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)is study deals with the facility location problem of locating a set Vp of p facilities on a graph such that the subgraph induced by
Vp is connected. We consider the connected p-median problem on a cactus graph G whose vertices and edges have nonnegative
weights. )e aim of a connected p-median problem is to minimize the sum of weighted distances from every vertex of a graph to
the nearest vertex in Vp. We provide an O(n2p2) time algorithm for the connected p-median problem, where n is the number
of vertices.

1. Introduction

)e p-median and p-center problems are central to the field
of location theory and logistics and are now well studied in
operations research. Applications of the two problems in-
clude the location of industrial plants, warehouses, distri-
bution centers, and public service facilities in transportation
networks, as well as the location of various facilities in
telecommunication networks [1, 2].

To determine the backup sites or to balance the workloads
among the center vertices in real networks effectively, Yen and
Chen [3] originally proposed the connected p-center problem
and showed that the connected p-center problem is NP-hard
on both bipartite graphs and split graphs. Yen [4] studied the
connected p-center problem on block graphs. Bai et al. [5, 6]
considered the connected p-center problem on cactus graphs
and devised an O(n2p2) algorithm.

Similar to the connected p-center problem, Shan et al.
[7] introduced the connected p-median problem and con-
sidered the connected p-median problems on interval and
circular-arc graphs. Kang et al. [8] studied the connected
p-median problem on block graphs and proved that the
problem is linearly solvable on block graphs which have unit
edge lengths.

In this study, we consider the problem of finding the
optimal location of connected p-median on a cactus graph.

)e study is organized as follows. In the next section, we
formally introduce the notations and the problem that we
studied in this study. In Section 3, we study the connected
p-median problem on a cactus graph and devise an algo-
rithmwith time complexity of O(n2p2). Finally, we conclude
this study.

2. Problem Formulation

Let G � (V, E, w, l) be a connected graph with vertex set
V(|V| � n) and edge set E(|V| � n), where each vertex v ∈ V

(or vi ∈ V) has a weight w(v)≥ 0 (or wi ≥ 0) and each edge
e ∈ E has a certain length l(e). For any two vertices u, v, let
P[u, v] be the shortest path from u to v, and d(u, v) be the
length of P[u, v]. A p-vertex set Xp is called a connected
p-vertex set if the induced subgraph of Xp is connected.

A cycle is a sequence (v1, . . . , vs, vs+1 � v1) of s (s≥ 3)

clockwise indexed vertices, such that (vi, vi+1) is an edge,
1≤ i≤ s. A graph G is called a cactus graph if any two cycles
of G have at most one vertex in common. )e vertex set of a
cactus graph G can be divided into three disjoint subsets:
G-vertices, C-vertices, and hinges. A vertex is called a
C-vertex if it is in a cycle of G and its degree is 2 in G. A
vertex is called a hinge if it is in a cycle of G and its degree is
at least three. A vertex is called a G-vertex if it is not in a cycle
of G.
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Given a cactus graph G, a subtree is a connected sub-
graph of G induced by some G-vertices and hinges that does
not contain any cycle. A subtree is called as a graft if it is
maximal and without two hinges belonging to the same
cycle. A cycle or a graft is called a block of G.

For convenience, we use a tree TG to represent the
skeleton of G (Figure 1). )en, we convert TG into a rooted
tree as follows: select an arbitrary block, e.g., B0, as the “root”
of TG. For each vertex (block or hinge) v in TG, let lev(v) be
the level of v. Let Lm � maxv∈TG

lev(v){ } be the maximal one
of all levels. For each hinge h, by deleting the last edge of the
path from B0 to h, we obtain two subtrees of TG. Let Gh be
the subcacti of G induced by the vertices of h and all subcacti
hanging from it, and let Gc

h be the subcacti G − Gh. Note that
the father of any block is always a hinge, which is called the
block’s companion hinge. For simplicity, we choose an
arbitrary vertex h0 ∈ B0 as the virtual companion hinge of
B0. Denote by Bh the block B if its companion hinge is h. Let
GB,h be the subcactus of G induced by the vertices of Bh and
all subcacti hanging from Bh, and let Gc

B,h be the subcacti
G − GB,h. Specially, G � Gh0

� GB0 ,h0
and Gc

h0
� Gc

B0 ,h0
� ∅.

For each k-vertex set Xk in G, let FG(Xk) be the sum of
weighted distances from all vertices in G to Xk, that is,

FG Xk(  � 
v∈V(G)

w(v)d v, Xk( , (1)

where d(v, Xk) � minxi∈Xk
d(v, xi).

Problem 1. Find a connected p-vertex set Xp in G, such that
FG(Xp) is minimized. )is problem is known as the con-
nected p-median problem (CpM). )e optimal solution X∗p
is called a connected p-median of G.

Given a graft Bh of G and an integer k, 1≤ k≤p, for each
vertex v ∈ Bh, the aim of the problem P(GB,h, v, k) is to find a
connected k-vertex set V(GB,h, v, k) of GB,h, such that
FGB,h

(V(GB,h, v, k)) is minimized and v is the closest vertex to
h in V(GB,h, v, k)∩V(Bh). We call the corresponding subset
V(GB,h, v, k) as v-restricted connected k-median of GB,h.

Given a cycle Bh of s indexed vertices v1 � h, v2, . . . , vs

and an integer k, 1≤ k≤p, for any two vertices
vi, vj  ⊂ V(Bh), the aim of the problem P(GB,h, vi, vj , k) is
to find a connected k-vertex set V(GB,h, vi, vj , k) of GB,h,
such that FGB,h

(V(GB,h, vi, vj , k)) is minimized and
V(GB,h, vi, vj , k)∩V(Bh) contains only the vertices of the
path from vi to vj on Bh in clockwise direction. )e cor-
responding subset V(GB,h, vi, vj , k) is called as
vi, vj -restricted clockwise connected k-median of GB,h.

Given a subgraph Gh and an integer k, 1≤ k≤p for each
hinge of Gh, the aim of the problem P(Gh, h, k) is to find a
connected k-vertex set V(Gh, h, k) of Gh, such that
FGh

(V(Gh, h, k)) is minimized. )e corresponding subset
V(Gh, h, k)h-restricted is called as connected k-median of
Gh.

For all subcacti GB,h of G, denote by V1 (respectively,
V2) the possible v-restricted ( vi, vj -restricted clockwise)
connected p-medians V(GB,h, v, p) (respectively,
V(GB,h, vi, vj , p)). For all hinges h of G, denote by V3 the
possible h-restricted connected p-medians V(Gh, h, p). )e
following lemma establishes a significant relationship be-
tween the CpM problems on Gh0

and all restricted p-median
problems.

Lemma 1. Given a cactus graph Gh0
, there exists a connected

p-median Xp in V1 ∪V2 ∪V3.

Proof. Suppose that v ∈ Xp is the closest vertex to h0 in G.
)en, v could be a G-vertex, a C-vertex, or a hinge. We
distinguish three cases. □

Case 1. Given a graft Bh of G and a G-vertex v of Bh, suppose
that V(GB,h, v, p) is a v-restricted connected p-median of
GB,h, then V(GB,h, v, p) is a feasible solution to the CpM
problem, that is,

FG V GB,h, v, p  ≥FG Xp . (2)

On the other hand, since Xp is also a v-restricted
connected p-vertex of GB,h, we have

FG Xp  � FGB,h
Xp  + 

u∈V Gc
B,h

 

w(u)[d(u, h) + d(h, v)]

≥FGB,h
V GB,h, v, p   + 

u∈V Gc
B,h

 

w(u)[d(u, h) + d(h, v)]

� FG V GB,h, v, p  .

(3)

)us, FG(Xp) � FG(V(GB,h, v, p)), which means
V(GB,h, v, p) is a connected p-median of Gh0

.

Case 2. Given a cycle Bh of G and two C-vertices vi, vj of Bh,
i≤ j. Suppose that Xp ∩V(Bh) includes only the vertices of
the path from vi to vj on Bh in clockwise direction, and
V(GB,h, vi, vj , p) is a vi, vj -restricted clockwise con-
nected p-median of GB,h. Similar as Case 1, we deduce that

2 Computational Intelligence and Neuroscience



FG V GB,h, vi, vj , p  ≥FG Xp ,

FG Xp  � FGB,h
Xp  + 

u∈V Gc
B,h

 

w(u) d(u, h) + min d h, vi( , d h, vj   

≥FGB,h
V GB,h, vi, vj , p   + 

u∈V Gc
B,h

 

w(u) d(u, h) + min d h, vi( , d h, vj   

� FG V GB,h, vi, vj , p  .

(4)

)us, FG(Xp) � FG(V(GB,h, vi, vj , p)), V(GB,h,

vi, vj , p) is a connected p-median of Gh0
.

Case 3. For the case v � h is a hinge, we distinguish three
subcases.

Subcase 3.1. )e neighbor of h is a graft Bh. We can
obtain FG(Xp) � FG(V(GB,h, h, p)) andV(GB,h, h, p) is
a connected p-median of Gh0

through the same dis-
cussion as in Case 1.
Subcase 3.2. )e neighbor of h is a cycle Bh, and
Xp ∩V(Bh) includes the vertices of the path from vi to
vj on Bh in clockwise direction, i≤ j. We can obtain
FG(Xp) � FG(V(GB,h, vi, vj , p)) and V(GB,h,

vi, vj , p) is a connected p-median of Gh0
through the

same discussion as in Case 2.
Subcase 3.3. )e neighbor of h belongs to more than
one block. Assume that V(Gh, h, p) is a h-restricted
connected p-median of Gh. Similar as Case 1, we de-
duce that

FG V Gh, h, p( ( ≥FG Xp ,

FG Xp  � FGh
Xp  + 

u∈V Gc
h( )

w(u)d(u, h)

≥FGh
V Gh, h, p( (  + 

u∈V Gc
h( )

w(u)d(u, h)

� FG V Gh, h, p( ( .

(5)

)us, FG(Xp) � FG(V(Gh, h, p)), and V(Gh, h, p) is a
connected p-median of Gh0

.
From the discussion above, there exists a vertex-re-

stricted connected p-median whose sum of weighted dis-
tances of Gh0

is equal to the sum of weighted distances of a
connected p-median of Gh0

.
In view of Lemma 1, we will design an algorithm to find

all the restricted connected p-medians inV1 ∪V2 ∪V3.)e
algorithm uses the idea of dynamic programming. Traverse
the tree TG “upward,” from the vertices (block or hinge) with
higher levels to the vertices with lower levels. An arbitrary
order is defined when vertices are with the same levels. In
each loop, we select a block Bh or a hinge h. If Bh is a graft, we
calling program GRAFT (B, h) to deal with the problem on
GB,h; otherwise, we call program CYCLE (B, h). When it
comes to Gh, we call programHINGE (G, h). For the further
computations, all useful data are transferred to h. When the
block Bh0

has been checked, these data can be used to find a
connected p-median V∗p of G.

3. Algorithm for the CpM Problem on
Cactus Graph

3.1. 1e Program GRAFT (B,h). In this subsection, for each
graft Bh of G and each possible positive integer k, our task is
to find all restricted connected k-medians V(GB,h, v, k).

Denote by T the given graft Bh. Assume that T is rooted
at the hinge h. Denote by L′ � maxv∈V(T)lev(v). For each
vertex v≠ h, we can obtain two subtrees of T by deleting the
last edge of the path from h to v. Let Tv be the subtree that
contains v, and let Tc

v � T − Tv. LetGB,v andGc
B,h � GB,h − Gv

G1

h1 h3

G2

h5

h6

C5

C4

h2

C1

C2 C3

h4 G3

(a)

Level

1

2

3

4

5

C1

h1 h2 h3

G2

h5 h6

C4 C5

G1 C3 C2

h4

G3

(b)

Figure 1: (a) A cactus graph G with five cycles C1, . . . , C5, three grafts G1, G2, G3, and six hinges h1, . . . , h6. (b) )e tree structure TG of G.
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be the subgraphs of Gh corresponding to Tv and Tc
v,

respectively.
For each vertex v ∈ T, let E(v) be the edges of Tv that are

incident with v, and let s(v) � |E(v)|. After sorting the edges
of E(v) in an arbitrary order, the lth edge is denoted by
e(v, l). If e(v, l) � (v, vl), then v is called as the farther far(vl)

of vl and vl is called as the lth son of v. Let son(v) be all sons
of v. For the subtree Tv, let Te(v,l) be the maximal connected
subtree that contains v but not any edge e(v, j) for j> l.
Particularly, Te(v,0) � v and Te(v,s(v)) � Tv.

For the subgraph GB,v, let GB,e(v,l) be the subgraph in-
duced by all vertices of Te(v,l) and all subcacti hanging from
it. For the subgraph GB,e(v,l), let V(e(v, l), k) be the con-
nected k-vertex set that contains v but not any vertex
vj ∈ son(v) for j> l. We define the sum of weighted dis-
tances of V(e(v, l), k) over GB,e(v,l) as follows.

Definition 1. Given a subgraph GB,e(v,l), the optimal value of
V(e(v, l), k) is defined as

f
∗
(V(e(v, l), k)) � min

V(e(v,l),k)⊆GB,e(v,l)

fGB,e(v,l)
(V(e(v, l), k)),

(6)

where 1≤ k≤min p, |GB,e(v,l)| . Let V∗(e(v, l), k) be the
corresponding set to f∗(V(e(v, l), k)).

Once we obtain all values f∗(V(e(v, s(v))), k) and
fGc

B,v
(v), the sum of weighted distances from vertices in GB,h

to V(GB,h, v, k) can be calculated as

FGB,h
V GB,h, v, k   � f

∗
(V(e(v, s(v)), k)) + fGc

B,v
(v). (7)

For the block Bh, we first deal with all vertices in leaf(T).
For each G-vertex v ∈ leaf(T), let

f
∗
(V(e(v, 0), 1)) � 0,

V
∗
(e(v, 0), 1) � v{ }.

(8)

For each hinge vertex v ∈ leaf(T), let

W GB,v  � W Gv( ,

f
∗
(V(e(v, 0), k)) � FGv

V Gv, v, k( ( ,

V
∗
(e(v, 0), k) � V Gv, v, k( .

(9)

3.1.1. 1e Calculation of f∗(V(e(v, l), k)) and V∗(e(v, l), k).
Suppose that, when the phase j begins, all values
f∗(V(e(v, s(v))), k) have been calculated for each vertex v

with level lev(v)≥ L′ − j + 1 in T. In the phase j, we search
for all vertices of level L′ − j. For each of these vertices v, we
first calculate all values f∗(e(v, s(v)), k) by the following
method, and then, go to the next vertex with level L′ − j. If v

is a G-vertex or v � h, we start by assigning

W GB,v  � w(v) + 
u∈son(v)

W GB,u ,

f
∗
(V(e(v, 0), 1)) � 

u∈son(v)

f
∗
(V(e(u, 0), 1)) + W GB,u l(v, u).

(10)

If v is a hinge such that v≠ h, we start by assigning

W GB,v  � W Gv(  + 
u∈son(v)

W GB,u ,

f
∗
(V(e(v, 0), 1)) � FGv

V Gv, v, 1( (  + 
u∈son(v)

f
∗
(V(e(u, 0), 1)) + W GB,u l(v, u).

(11)

Assuming that, for all l′ < l, the values f∗(V(e(v, l′), k))

have been calculated. )en, the value f∗(V(e(v, l), k)) can
be calculated as follows:

f
∗
(V(e(v, l), k)) � min min

1≤k′ ≤ k−1
f
∗

V e(v, l − 1), k′( (  + f
∗

V e vl, s vl( ( , k − k′( (  ,

f
∗
(V(e(v, l − 1), k)) + f

∗
V e vl, s vl( ( , 1( (  + W GB,vl

 l v, vl( .

(12)

For the right side of the above formula, the minimal
value of the set inside corresponds to the case
vl ∈ V∗(e(v, l), k), while the value behind corresponds to the
case vl ∉ V∗(e(v, l), k) (Figure 2).

If vl ∈ V∗(e(v, l), k), set

V
∗
(e(v, l), k) � V

∗
e(v, l − 1), k″( ∪V

∗
e vl, s vl( ( , k − k″( ,

(13)

where V∗(e(v, l − 1), k″) and V∗(e(vl, s(vl)), k − k″) are the
corresponding subsets to f∗(V(e(v, l − 1), k″)) and
f∗(V(e(vl, s(vl)), k − k″)), respectively. Otherwise, set
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V
∗
(e(v, l), k) � V

∗
(e(v, l − 1), k). (14)

Note that there are at most |V(T)|p values
f∗(V(e(v, l), k)) which can be calculated by traversing the
edges in T. Each calculation contains finding the minimum
in at most 2k terms.)en, all the values f∗(V(e(v, l), k)) can
be computed in O(|V(T)|p2) time.

3.1.2. 1e Calculation of fGc
B,v

(v). We start by assigning
fGc

B,h
(h) � 0. Suppose that, for all vertices v with level

lev(v)< j in T, all values fGc
B,v

(v) have been calculated when
the phase j begins. In the phase j, we traverse all vertices of
level j. For each of these vertex v, we set
W(Gc

B,v) � W(GB,h) − W(GB,v) and compute fGc
B,v

(v) as
follows:

fGc
B,v

(v) � fGc
B,far(v)

(far(v)) + f
∗
(V(e(far(v), s(far(v))), 1))

− f
∗
(V(e(v, s(v)), 1)) − W GB,v l(v, far(v))

+ W G
c
B,v l(v, far(v)).

(15)

After all values f∗(V(e(v, l), k)) have been calculated, all
values fGc

B,v
(v) can be calculated by traversing vertices in T

“downward.” )e total calculations take O(|V(T)|) time.
)en, all values FGB,h

(V(GB,h, v, k)) can be computed by
formula (7) in O(|V(T)|p2) time.

3.2. 1e Program CYCLE (B,h). In this subsection, we are
given a cycle Bh and the relevant subcactus GB,h; for all pairs
vi, vj  ⊂ Bh and all possible positive numbers k, our task is
to find all restricted connected k-medians
V(GB,h, vi, vj , k).

Denote by C the Bh. Assume that C v1 � h, v2, . . . , vt ,
and all vertices are indexed in clockwise. For each vertex vi in

C, let GB,v1
� v1 , where GB,vi

be the subgraph that contains
vi and all subcacti hanging from it, 2≤ i≤ s. For any pair
vi, vj ∈ V(C), i≤ j, let Cvi,vj

(Cco
vi,vj

) be the subgraph induced
by all vertices of the path from vi to vj in clockwise (counter-
clockwise) direction. Let GB,vi,vj

(Gco
B,vi,vj

) be the subgraph
induced by Cvi,vj

(Cco
vi,vj

) and all subcacti hanging from it, and
let Gc

B,vi,vj
� GB,v1 ,vt

− Gvi,vj
. )e calculation of

V(GB,h, vi, vj , k). Given a pair vi, vj and a integer k, denote
by V( vi, vj , k) the connected k-vertex set in GB,vi,vj

that
includes vi and vj. For each integer k,
1≤ k≤min p, |GB,,vi,vj

| , and the sum of the weighted dis-
tances of V( vi, vj , k) over GB,vi,vj

is defined as

f
∗
1 V vi, vj , k   � min

V vi,vj ,k( ⊆GB,vi ,vj

FGB,vi ,vj
V vi, vj , k  .

(16)

Let V∗( vi, vj , k) be the corresponding set to
f∗1(V( vi, vj , k)).

Suppose that the midpoint of the path Cvj,vi
lies in the

edge em(j,i). In particular, if the midpoint is a vertex, assume
it coincides with vm(j,i). By deleting em(j,i) from Gc

B,vi,vj
, we

obtain two subgraphs Gc,1
B,vi,vj

and Gc,2
B,vi,vj

, which contain
vm(j,i) and vm(j,i)+1, respectively. Next, we define

f
∗
2 V vi, vj , k   � 

u∈V Gc,1
B,vi ,vj

 

W GB,u d u, vj ,

f
∗
3 V vi, vj , k   � 

u∈V Gc,2
vi ,vj

 

W GB,u d u, vi( ,

(17)

to denote the partial sum of the weighted distances to vj and
vi, respectively.

Once all the values defined above have been computed,
we can calculate the sum of the weighted distances of
V(GB,h, vi, vj , k):

v

h

...

e (v, 1)

e (
v, 

2)

e (v, l − 1)

vl

e (v, l)
e (vl, tvl

)
e (vl , 2)

e (
v l,

 1
)

GB,e (v, l−1)
GB,vl

Figure 2: )e subgraphs GB,e(v,l−1) and GB,vl
of GB,v.
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FGB,h
V GB,h, vi, vj , k   � f

∗
1 V vi, vj , k   + f

∗
2 V vi, vj , k   + f

∗
3 V vi, vj , k  . (18)

We assign V(GB,h, vi, vj , k) � V∗( vi, vj , k).
Given a vertex vi of C. If vi is a C-vertex or vi � h, we start

by assigning

W GB,vi
  � w vi( ,

f
∗
1 V vi, vi , 1( (  � 0.

(19)

If vi is a hinge that is not equal to h, we start by assigning

W GB,vi
  � W Gvi

 ,

f
∗
1 V vi, vi , 1( (  � FGvi

V Gvi
, vi, 1  .

(20)

Since Cvi,vj
is a graft, for all j≥ i and possible numbers k,

the values f∗1(V( vi, vj , k)) can be calculated by running
GRAFT (B, h) on GB,vi,vj

. )e computation of the values

f∗1(V( vi, vj , k)) for all vertices vi and vj of C takes
O(|V(C)|2p2) time.

For the sake of simplicity, we only describe the calcu-
lation of f∗2(V( vi, vj , k)), while the values of
f∗3(V( vi, vj , k)) can be calculated in a similar way.

Note that, for all pair vi, vj  of C, the corresponding
middle edges can be found by the method similar as in [5] in
O(|V(C)|2) time. For each edge em � (vm, vm+1) of C, denote
by P(em) � vr1

, vl1
 , vr2

, vl2
 , . . . , vrt

, vlt
   all pairs of

vertices of C whose middle edge is em, where l1 ≥ l2 ≥ · · · ≥ lt.
Let V � vl1

, vl2
, . . . , vlt

 .
By traversing all vertices in V, for l1 ≥ lk ≥ lt, all values

f∗2(V( vrk
, vlk

 , k)) can be calculated by the following
formula:

f
∗
2 V vrk

, vlk
 , k   � f

∗
2 V vrk−1

, vlk−1
 , k   + W GB,vlk−1

,vm
 d vlk−1

, vlk
 

+ 

lk > j′ > lk−1

f
∗
1 V vj′ , vj′ , 1   + W GB,v

j′
 d vj′ , vlk

 ,
(21)

in O(|V(C)|) time. )us, the calculation of all values
f∗2(V( vi, vj , k)) takes O(|V(C)|2) time.

Last, the value W(GB,h) is reassigned as
W(GB,h) � vi∈Bh

W(GB,vi
), which can be computed in

O(|V(C)|) time. )en, all the values
FGB,h

(V(GB,h, vi, vj , k)) can be computed by formula (18)
in O(|V(C)|2p2) time.

3.3. 1e Program HINGE (Gh, h). In this subsection, we are
given a hinge h and the relevant subcactus Gh; for all possible
positive integers k, our task is to find the restricted con-
nected k-medians V(Gh, h, k).

Assume that h is a hinge of G. If h is the hinge of the
block Bi with a lower level in TG, then we call h as the farther
far(Bi) of Bi and Bi as the son of h. Let son(h) be all sons of h

and s(h) � |E(h)|. Let E(h) be all edges that incident with h.
By sorting all edges of E(h) in an arbitrary order, the lth edge
is denoted as e(h, l). For each subgraph Gh, denote by Ge(h,l)

the maximal connected subgraph that contains h and all
subcacti hanging from it but not any block Bj for j> l.
Particularly, Ge(h,0) � h and Ge(h,s(h)) � Gh (Figure 3).

For each subgraph Ge(h,l), denote by V(e(h, l), k) the
connected k-vertex set that contains h but not any vertex of
Bj ∈ son(h) for j> l. Next, we define the optimal value of
V(e(h, l), k) over Ge(h,l).

Definition 2. In subgraph Ge(h,l), define

f
∗
(V(e(h, l), k)) � min

V(e(h,l),k)⊆Ge(h,l)

fGe(h,l)
(V(e(h, l), k)),

(22)

where 1≤ k≤min p, |Ge(h,l)| . Let V∗(e(h, l), k) be the
corresponding set to f∗(V(e(h, l), k)).

Once we obtain the values f∗(e(h, s(h)), k), the sum of
weighted distances from vertices of Gh to V(Gh, h, k) can be
calculated as

FGh
V Gh, h, k( (  � f

∗
(e(h, s(h)), k). (23)

We assign V(Gh, h, k) � V∗(e(h, s(h)), k).
According to our assumption, we obtain

f
∗
(V(e(h, 0), 1)) � 

graftBi∈son(h)

FGBi,h
V GBi,h

, h, 1  

+ 
cycleBj∈son(h)

FGBj,h
V GBj,h, h, h{ }, 1  ,

(24)

and assign

V
∗
(e(h, 0), 1) � h{ }. (25)
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3.3.1. 1e Calculation of f∗(V(e(h, l), k)) and V∗(e(h, l), k).

Suppose that, when the phase j begins, the value
FGBi,h

(V(GBi,h
, h, 1)) or FGBi,h

(V(GBi,h
, h, h{ }, 1)) has been

calculated for each block Bi ∈ TG of level
lev(Bi)≥Lm − j + 1. In the phase j, we search all hinges of
level Lm − j. For each of these hinges h, we calculate all
values f∗(V(e(h, s(h))), k) by the following method, and
then, go to the next hinge with level Lm − j.

Assuming that, for all l′ < l, the values f∗(V(e(h, l′), k))

have been calculated. )en, the value f∗(V(e(h, l), k)) can
be calculated as follows:

f
∗
(V(e(h, l), k)) � min

1≤k′ ≤ k−1
f
∗

V e(h, l − 1), k′( (  + FGBl,h
V GBl,h

, h, k − k′   , (26)

if Bl is graft, otherwise,

f
∗
(V(e(h, l), k)) � min

1≤k′ ≤ k−1
f
∗

V e(h, l − 1), k′( (  + FGBl,h
V GBl,h

, h, h{ }, k − k′   . (27)

If Bl is graft, set

V
∗
(e(h, l), k) � V

∗
e(h, l − 1), k′( ∪V GBl,h

, h, k − k′ ,

(28)

otherwise, set

V
∗
(e(h, l), k) � V

∗
e(h, l − 1), k′( ∪V GBl,h

, h, h{ }, k − k′ ,

(29)

where V∗(e(h, l − 1), k′), V(GBl,h
, h, k − k′), and

V(GBl,h
, h, h{ }, k − k′) are the corresponding sets to

f∗(V(e(h, l − 1), k′)), FGBl,h
(V(GBl,h

, h, k − k′)), and
FGBl,h

(V(GBl,h
, h, h{ }, k − k′)), respectively.

)ere are at most |V(TG)|p values f∗(V(e(h, l), k))

which can be calculated by traversing the edges in TG. Each
calculation contains finding the minimum in at most 2k

terms. )en, all the values f∗(V(e(h, l), k)) can be com-
puted in O(|V(TG)|p2) time.

Last, W(Gh) is assigned as W(Gh) � Bi∈son(h)W

(GBi,h
) − w(h)(s(h) − 1), which takes constant time.

3.4. 1e Procedure HINGE (Gc
h, h). In this subsection, given

a hinge h and the relevant subcactus Gc
h, our task is to

calculate the sum of weighted distances from vertices in Gc
hs

to h and the total weights of Gc
h.

3.4.1. 1e Calculation of FGc
h
(h) and W(Gc

h). We start by
assigning W(Gc

B,h0
) � 0 and FGc

B,h0
(h0) � 0. Suppose that,

when the phase j begins, the value of FGc
h
(h) and W(Gc

h) has
been calculated for each hinge h ∈ TG with level lev(h)< j.
In the phase j, we search all hinges of level j. For each of
these hinges h, set

W G
c
h(  � W Gh0

  − W Gh( . (30)

Suppose that far(h) � B′ in TG and the hinge of B′ is h′
(Figure 3). )en, FGc

h
(h) can be computed as follows:

FGc
h
(h) � FGc

h′
h′(  + W G

c
h′( d h′, h(  + FG

B′ ,h′
V GB′ ,h′ , h, 1   − FGh

V Gh, h, 1( ( , (31)

Bh
′

h

h′

h

e (h, 1) e (h, s (h))

B1 Bl–1 Bl Bs (h)

··· ··· ···

Figure 3: )e local structure of Gh in TG.

Computational Intelligence and Neuroscience 7



if B′ is a graft, otherwise,

FGc
h
(h) � FGc

h′
h′(  + W G

c
h′( d h′, h(  + FG

B′ ,h′
V GB′ ,h′ , h, h{ }, 1   − FGh

V Gh, h, 1( ( . (32)

Note that all values FGc
h
(h) and W(Gc

h) can be calculated
by traversing all vertices of TG “downward.” )e total cal-
culations take O(|V(TG)|) time.

3.5. Algorithm for the CpMProblem. According to Lemma 1,
we can find a connected p median V∗p from V1 ∪V2 ∪V3.
)e sum of weighted distance from vertices ofG toX∗p can be
calculated as

FG V
∗
p  � min min

V GB,h,v,p( )∈V1

FGB,h
V GB,h, v, p   + FGc

h
(h) + W G

c
h( d(h, v) ,

⎧⎨

⎩

min
V GB,h, vi,vj ,p( ∈V2

FGB,h
V GB,h, vi, vj , p   + FGc

h
(h) + W G

c
h( min d h, vi( , d h, vj   ,

min
V Gh,h,p( )∈V3

FGh
V Gh, h, p( (  + FGc

h
(h) 

⎫⎬

⎭.

(33)

Next, we design Algorithm 1 to solve the CpM problem.
For a given cactus graph G, as a preprocessing of Algo-
rithm 1, first, the distance-matrix of the cactus will be
calculated. )en, we construct the rooted skeleton graph of
the cactus and calculate maximum level Lm. )is pre-
processing will be finished in O(n2) time.

Since there are at most O(n2) elements inV1 ∪V2 ∪V3,
the calculation of FG(V∗p) takesO(n2) time.)en, we can use
the following theorem to end this section.

Theorem 1. On the cactus graph with n vertices, the CpM
problem can be solved in O(n2p2) time.

Input: A cactus graph G, the corresponding rooted skeleton TG, and the maximum level Lm

Output: A connected p median V∗p and the sum of weighted distance to V∗p
(1) Set V1 � V2 � V3 � ∅
(2) for i � Lm; i≥ 0; i− do
(3) for vertex v ∈ TG with lev(v) � i do
(4) if v represents a graft B then
(5) Find the companion hinge of B in TG, assuming it to h, and calculate the level L′
(6) Call GRAFT (B, h) to calculate the values FGB,h

(V(GB,h, v, k)) and find V(GB,h, v, k) for v ∈ Bh of level j and all possible
integers k, and set V1 � V1 + V(GB,h, v, p) .

(7) end
(8) if v represent a cycle B then
(9) Find the companion hinge of B in TG, assuming it to h

(10) Call CYCLE (B, h) to calculate the values FGB,h
(V(GB,h, vi, vj , k)) and find V(GB,h, vi, vj , k) for vi, vj  ⊂ V(B) of i≤ j

and all possible integers k, and set V2 � V2 + V(GB,h, vi, vj , p) .
(11) end
(12) if v represents a hinge h then
(13) Call HINGE (Gh, h) to calculate the values FGh

(V(Gh, h, k)) and find V(Gh, h, k) for all possible integers k, and set
V3 � V3 + V(Gh, h, p) .

(14) end
(15) end
(16) end
(17) for i � 0; i≤Lm − 1; i + + do
(18) Call HINGE (Gc

h, h) to calculate the values FGc
h
(h) and W(Gc

h) for each hinge h of lev(h) � i

(19) end
(20) return use formula (33) to calculate FG(V∗p) and find a connected p-median X∗p.

ALGORITHM 1: An algorithm for the connected p-median problem of cactus graphs.
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4. Concluding Remarks

In this article, we consider the connected p-median problem
on cactus graph and design an algorithm with time com-
plexity O(n2p2) for it. In the following, it is meaningful to
consider the connected p-median problems on other classes
of graphs, such as planar graphs, interval graphs, and cir-
cular-arc graphs.
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