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*e purpose of this research is to develop a maximum likelihood estimator (MLE) for lifetime performance index CL for the
parameter of mixture Rayleigh-Half Normal distribution (RHN) under progressively type-II right-censored samples under the
constraint of knowing the lower specification limit (L). Additionally, we suggest an asymptotic normal distribution for the MLE
for CL in order to construct a mechanism for evaluating products’ lifespan efficiency. We have specified all the steps to carry out
the test. Additionally, not only does hypothesis testing successfully assess the lifetime performance of items, but it also functions as
a supplier selection criterion for the consumer. Finally, we have added two real data examples as illustration examples. *ese two
applications are provided to demonstrate how the results can be applied.

1. Introduction

Process capability analysis is an efficient method for de-
termining a production process’s performance and pro-
spective capabilities. In manufacturing sectors, process
capability indices (PCIs) are used to determine if the quality
of the product meets specified standards. PCIs have garnered
considerable interest in the statistical literature during the
last three decades. *e key motivation for analyzing the
process capacity producing PCI is to evaluate the process’s
performance and potential capabilities.

Process capability analysis aids in the following ways:
continuously monitoring process quality using PCI to en-
sure produced goods adhere to requirements, giving in-
formation on product development to manufacturers and
specialists, and establishing a foundation for lowering item
failures. *e PCIs are classified into three categories: the first
is used to quantify the target-the-better quality feature, the

second is used to quantify the larger-the-better quality
characteristic, and the third is used to quantify the smaller-
the-better quality characteristic. For more information and
extra details, see [1].

Due to a variety of variables such as time limits or other
constraints on money, material resources, or data collection,
the researcher may be unable to track the lifespan of all
commodities or things in a test. As a result, it is possible that
censored samples will be encountered during operation.
Proper filtering happens when just the lifetime’s lower limit is
known. When only the lifetime cutoff is set, proper filtering
occurs. One type of right censorship is referred to as “type-II
censorship.”*is type of censorshipmay occur when a certain
number of failures occur during the lifespan experiment.

Progressive type-II censorship occurred when our at-
tention shifted frommonitoring n goods to monitoring until
the mth failure occurs, and then, the test is ended. As the ith

item fails, ri of the items that still functional are cut off from
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the experiment. At the end of the experiment, the lasting
rm � n − m − 

m
i�1 ri are eliminated at the time of the mth

item which is failed. For more information and extensive
reading, see [2] and [3]. For more reading, see [4–8].

Typically, a high sample size is required in practice to
evaluate the product’s effectiveness under nonnormal dis-
tributions, and this study used a large sample size and an
increasing proportion of type-II right-censored samples.
Using a large sample size and an increasing proportion of
type-II right-censored samples, this study created a novel
method for assessing a product’s performance improvement
when the distribution is nonnormal.

*us, the primary objective of this work is to estimate
CL’s MLE under the parameter RHN distribution using a
type-II right-censored sample.

A confidence interval is then constructed using the as-
ymptotic normal distribution of the MLE of CL. Addi-
tionally, we use confidence intervals to construct a unique
hypothesis testing approach for evaluating items’ lifetime
performance. *e novel hypothesis testing approach may be
used to evaluate the quality performance of items with
nonnormal distribution using large sample size and an
increased role of type-II right-censored items. Additionally,
purchasers may employ the unique hypothesis testing
procedure to determine whether the manufacturer’s lifetime
falls within the defined range. Additionally, vendors can
leverage the unique hypothesis testing approach to enhance
the capability of their processes.

2. Finite Mixture of Rayleigh and Half-
Normal Distribution

Pearson [9] is credited with inventing statistical modelling
using finite mixtures of distributions when he applied the
concept to a study of crab morphometry data provided by
Weldon [10, 11]. *e dataset consisted of 1000 cm of
measurements of the ratio of the forehead to the body length.
*e data were skewed to the right when plotted.Weldon [11]
claimed that this skewness might be explained by the fact
that the sample includes members of two distinct crab
species, but no such distinction had been noted at the time
the information was gathered. Pearson [9] proposed that a
weighted sum of two normal distributions may be used to

simulate the distribution of data, with the two weights
representing the percentage of each variety of crab.

*e Rayleigh-Half Normal distribution is denoted as
RHN(θ) by Abd El-Monsef and Abd El-Raouf [12]. *is
model is a combination of Rayleigh and Half-Normal dis-
tributions, each with different parameters (1/

��
2θ

√
), where

fR refers to the pdf of the Rayleigh distribution and fHN
refers to the pdf of Half-Normal distribution:

f(x, θ) � KfR

x · 1
��
2θ

√  +(1 − K)fHN
x · 1

��
2θ

√ 

� K 2θxe
− θx2

  +(1 − K) 2

��

θ
π



e
− θx2

⎛⎝ ⎞⎠,

(1)

where K � (1/(1 +
���
πθ

√
)).

A Rayleigh-Half Normal distribution has a pdf that looks
like the following:

f(x, θ) �
2θ(x + 1)e− θx2

1 +
���
πθ

√ , x · θ> 0. (2)

2.1. =e LPI of RHN Distribution. *e electronic compo-
nents’ lifespan performance is evaluated using the CL

process capability index, which was introduced by [13].
Better quality indicates a longer lifespan. Typically, lifespan
requirements must be met with at least L units of lifespan. In
order to judge the product efficiency, the lifespan perfor-
mance index CL is described this way:

CL �
μ − L

σ
, (3)

where μ � (2
�
θ

√
+

��
π

√
)/(2

�
θ

√
(1 +

���
πθ

√
)) denotes the

mean of RHN distribution, σ ��������������������������������������

((4 − π + 2
���
πθ

√
+ 2θ(π − 2))/4θ(1 +

���
πθ

√
)2)



represents
the standard deviation of RHN distribution, and L denotes
the well-defined lower specification limit. A case may be
made that the lifetime of items can be represented using the
RHN distribution. *e performance index used for deter-
mining product performance is specified as CL. If X origi-
nates with (RHN) distribution, CL is an index that accounts
for a lifetime of superior performance:

CL �

��
π

√
+ 2

�
θ

√
− 2L(

�
θ

√
−

��
π

√
θ)

(
�
θ

√
+

��
π

√
θ)

�������������������������������������

(4(1 − θ) + 2
���
πθ

√
+ π(2θ − 1))/θ(1 +

���
πθ

√
)
2

 ; θ> 0, (4)

where − ∞<CL < (μ/σ).
As can be seen, the mean is inversely related to the rate of

failure and directly related to the greaterCL > 0, which is LPI.
As a result, CL provides an accurate representation of the
lifetime development of existing new products.

3. The Conforming Rate for RHN Distribution

Suppose that if the lifespan of an item or units under testing
is X and the lower bound is L, so we can say that the item is
regarded to be compliant, when its lifetime exceeds L. *e
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complying rate expresses the likelihood of conforming goods
and may be defined as

Pr � P(x≥ L). (5)

From equation (3), L � μ − σ CL, and by substituting in
(5), we obtain

Pr � 1 +
e

− θM2/4( ) −
���
πθ

√
erf(

�
θ

√
M/2) − 1

1 +
���
πθ

√⎛⎝ ⎞⎠, (6)

where

M �
1
θ

CL

������������������������
4(1 − θ) + 2

���
πθ

√
+ π(2θ − 1)

θ(1 +
���
πθ

√
)
2


2θ − 1

θ +
��
π

√
θ3/2

⎛⎝ ⎞⎠.

(7)

Using the one-to-one link between Pr and CL, the index
of lifetime performance can be a versatile and effective tool
for evaluating the product’s quality as well as estimating the
complying rate Pr. Pr versus CL is determined for various
values of parameters, as shown in Tables 1 and 2.

Obviously, the complying rate Pr and the CL can exhibit
a strictly rising connection. Tables 1 and 2 show different CL

values and their corresponding complying rates Pr for pa-
rameters of θ equal to 0.5 and 1.768.

4. The MLE for CL

Let us assume that we have a random sample for our dis-
tribution ordered and it is organized as follows:
X1:m:n:k, X2:m:n:k, . . . , Xm:m:n:k. *is sample represents the
appropriate progressive type-II right-censored sample from
a real practical experiment for n units with survival times
distributed according to the RHN distribution, and
r � (r1, r2, . . . , rm) represents the censoring scheme that
items under experiment will be removed according to it.

*en, the likelihood function of all m progressively type-II
right-censored order statistics is expressed as follows:

L(x, θ) � Ck
m



m

i�1
fX xi:m:n:k; θ(  1 − FX xi:m:n:k; θ( ( 

k ri+1( )− 1
, (8)

where 0< x1:m:n: k < x2:m:n:k < · · · < xm:m:n:k <∞ and
C � n(n − r1 − 1)(n − r2 − 1) · · · (n − 

m− 1
i�1 ri − m + 1).

Now, we will get the MLE for the RHN distribution
parameters, by finding the first derivative for the likelihood
function as follows:

zl(x, θ)

zθ
�

m

θ
−

m
��
π

√

2
�
θ

√
Q

− 
m

i�1
x
2
i + 

m

i�1

k 1 + ri(  − 1( ((
��
π

√
S/2

�
θ

√
Q) − W)

Q − S
� 0, (9)

where S � (1 − e− θx2
i +

���
πθ

√
erf(

�
θ

√
xi)),

W �

��
π

√
erf

�
θ

√
xi( 

2
�
θ

√ + xie
− θx2

i + x
2
i e

− θx2
i , (10)

and Q � 1 +
���
πθ

√
and the MLE θ of θ can be obtained

numerically.
By the aid of the invariance property of MLE that was

introduced by Zehna [14], we can obtain the MLE of CL as
shown below:

Table 1: Numerical values for the index of CL vs. Pr for RHN
distribution with the parameter value (θ� 0.5).

CL Pr

− ∞ 0.00000
− 5 0.00005
− 4 0.00068
− 2 0.04019
− 1.5 0.08550
− 1 0.16397
− 0.8 0.20675
− 0.5 0.2857
− 0.4 0.31323
− 0.2 0.37652
− 0.1 0.41042
0 0.44566
0.1 0.4821
0.2 0.51955
0.3 0.55785
0.4 0.59676
0.5 0.63609
0.6 0.67559
0.7 0.71503
0.8 0.75416
0.85 0.77353
0.9 0.79273
0.9168 0.81
0.95 0.81173
1 0.83051
1.1 0.86725
1.2 0.90274
1.4 0.9592
1.3 0.93676
1.5 0.99967
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 .

(11)

Furthermore, the asymptotic normal distribution for
MLEs is stated and published by Soliman [15] and Wu and
Kuş [3].

As a first step, we get the observed Fisher information of
the parameter θ:

I(θ) � −
m(4 + 7

���
πθ

√
+ 2πθ) − 1 + k + kri( 

4 θ +
��
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2
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3
i e
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i − x

4
i e

− θx2
i /Q 

1 − (S/Q)

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(12)

*e asymptotic distribution of MLE θ̂ is a normal dis-
tribution with mean θ and the asymptotic variance I− 1(θ̂) is
denoted by N(θ, I− 1(θ̂)). So, the lower and upper bounds for

the distribution parameter θ is denoted by θ ± zα/2

�����

I− 1(θ̂


).

Depending on the Delta method [16], we can get that the
asymptotic distribution for CL ≡ h(θ) is the asymptotic
normal distribution of h(θ̂) with mean CL and asymptotic
variance Σθ as

Table 2: Numerical values for the index of CL vs. Pr for RHN distribution with the parameter value (θ�1.768).

CL Pr

− ∞ 0.00000
− 5 0.00008
− 4 0.0012
− 2 0.0135
− 1.5 0.0294
− 1 0.0364
− 0.8 0.0408
− 0.5 0.0464
− 0.4 0.0568
− 0.2 0.1454
− 0.1 0.2525
0 0.3695
0.1 0.4069
0.2 0.4892
0.3 0.5251
0.4 0.5471
0.5 0.6123
0.6 0.6944
0.7 0.7376
0.8 0.7954
0.82 0.8017
0.85 0.8094
0.9 0.8237
0.95 0.8379
1 0.8539
1.1 0.7854
1.2 0.8846
1.4 0.9233
1.3 0.9592
1.5 0.9696
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CL ≡ h(θ̂ ) ∼ N CL,Σθ( , (13)

where Σθ � I− 1(θ)[zh(θ)/zθ]2
θ�θ

.

5. Step Followed and Procedure for
Obtaining CL

*e statistical analysis hypothesis testing approach is used to
determine if the LPI is within the specified range. By in-
corporating Lee et al. [17–19], the confidence interval and
hypothesis testing may be obtained, for more extra reading
we can refer to Lee et al. [17–21].

We can obtain CL confidence interval by considering CL

distributed normally having mean CL and asymptotic var-
iance (Σθ). Assuming that the needed value of the LPI is
greater than c∗, where c∗ signifies the intended value, the
null hypothesis is tested as follows.

Ho: CL ≤ c∗ against H1 : CL > c∗.

Due to the fact that the MLE of CL is utilised as the test
statistic, the rejection area may be calculated as follows:
[CL > (C0/CL)]. For a given significance level α, the critical
value C0 is calculated as follows:

P CL >
C0

CL

� c
∗

  � α,

P CL − CL ≤
C0 − CL

CL

� c
∗

  � 1 − α,

P
CL − CL��
Σθ

 ≤
CO − c

∗
��
Σθ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � 1 − α,

P
CL − CL���

Σ̂θ
 ≤

CO − c
∗

���

Σ̂θ
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � 1 − α,

(14)

where ((CL − CL)/
���

Σ̂θ


) ∼ N(0, 1).
Such that zα is the standard normal value, so we can

express it as zα � ((CO − c∗)/
���
Σθ



), so the critical value may
be expressed as follows:

CO � c
∗

+ zα

���

Σ̂θ


, (15)

where c∗, α, and Σ̂θ denote the target value. Additionally, we
discover that CO is independent of n and ri, i � 1; 2; . . . , m.
Moreover, the 100(1 − α)% confidence interval of CL may be
expressed as follows:

CL ≥ CL − zα

��

Σ̂θ


. (16)

And, CL lower bound may be expressed as follows:

LB � CL − zα

��

Σ̂θ


. (17)

*e managers may use the unilateral confidence interval
to detect if product performance reaches the desired level.

*e testing approach for CL is as follows:

*e MLE of the RHN distribution’s parameters is
quantitatively determined.
Determine the lowest lifespan L for goods and the
lifetime c∗ index.
After that we construct the null and the alternative
hypothesis as shown Ho: CL ≤ c∗ H1 : CL > c∗ is
constructed. By taking into consideration, a certain
prespecified value of (α).
Specify the number of observed failures before the test
reaches an end, let us say m, and specify the number of
the censored units according to the censoring scheme
r � (r1, r2, . . . , rm).
After that, we calculate the lower bound L.
*e statistical test decision rule may be established as if
the lifetime index value c∗ ∉ [LB,∞), so we must not
accept Ho.

An indicator is given of the product lifespan index at
the desired level. *e quality performance of nonnormal
distribution products with a big sample and more type-II
right-censored samples may also be evaluated as per the
hypothesis test process. Moreover, not only can the product
lifetime performance be assessed appropriately but also the
hypothesis test technique is the criterion for customer choice
by the provider.

6. Numerical Examples

Hypothesis testing methodologies may be used to assess
whether a product’s lifetime performance remains within the
specified range. A procedure is proposed in the presented
study of the test, which is based on a one-sided confidence
interval under RHN distribution and increasingly type-II
right-censored sample. *e following two examples will be
applied to demonstrate the use of these hypothesis testing
procedures.

Example 1. *e statistics on the failure times of 24 ball
bearings in an endurance test are presented, the simulated
data are produced from the RHN distribution with
c � 6, k � 4, n � 24, andm � 10, and the specified censoring
scheme r � 0, 0, 0, 1, 0, 0, 0, 0, 1, 3{ }. *e observations are
xi: 10: 24, i � 1, 2, . . . , 10 � 0.0002, 0.0003, 0.0006, 0.0007,

0.0063, 0.0131, 0.0303, 0.0566, 0.2669, 0.2840,
respectively.

A type-II right-censored sample was considered on size
of sample m � 10 from the original set of data of 24 ob-
servations of ball bearings in a survival test.

*en, the suggested testing technique for CL can be
carried out as follows:

By considering the increasingly type-II right-censored
sample (xi:10:24; i � 1, 2, . . . , 10) and (r1, r2, . . . , r10),
the MLE θ of θ can be attained numerically,
θ � 0.23696.
If the lower lifetime limit L is set to 0.005, the item
bearing is considered to be a conforming product.
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To address product-related problems about operational
performance and conformance rate Pr of goods must
be more than 80 percent, the CL value is mandatory to
exceed 0.8. *us, the value of LPI is set at c∗ � 0.9168.
*e testing hypothesis: Ho: CL ≤ 0.9168 vs.
H1 : CL > 0.9168 is constructed with specifying a sig-
nificance level α� 0.05.
*e asymptotic variance Σθ and the lifetime performance
estimates CL are obtained Σθ �

0.000926795 and CL � 1.54825.
*en, 95% of the lower confidence interval bound can
be calculated as
LB � 1.54825 − 1.645

�����������
0.000926795

√
� 1.49817. (18)

So, we can easily obtain the 95% confidence interval for
CL, which is [LB ,∞) � [1.49817,∞)).
In addition, we calculate CL � 1.54825>CO �

c∗ + zα

��
Σθ



� 0.9168 + 1.645
�����������
0.000926795

√
� 0.9669,

so we also reject Ho: CL ≤ 0.9168.

From the obtained results, it can be noticed that the value
of the performance index c∗ � 0.9168 ∉ [LB ,∞); thus,
Ho: CL ≤ 0.9168 is rejected. Hence, there is a suggestion to
indicate that the LPI of 24 items’ bearing operation does
meet the mandatory level.

Example 2. *e simulated data is an increasingly type-II
censored sample from the RHN distribution. *e 30 ex-
perimental units are located simultaneously in a lifetime test
with c � 6, k � 2, n � 30, m � 20 and the given censoring
scheme is r � 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0,{

0, 0, 0, 2}. *e progressively type-II censored sample is x

� 0.1816, 0.1958, 0.2185, 0.2516, 0.2604, 0.3074, 0.3277,{

0.3381, 0.3487, 0.3595, 0.3705, 0.4165, 0.4528, 0.4779,

0.5432, 0.5702, 0.611, 0.6255, 0.7103, 0.7245}.

*en, the suggested testing technique for CL can be
written as follows.
Assume that we have a type-II right-censored sample
xi: 20: 30, i � 1, 2, . . . , 20, and (r1, r2, . . . , r20). *e MLE
θ of θ can be obtained numerically, θ � 0.71088.
*e lower lifetime limit L is assumed to be 0.005.
To handle the product purchasers’ concerns concerning
operational performance, the conforming rate Pr of
products is required to exceed 80 percent; the CL value
is required to exceed 0.82. *us, the performance index
value is set at c∗ � 0.82.
*e testing hypothesis: Ho: CL ≤ 0.82 vs. H1 : CL >
0.82 is created.
*e lifetime performance estimate CL and the as-
ymptotic variance Σ̂θ are obtained:

CL � 1.4352,

Σ̂θ � 0.0007153.
(19)

*en, 95% of the lower confidence interval bound can
be calculated as

LB � 1.4352 − 1.645
���������
0.0007153

√
� 1.3912. (20)

So, we can evaluate the lower and upper bounds for the
confidence interval.
In addition, we calculate CL � 1.4352>CO � c∗+

zα

���
Σθ



� 0.82 + 1.645
���������
0.0007153

√
� 0.86399, so we

also reject Ho: CL ≤ 0.82.

As a result of the obtained results, it is clear that the
performance index value c∗ � 0.82 ∉ [LB ,∞); thus,
Ho: CL ≤ 0.82 is rejected.

7. Conclusions

Process capability indices are used throughout the pro-
duction process to determine whether the product meets
specified quality criteria. For quality characteristics where
greater is preferable, the LPI CL is one of the most often used
capacity indices. Montgomery [10] was the first to work on
this subject. *e normalcy assumption is extremely prob-
lematic in the majority of processes, such as business and
manufacturing despite the fact that it is commonly used in
process capability analysis. As a result, it is common to see
censored samples in operation. *is study dedicated to
assessing the LPI CL of items follows the RHN distribution
under right censoring data. *e MLE of CL was determined
under the RHN distribution with the progressively type-II
right-censored sample.*eMLE of CL was used to develop a
confidence interval of CL under the condition of known L,
and the hypothesis testing procedure was performed.

Additionally, the offered study includes tables summa-
rizing the LPI and its associated compliance rate. *us, for
any specified complying rate, a matching CL must be
evaluated, and the hypotheses underlying the testing tech-
nique may also be quantified in terms of complying rate if L
is known to be a limit. *e suggested approach is shown
using real data, and the findings suggest that the objective of
assessing the LPI was met.
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