect the rail surface defects and the state of
the fasteners on the railway line, in Figure 2. First, we
utilize the improved YOLOv5 framework to localize the
rail and fasteners in the original railway track line image.
(en, a defect detection model based on the Mask R-CNN
is designed to semantically segment the defects in the rail
subimages. In addition, the ResNet network is used to
classify the fastener state in the fastener subimages into
normal, loosening, and broken.

(e contributions of this study are summarized as
follows:

(1) A railway line key component multiobject detection
method is proposed based on a series of deep con-
volutional neural networks, which can achieve the
detection of rail surface defects and fastener state.

(2) An improved YOLOv5s framework is proposed to
localize the rail and fastener in the railway track line
image at the same time, and the Ghost bottleneck is
used to optimize the backbone network of the
original YOLOv5s to effectively reduce the number
of parameters and the computational cost. (is
method can be used for both ballast and ballastless
track line image detection. Compared with the
original YOLOv5s and other advanced object de-
tection models, the detection speed is significantly
improved while maintaining high accuracy.

(3) (e two-stage object detection algorithm, Mask
R-CNN, is used in the detection of rail surface de-
fects, which effectively improves the recognition and
segmentation accuracy.

(4) A set of state classification criteria for slab fast clip
(SFC) type fastener are proposed.

(e rest of this article is organized as follows: Section 2
introduces the rail and fastener positioningmethod based on
the improved YOLOv5. Section 3 describes the rail surface
defect detection model based on Mask R-CNN algorithm.
Section 4 introduces the state classification criteria of SFC-
type fasteners and the classificationmodel used in this paper.
Section 5 designs comparative experiments with other
competitive methods to verify the effectiveness of our
method. Finally, conclusions and future work are presented
in Section 6.

2. Localization of the Rail and Fastener

2.1. YOLOv5Framework. In this study, we use the improved
YOLOv5s object detection neural network to localize the rail
and fasteners in the original track images collected from the
railway site. (e network framework is shown in Figure 3.

(e You Only Look Once (YOLO) series network is a
one-stage object detection algorithm for object localization
and recognition in the image. (is algorithm extracts image
features by CNN and directly calculates the classification
score and object localization [44]. Compared with YOLOv3
and YOLOv4, YOLOv5 is optimized for data enhancement,
network structure, and loss function. YOLOv5 uses the
following data enhancement methods to improve the ro-
bustness of the model: mosaic data enhancement, adaptive
anchor box calculation, and adaptive image scaling. Both
YOLOv5 and YOLOv4 use mosaic data enhancement to
improve the detection ability of the model for small objects.
Adaptive anchor box calculation can calculate the best
anchor box value depending on different training data sets.
Adaptive image scaling can improve the speed of object
detection by adding a minimum of black borders when
scaling the image. In terms of network structure, YOLOv5
adds a Focus component to the Backbone to perform slicing
operations on images, retaining more complete image
downsampling information for subsequent feature extrac-
tion by adding some floating point operations (FLOPs). (e
Neck Network chose path aggregation network (PANet) [45]
to improve the problem of difficult propagation of low-level
features of the original feature pyramid networks (FPN) [46]
and strengthened the fusion of extracted features. (e Head
network chose the same as YOLOv3 and YOLOv4 to realize
object detection. (e loss function of YOLOv5 is mainly
composed of three parts, including bounding box loss,
classification loss, and confidence loss. (e binary cross
entropy is used as the loss function of the classification loss
and the confidence loss to calculate the category probability
and the target confidence score. We use CIoU loss as the loss
function of bounding box, which better describes the re-
gression of rectangular boxes [47].

2.2. Backbone Optimization. (e original YOLOv5 network
used cross stage partial (CSP) bottleneck [48] to increase the
depth of the network and thus improve the network’s ability
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to extract features. However, in the task of rail and fastener
localization, we have found that utilizing somemodules with
lower computational costs to simplify the structure of the
model can also achieve satisfactory experimental results. To
facilitate our model to be deployed on some low-perfor-
mance devices with small memory, such as track inspection
vehicles or embedded devices, we used a lightweight Ghost
bottleneck [49] instead of the CSP bottleneck in the original
network to reduce the size of the model and increase the
inference speed of the network, as shown in Figure 4. (e
core idea of the Ghost bottleneck is to use some cheap cost
linear operation to generate many feature maps with rich

information. Specifically, first, use a small amount of con-
ventional convolution operations on the feature map to
generate intrinsic features, then use some cheap cost linear
transformation on the feature map to generate another part
of the feature, and finally integrate the two parts together as
the final output feature.

(e structure of the Ghost bottleneck is shown in Fig-
ure 5. Ghost bottleneck consists of two Ghost modules. (e
network first goes through a Ghost module to increase the
number of channels, then a deep-wise convolution to re-
integrate the features, and finally a Ghost module to match
the number of channels with the shortcut paths. (e two are
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added together to obtain the final output. Ghost module
includes convolution operation and linear transform, and its
calculation formula is as follows:

Y � X∗f,

y
,
(i,j) � φ(i,j) yi( ,

(1)

where X is the input data, ∗ is the convolution operation,
and Y � [y1, y2, . . . , yi, . . . , ym] is the output data, which
means that the m channel feature map is obtained after the
convolution operation, 1≤ i≤m, φ(i,j)(yi) in the afore-
mentioned formula is the j-th linear transformation of the
i-th feature map, and Y′ � [y(1,1)

′ , y(1,2)
′ , . . . , y(i,j)

′ , . . . ,

y(m,s)
′ ] represents the feature map ofm × s channels obtained

by linear transformation, 1≤ j≤ s.
(e Ghost module can flexibly define the number of

convolution kernels and enlarge the number of channels of
the input feature map by s times. Adding a deep-wise
convolution between the two Ghost modules can effectively
increase the tolerance to changes in the geometric features of
the rail and fasteners and reduce the parameter redundancy.
Batch normalization (BN) is added after the convolutional
layer of each module, and the hard-Swish [50] activation
function is added after the convolutional layer of the two
Ghost modules to improve the expressive ability of the
neural network.

3. Rail Surface Defect Detection

In this paper, the Mask R-CNNmodel is used to localize and
segment the defects in the rail surface image.

Mask R-CNN is an improved two-stage object detection
network based on the Faster R-CNN framework [51]. On the
basis of Faster R-CNN [52], Mask R-CNN optimizes the
architecture for bounding box regression and object
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classification at the first stage and adds the FCN [53] branch
for the second stage of predicting segmentation masks. (e
network structure is shown in Figure 6.

First, the rail surface image is input to the feature
extraction network to generate a multiscale feature map.
Second, the obtained feature map is input to the region
proposal network (RPN) network to generate a region of
interest (RoI). (en, the RoI of different dimensions
generated by the RPN network is transformed to features of
the same dimension by the RoI Align operation. Finally, the
obtained features are, respectively, input to the fully
connected layer and FCN for rail surface defect classifi-
cation, bounding box regression, and segmentation mask
prediction.

(e rail surface defect detection model designed in this
study uses Resnet50 [54] +FPN as the feature extraction
network. Using Resnet50 can enable extraction of features at
different scales on the rail surface image. However, if only
Resnet50 is employed as a feature extraction network, there
is the problem of weak detection ability of objects with small
objects occurs, which can easily fail to detect small defects on
the rail surface. (erefore, adding RPN to integrate the low-
level and high-level features of Resnet50 can effectively
improve the ability of small defect detection. Four different
feature maps from P2 to P5 are used in FPN. Depending on
the size of the RoI, different scales of feature maps should be
selected. It is ensured that large RoIs are generated from
high-semantic feature maps, which is conducive to the
detection of large defects, and small RoIs are generated from
high-resolution feature maps, which is conducive to the
detection of small defects. (e specific selection formula is

k � k0 + log2

���
wh

√

224
 , (2)

where k0 � 4, w and h are the width and height of RoI, and k
is the number of layers of the feature map in FPN. To input
RoIs of different dimensions to the fully connected layer for
classification score calculation and bounding box regression,
transforming RoIs of different dimensions to the same di-
mension is necessary. Mask R-CNN utilizes RoI Align in-
stead of RoI Pooling in Faster R-CNN. RoI Align uses a
bilinear interpolation to obtain the values of multiple
sampling points and then uses the maximum pooling of the
values of multiple sampling points to obtain the final value of
the point. (is method effectively solves the position mis-
match problem caused by two quantization operations in
RoI Pooling and can effectively improve the accuracy of
detection or segmentation. Finally, the loss function of Mask
R-CNN is

L � Lbox + Lcls + Lmask, (3)

where Lbox and Lcls are the same as in Faster R-CNN [52],
representing the bounding box regression loss and object
classification loss, and Lmask is the mask loss. (e mask
branch in the network uses the Sigmoid function for each
pixel on the mask, then feeds it into the cross-entropy loss,
and defines the average of all pixel losses as the mask loss.

4. Fastener State Classification

4.1. Judgment Criteria for Fastener State. (e track fasteners
used in this experiment are Pandol fast clip. (e fasteners in
the track images collected on the railway line are in three
states, namely, normal, loosening, and broken, as shown in
Figure 7. Currently, no set of criteria is available to classify
the normal and loosening states of SFC-type fasteners.
(erefore, this study divides the fastener area into the two
parts shown in Figure 8 as the criteria for judging the state of
the SFC-type fasteners based on the experience of the railway
line inspection staff. When the clip is completely within area
A, the fastener is fastened and is in a normal state. When the
clip appears in area B, the fastener is in a loosening state.

4.2. Classification Model. ResNet [54] is a classical deep
convolutional network that is widely used in image classi-
fication, detection, and segmentation. (e core of ResNet is
the residual block, as shown in Figure 9. By adding a shortcut
branch to the residual block, the problem of gradient dis-
appearance caused by the increase in the number of neural
network layers is effectively solved, allowing ResNet to
improve the network performance by increasing the number
of network layers. (e output function of the residual
module is as follows:

y � F x, wi (  + x, (4)

where x and y are the input and output vectors of the re-
sidual block. F(x, wi ) represents the feature vector ob-
tained after the input vector passes through i convolutional
layers. If the residual block has the same structure as that
shown in Figure 9 and contains two weight layers, and then
the formula of F(x, wi ) is as follows:

F x, wi (  � W2f1 W1x + b1(  + b2, (5)

where f1 is ReLU function.
Different depth ResNet models can be obtained by

setting various channel numbers and residual blocks in the
module. In this study, the ResNet101 model is used to detect
the state of the Pandrol clip fasteners.

5. Experiments and Analysis

5.1. Data Set. (e images are collected from the Shi-
jiazhuang-Taiyuan high-speed railway line, as shown in
Figure 10. (e LQ-H3X industrial linear array camera,
which is mounted on the special rail inspection vehicle, is
used to collect the track images on the line. (rough re-
peated image data acquisition experiments on site, high-
resolution grayscale images of 2,572 track fasteners have
been collected successfully, including 1,425 images of bal-
lastless tracks and 1,147 images of ballast tracks, whose
image resolutions are 4096× 2048 pixels.

In the localization experiment on rails and fasteners,
2,572 collected original images were selected as the data set.
(e data set of the rail surface defect detection experiment is
composed of two parts: one is derived from the rail subimage
obtained from the rail and fastener localization experiment
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results, and the other is derived from the public rail surface
discrete defect (RSDD) data set [32]. We obtained 526
images, of which rail surface has at least one defect, with
width between 140 and 170 pixels and height between 600
and 700 pixels. We selected 825 subimages of fasteners from
the experimental results of rail and fastener localization as
the data set of fastener state detection, including 705 normal

fasteners, 71 loosening fasteners, and 49 broken fasteners. As
the number of loosening fasteners and broken fasteners is
relatively small, data augmentation methods such as rota-
tion, Gaussian noise, and salt-and-pepper noise are used to
expand the samples of defective fasteners. (en, 705 normal
fasteners, 152 loosening fasteners, and 130 broken fasteners
were obtained as the data set of this experiment ultimately.

Feature extraction
network

Region proposal 
network

RoI align

FCN

Fully connected 
layer

Input
Output

Figure 6: Rail surface defect detection model.

(a) (b) (c)

Figure 7: Different types of SFC fastener state. (a) Normal. (b) Loosening. (c) Broken.

A B

Figure 8: Division of the fastener state judgment area.
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Of the total number of images, 70% were randomly selected
from the data set as the training set, including 494 normal
fasteners, 106 loosening fasteners, and 91 broken fasteners.
(e remaining 30% of the images were used for testing,
including 211 normal fasteners, 46 loosening fasteners, and
39 broken fasteners.

5.2. Experimental Environment. (e experimental envi-
ronment of this study is based on Windows 10, NVIDIA
RTX 2080TI 11GB GPU, Intel Xeon Silver 4214 2.2GHz
dual CPU and 64GB RAM. (e algorithm based on deep
learning was developed using PyTorch framework.

5.3. Training Process. (e overall training process of our
method is shown in Figure 11, which is described as follows:

Step 1: use LabelImg to mark the rail and fastener area
in the images of original data set for the training of the
improved YOLOv5s to obtain the rail and fastener
localization model.
Step 2: use the images of original data set as the input to
the rail and localization model to obtain the rail sub-
image and the fastener subimage.
Step 3: combine the rail subimage obtained in Step 2
with the public RSDD dataset as the rail dataset, and use
LabelMe to mark the rail surface defect contours in the

Weight layer

Weight layer

ReLU

ReLU

F(x) + x

x

Figure 9: Residual block.

(a)

Image acquisition device

(b)

Figure 10: Image acquisition. (a) Picture of image acquisition in Shijiazhuang-Taiyuan high-speed railway line. (b) Special rail inspection
vehicle.
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dataset for Mask R-CNN training to obtain rail surface
defect detection model.
Step 4: use the fastener subimage obtained in Step 2 as
the fastener data set for the training of the ResNet101
model to obtain the fastener state classification model.

In the process of training the rail and fastener locali-
zation model, 2572 images were randomly assigned 1543
images as the training set, 2 257 images as the verification set,
and the remaining 772 images as the test set. Due to the
limitation of the performance of the GPU, the input image is
resized to 1024× 512 pixels during the training. (e specific
parameter settings of the model are shown in Table 1 and the
loss curve of the training process is shown in Figure 12.
During the first 20 epochs, training loss converges rapidly,
and the decline rate of the train loss value of the model
decreases. After 100 epochs, the training efficiency of the
model reaches saturation loss value, and the change of loss
value is small.

During the training process of the rail surface defect
detection model, 526 images were randomly assigned 368 as
the training set, 52 as the verification set, and the remaining
106 images as the verification set. In this experiment, the size
of the image input to the training model is resized to
160× 650 pixels. (e threshold value of the intersection over
union (IoU) in the RPN network was set as 0.6; that is, the
IoU between the proposal and ground truth was greater than
0.6, which was retained as the positive sample. Other pa-
rameters of the model are shown in Table 2.(e loss curve of
the training process is shown in Figure 13. (e training loss
value decreases rapidly before 2500 iterations and tends to be
stable after 20000 iterations, finally stabilizing at around
0.06.

5.4. Localization Experiment of the Rail and Fastener

5.4.1. Analysis of Experimental Results. Figure 14 shows the
visual detection results of two different types of track bed.
According to the figure, the proposed model can realize the
positioning of rails and fasteners on both ballastless and
ballast railway track images.

To further verify the effectiveness of the proposed model,
five object detection methods, namely, SSD [55], Faster
R-CNN, YOLOv3 [56], Tiny-YOLOv3, and original
YOLOv5s, were selected for comparison in this study.

VGG16 [57] was used for SSD, Resnet50 was used for Faster
R-CNN, and Darknet53 [56] was used for Yolov3. Precision
(P), recall (R), mean average precision (mAP), and detection
speed (FPS) were used as evaluation indexes for object
detection:

LabelingOriginal data set Train improved YOLOv5s Rail and fastener 
localization model

Fastener data set

Train mask-RCNN Rail data setLabelMeRail surface defect 
detection model

Train ResNet101Fastener state
classification model

Figure 11: Overall training process.

Table 1: Parameters of rail and fastener localization model.

Parameters Value
Input size 1024× 512
Initial learning rate 0.01
Class 2
Batch size 6
Epochs 120
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Figure 12: Training loss curve of the rail and fastener localization
model.

Table 2: Parameters of the rail surface defect detection model.

Parameters Value
Learning rate 0.001
Weight decay 0.0001
Batch size 4
Class 1
Iterations 30000
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where TP, FP, and FN represent true positive, false positive,
and false negative cases, respectively. AP is the area covered
under the P-R curve, and D represents the number of
categories detected. D � 2 was used in this experiment.

(e results are shown in Table 3. Detection speed of
Tiny-YOLOv3 is obviously faster than that of other methods,
but its detection accuracy is only 76.52%. Faster R-CNN has
the best detection performance but the lowest detection
speed. (e detection performance of the proposed model is
similar to that of Faster R-CNN and Yolov5s, but the de-
tection speed is significantly faster than that of Faster
R-CNN, which is improved by 17.52% compared with the
original Yolov5s. At the same time, our model is only 12.6M
in size and can be flexibly deployed on devices with small
memory. (erefore, the performance of the object detection
model proposed in this study is better than that of the other
five methods in our data set.

5.4.2. Experiment of Rail Surface Defect Detection.
Figure 15 shows the comparison results of the method
proposed in this study and other methods for the detection
of rail surface defects on different scales, where both PSPNet
[58] and Deeplabv3+ [59] chose Resnet50 for the feature
extraction network, and the boundary box was ignored for
Mask R-CNN. Mask R-CNN has the best detection effect for
slight defect because the addition of FPN in the backbone
greatly improves the detection performance of small objects.
In the three models of moderate and severe defects, the
existence of defects can be detected well. However, the
prediction of the defect edge byMask R-CNN is significantly
more accurate, and the defect contour can be segmented
completely. In addition, the detection effect of Deeplabv3+
was also good, but the segmentation accuracy was inferior to
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Figure 13: Training loss curve of the rail surface defect detection model.

(a) (b)

Figure 14: Visualization results of rail and fastener localization. (a) Ballastless track image. (b) Ballast track image.

Table 3: Comparison of different object detection methods.

Method P (%) R (%) mAP (%) Model size (MB) FPS
SSD 94.72 99.73 98.96 181.2 61.3
Faster R-CNN 97.12 100 99.76 267.8 12.2
YOLOv3 96.81 99.73 99.74 117.2 62.5
Tiny-
YOLOv3 76.52 98.04 92.92 16.6 168.4

YOLOv5s 96.41 100 99.71 14.1 83.3
Ours 96.23 100 99.68 12.6 97.9
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that of Mask R-CNN. (e segmentation accuracy of PSPNet
was the worst, especially for the segmentation with slight and
moderate defects. (erefore, the proposed method has high
segmentation accuracy and robustness advantages com-
pared with the other two methods.

To obtain quantitative experimental results, pixel ac-
curacy (PA), mean pixel accuracy (MPA), mean intersection
over union (MIoU), and frequency weighted intersection
over union (FWIoU) were used as evaluation indexes in this
experiment. (eir specific expressions are as follows:

(a) (b) (c) (d) (e)

Figure 15: Comparison of detection results of rail surface defects with different methods: (a) original image, (b) ground truth, (c) PSPNet,
(d) Deeplabv3+, and (e) Mask R-CNN.
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where pij represents the total number of pixels that belong to
the i class but are predicted to be in jclass, and c represents
the number of categories. Two categories are used in this
experiment, namely, defects and background.

Table 4 records the specific quantitative experimental
comparison results. As shown in the table, the performance

of PSPNet is significantly lower than that of Deeplabv3+ and
Mask R-CNN in MPA and MIoU, with only 74.48% and
73.65%, respectively. (e Mask R-CNN model used in this
paper achieves the best results in all indicators. One of the
main reasons is that Mask R-CNN is a two-stage object
detection network and only segments candidate boxes
generated in the first stage, which is conducive to the im-
provement of segmentation accuracy. (erefore, Mask
R-CNN performs better in the test set of our dataset.

5.4.3. Experiment of Fastener State Detection. We selected
some classification models based on deep learning algo-
rithms and some classification models based on traditional
shallow learning algorithms to compare our method:

(1) VGG16: a classic deep learning framework is widely
used in object classification and feature extraction
networks.

(2) HOG+SVM: HOG feature extraction is performed
on the coupler image, and then the extracted HOG
feature is input to SVM for coupler status
classification.

(3) Canny +HOG+ SVM: Canny operator [60] first
extracts the edge contour features of the coupler
image to obtain the edge feature map. (e HOG
features are extracted from the edge feature map.(e
SVM algorithm is used for classification finally.

(e results of different classificationmodels are shown in
Table 5. Figure 16 shows the accuracy comparison results of
the various methods. (e experiment shows that, compared
with the other three methods, Resnet101 achieves the best
detection results in our fastener data set. In addition, VGG16
and Resnet101 based on deep learning framework are sig-
nificantly better than the other two methods in the detection
accuracy for all types of coupler. One main reason is that
VGG16 and Resnet101 extract advanced semantic features of
coupler images by using the convolutional layer, while the
other two methods only extract the low-level features of the
image by using the artificially designed feature extraction
method. (us, they are better than the traditional machine
learning method in terms of classification accuracy and
robustness. Canny +HOG+SVM is better than

Table 4: Comparison of different segmentation models.

Method PA (%) MPA (%) MIoU (%) FWIoU (%)
PSPNet 99.41 74.48 73.65 98.84
Deeplabv3+ 99.65 92.76 85.67 99.38
Mask R-CNN 99.72 94.37 87.52 99.51

Table 5: Classification results of different classification models.

Method Normal fastener Loosening fastener Broken fastener
HOG+SVM 206/211 37/46 31/39
Canny +HOG+SVM 208/211 40/46 32/39
VGG16 211/211 44/46 34/39
ResNet101 211/211 45/46 36/39

HOG + SVM Canny + HOG + SVM
VGG16 ResNet101

Loosening
fastener

Broken
fastener

TotalNormal
fastener

76
78
80
82
84
86
88
90
92
94
96
98

100

A
cc

ur
ac

y 
(%

)

Figure 16: Accuracy of different fastener state classification
models.
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HOG+SVM because the former method first uses a Canny
operator to extract the edge features of the coupler image
before extracting HOG features, so that the interference of
background and other useless information is reduced on
classification, and the classification precision improves to a
certain extent. Compared with VGG16, Resnet101 improved
the detection accuracy of loosening fasteners by 5.13% and
the overall detection accuracy by 1.01%, because Resnet101
uses residual blocks to increase the depth of the CNN. (is
feature enables Resnet101 to have stronger feature extraction
capability.

6. Conclusions and Future Work

(is study proposed a nondestructive detection method
based on deep learning algorithms to implement rail surface
and fasteners defect detection. At the object localization
stage, part of the structure of the backbone based on the
YOLOv5 framework is improved to achieve the localization
of the rail and fastener rapidly. Compared with other object
detection methods, our method has the highest detection
accuracy and fastest detection speed, and the model size is
only 12.6M. At the defect detection stage, Mask R-CNN is
used as the defect detection model of the rail surface. Ex-
periments show that our method is more suitable for defect
detection of rail surface compared with other advanced
semantic segmentation methods. In the state detection of
fasteners, a set of criteria for judging the state of SFC-type
fasteners is given to judge whether the fasteners are in a
normal or loosening state. A comparison between the
classification models based on deep learning or traditional
machine learning theory can show that ResNet is the most
suitable classification method for the fasteners in this data
set. In general, the proposed method can effectively detect
rail surface defects and fastener states.

In the future, we intend to gain more advanced
knowledge of deep learning and optimize the rail surface
defects detection model to improve the accuracy of defect
segmentation. In our data set, few samples of rail surface
defects and fastener defects are available, so we will try to use
more data augmentation methods to expand the defect
samples and can further improve the robustness of our
method.
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