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Feature selection is the key step in the analysis of high-dimensional small sample data. ,e core of feature selection is to analyse
and quantify the correlation between features and class labels and the redundancy between features. However, most of the existing
feature selection algorithms only consider the classification contribution of individual features and ignore the influence of
interfeature redundancy and correlation. ,erefore, this paper proposes a feature selection algorithm for nonlinear dynamic
conditional relevance (NDCRFS) through the study and analysis of the existing feature selection algorithm ideas and method.
Firstly, redundancy and relevance between features and between features and class labels are discriminated by mutual infor-
mation, conditional mutual information, and interactive mutual information. Secondly, the selected features and candidate
features are dynamically weighted utilizing information gain factors. Finally, to evaluate the performance of this feature selection
algorithm, NDCRFS was validated against 6 other feature selection algorithms on three classifiers, using 12 different data sets, for
variability and classification metrics between the different algorithms. ,e experimental results show that the NDCRFS method
can improve the quality of the feature subsets and obtain better classification results.

1. Introduction

In the era of big data, the number of dimensions of small
sample data has increased dramatically, leading to di-
mensional disasters. In the preprocessing stage, irrelevant
and redundant features need to be processed using data
dimension reduction techniques. Because there are a lot of
irrelevant and redundant features in high-dimensional
data, these features not only lead to higher computational
complexity but also reduce the accuracy and efficiency of
classification methods. Feature selection [1–5] differs
from other data dimensionality reduction techniques
(e.g., feature extraction) [6] in that feature selection fo-
cuses on analysing the relevance and redundancy in high-
dimensional data, removing as many irrelevant and re-
dundant features as possible and retaining the relevant
original physical features. ,is approach not only im-
proves the data quality and classification performance but

also reduces the training time of the model and makes it
more interpretable [7–9].

Feature selection methods can be classified into three
types: filter methods [10, 11], wrapper methods [12], and
embedded methods [13]. Due to their high computational
efficiency and generality, filter methods are also easily ap-
plied to ultra-high-dimensional data sets. In this paper, the
filter feature selection method is used. ,e filter feature
selection methods can be classified into rough set [14],
statistics-based [15], and information-based [16] according
to different metrics. Among these criteria, information-
theoretic-based feature selection algorithms are currently
the most popular research direction for filter feature se-
lection algorithms. Usually, feature selection algorithms in
information theory are further divided into mutual infor-
mation metrics [17, 18], conditional mutual information
metrics [1, 19], interactive mutual information metrics
[20–22], and so on. ,ese methods then only determine
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whether the features are redundant and relevant under a
single condition, so the optimal feature subset cannot be
obtained. At the same time, the main differences between
feature extraction in deep learning and feature selection
algorithms based on information-theoretic filtering are
described in two ways: (1) from a business perspective,
feature selection algorithms can analyse features, whereas
feature extraction can only perform pattern mapping and
not correlation analysis and research; (2) from an efficiency
perspective, feature extraction requires higher computa-
tional resources and longer training time, whereas feature
selection only needs to be performed in a low-performance
server.

In a high-dimensional small sample environment, the
dynamic search for redundant and correlated features be-
tween features becomes a current problem to be solved in
response to the diversity and high dimensionality of the data.
,is paper proposes a feature selection algorithm for
nonlinear dynamic conditional relevance (NDCRFS). ,e
innovations and contributions of this paper are as follows:

(1) Firstly, the correlation between independent features
and class labels is calculated by mutual information.
Secondly, the correlation between the candidate
features and the selected features under the class
label is calculated using the conditional information.
Finally, the correlation and redundancy between
features are judged by the interaction information.
,is method solves the problem of how to measure
the relevance and redundancy between selected
features and candidate features.

(2) ,e interaction information is normalized by an
information gain factor to solve the dynamic balance
of interaction information values.

(3) Experimental comparison of 12 benchmark data sets
in k-nearest neighbour (KNN), decision tree (C4.5),
and support vector machine (SVM) classifiers
showed that the NDCRFS algorithm outperformed
other feature selection algorithms (Mutual Infor-
mation Maximization (MIM) [23], Interaction Gain-
Recursive Feature Elimination (IG-RFE) [24], In-
teraction Weight Feature Selection (IWFS) [21],
Conditional Mutual Information Maximization
(CMIM) [25], Dynamic Weighting-based Feature
Selection (DWFS) [26], and Conditional Infomax
Feature Extraction (CIFE) [23]). ,e experimental
results demonstrate that the proposed NDCRFS
algorithm is an effective criterion for classifying
feature subsets and can select the feature subsets with
good classification performance.

,e rest of the paper is organised as follows. In Section 2,
related work is presented. Section 3 discusses mutual in-
formation and conditional mutual information. In Section 4,
the development of filtered feature selection algorithms is
introduced and summarised and also a discussion is given on
how to define independent feature relevance and redun-
dancy, new categorical information relevance, and inter-
action feature dependency relevance and redundancy. In

Section 5, the process and details of the implementation of
the NDCRFS algorithm are described in detail. In Section
6, the effectiveness of the NDCRFS algorithm is validated
by conducting a comprehensive evaluation of 12 data sets
in ASU and UCI, while giving a related discussion. In
Section 7, the paper is summarised and the shortcomings
and future developments of the NDCRFS algorithm are
pointed out.

2. Mutual Information and Conditional
Mutual Information

Let X, Y, and Z be three discrete variables [27], where X �

x1, x2, . . . , xL , Y � y1, y2, . . . , yM}, Z � z1, z2, . . . , zN .
,erefore, the mutual information between X and Y is
defined as follows:

I(X; Y) � 
L

i�1


M

j�1
p xi, yi( log2

p xi, yi( 

p xi( p yi( 
. (1)

In the above equation, p(xi, yi) refers to the joint dis-
tribution, and p(xi) and p(yj) refer to the marginal
distribution.

Also, the conditional mutual information of X , Y, and Z

is defined as follows:

I(X; Y|Z) � 
N

t�1
p zt(  

L
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M
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p xi, yi|zt(  × log2

p xi, yi|zt( 

p xi|zt( p yi|zt( 
.

(2)

3. Related Work

A large number of feature selection algorithms have been
proposed for filters, which mainly use forward search to find
the optimal subset of features by evaluating the relevance
between features and class labels and the redundancy be-
tween features using their respective evaluation criteria. Let
F be the original set of features and let S be the best feature
subset S ⊂ F, J(·) represents the assessment criteria, fk

indicates candidate features, and fselect indicates a selected
feature, fk ∈ F, fk ∉ S, fselect ∈ S.

Lewis et al. proposed the MIM algorithm, which focuses
on selecting the k most relevant features from F using the
relevance of the features to the class labels. In the MIM
algorithm, it is evaluated by the following criteria:

JMIM fk(  � I fk; C( . (3)

,erefore, Lin et al. studied the limitations of the MIM
algorithm and proposed CIFE algorithm, in which it is
evaluated with the following criteria:

JCIFE fk(  � I C; fk(  − 
fselect∈S

I C; fselect; fk( ,

� I C; fk(  − 
fselect∈S

I fk; fselect(  − I fk; fselect|C(  .

(4)
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In JCIFE, in addition to measuring redundancy I(fk; fi)

between features, it is proposed to measure redundancy
within class labels I(fk; fi|C) .

Yang et al. [28] proposed the Joint Mutual Information
(JMI) algorithm, which is evaluated with the following
criteria:

JJMI fk(  � I C; fk(  −
1

|S|


fselect∈S
I C; fselect; fk( ,

� I C; fk(  −
1

|S|


fselect∈S
I fk; fselect(  − I fk; fselect|C(  ,

(5)

where JJIM(fk) has only one additional weighting factor
1/|S| over JCIFE and |S| represents the optimal number of
feature subsets.

Fleuret et al. proposed CMIM algorithm according to the
maximum-minimum criterion, which is evaluated as
follows:

JCMIM fk(  � I fk; C(  − maxfselect∈S I fk; fselect( (

− I fk; fselect|C( .
(6)

,e difference between JCMIM(fk) and JCIFE(fk) is that
JCMIM(fk) uses a nonlinear cumulative summation stan-
dard, while JCIFE(fk) uses a linear cumulative summation
standard.

Sun et al. considered nonlinear criteria with low com-
putational cost and therefore proposed DWFS, in which the
DWFS algorithm is evaluated as follows:

WDWFS fk(  � WDWFS fk( 

× 2 ×
I fk; C|fselect(  − I fk; C( 

H fk(  + H(C)
+ 1 ,

(7)

where, in the WDWFS(fk) standard, I(fk; C|fselect)>
I(fk; C) means relevant and I(fk; C|fselect)< I(fk; C)

means redundant.
Hu et al. [29] proposed the Dynamic Relevance and

Joint Mutual Information Maximization (DRJMIM) al-
gorithm based on the DWFS algorithm and the JMIM
algorithm, which mainly addresses the definition of fea-
ture relevance, that is, how to distinguish between the
relevance of candidate features and the relevance of se-
lected features. ,e evaluation criteria of this algorithm
are as follows:

JDRJMIM fk(  � minfselect∈S I fk; fselect; C( (  × I fk; C( (

+ C Ratio fk, fselect(  × I fselect; C( .

(8)

In the above equation, C Ratio(fk, fselect) � 2 × (I

(fk, C|fselect) − I(fk, C)/H(fk) + H(C)).
Xiao et al. [30] believed that the use of redundancy

between features can further improve the accuracy of the
classification algorithm. Based on this, the DynamicWeights
Using Redundancy (DWUR) algorithm was proposed.
Evaluation criteria of the algorithm are as follows:

WDWUR fk(  � WDWUR fk(  × I fk; C( (

+ C Ratio fk, fselect(  × I fselect; C( .
(9)

In the above equation, WDWUR(fk) has one more (1 −

β × I(fk; fselect)) item than WDWFS(fk).
In summary, the analysis of equations (3) to (9) shows

that the existing feature selection algorithms all have some of
the following problems: (1) Redundant features and irrel-
evant features are not completely eliminated. (2) Interde-
pendent features are often removed as redundant features
because they are highly correlated with each other. ,ese
algorithms ignore judgements about the relevance and re-
dundancy of interdependent features. (3) ,e dependency
relevance and redundancy of interaction features can be
judged by conditional mutual information and mutual in-
formation differences. ,erefore, the study of better feature
selection criteria is an urgent problem to be solved.

4. Evaluation Basis for Feature Selection

Bennasar et al. [31] argued that a feature f is considered
useful if it is related to the class label C ; otherwise, feature f

is considered useless. ,is assumption only considers fea-
tures to be completely independent of each other. In reality,
feature f and label C correlations vary with the addition of
different features, and it can be concluded that there are
interdependencies between features and that feature f and
class label C correlations and redundancies change dy-
namically with each other. In this section, the relevance and
redundancy of independent and dependent features will be
analysed and discussed. Let fj ∈ F − S, fi ∈ F − S, fi ≠fj.

4.1. Independent FeatureRelevance andRedundancyAnalysis.
Mutual information I(fi; C) is often used to assess the
correlation between feature fi and the class label C. ,e
stronger the correlation between feature fi and the class
label C is, the closer the I(fi; C) value is to 1; conversely, the
weaker the correlation is, the closer the value is to 0. If
I(fi; C)> I(fj; C), then the correlation between feature fi

and the class label C is stronger than the correlation between
feature fj and the class label C. If I(fi; C)< I(fj; C), then
the correlation between feature fi and the class label C is
weaker than the correlation between feature fj and the class
label C.

,e mutual information I(fi; fj) is often used to assess
the correlation between feature fi and feature fj. If the
correlation between fi and fj is high, then the redundancy
between features is strong; conversely, the redundancy is
weak. When I(fi; fj) � 0, the features fi and fj are in-
dependent of each other. When I(fi; fj) � 1, it means that
feature fi and feature fj are redundant, and then it means
that feature fi or fj is deleted.

4.2. Relevance Analysis of New Classification Information.
If I(fi; C|fselect)> 0, it means that the candidate feature fi

can provide more classification information. If
I(fi; C|fselect) � 0, it means that the candidate feature fi
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cannot provide any useful classification information and the
features fi and fselect are independent of each other.

If I(fi; C|fselect)> I(fj; C|fselect), it means that feature
fi provides more classification information than feature fj.

4.3. Relevance and Redundancy of Interaction Feature
Dependencies. According to the literature [6, 18, 29], if
I(fi; fselect|C)> I(fselect; C) relevance of the selected feature
fselect to the class label C is becoming stronger after the
candidate feature fi is added, it indicates that the candidate
feature fi can provide more classification information.

If I(fi; fselect|C)< I(fselect|C), the correlation between
the selected feature fselect and the class label C is weakening
after the candidate feature fi is added, indicating that the
candidate feature fi and the selected feature fselect are re-
dundant with each other.

5. NDCRFS Algorithm Description and
Pseudocode Implementation

,e feature selection algorithm seeks to search for sets of
features that are closely related to class labels. To more
accurately measure the relevance of features to class labels,
the NDCRFS algorithm measures the relevance and re-
dundancy of features in three ways:

(1) I(fk; C) to measure the relevance of feature fk to
class label C

(2) I(fk; fselect|C) to measure the relevance of feature
fk to the selected feature fselect under class label C

(3) I(fk; fselect|C) − I(fselect; C) measuring the inter-
action correlation and redundancy between fk and
fselect under the class label C

,erefore, for the evaluation criteria for the NDCRFS
algorithm, the specific formula is as follows:

JNDCRFS fk(  � I fk; C(  − maxfselect∈SCU fselect, fk( 

× I fk; fselect|C(  − I fselect; C(  .
(10)

In the above formula, CU(fselect, fk) � 2/H(fselect|C) +

H(fk|C), CU(fselect, fk) is used as an information gain
factor to normalize I(fk; fselectC) − I(fselect; C).fk indi-
cates candidate features and fselect indicates a selected
feature, fk ∈ F, fk ∉ S, fselect ∈ S.

From equation (10), in the NDCRFS algorithm, it firstly
selects the minimum redundant features from JNDCRFS(fk)

based on the correlation analysis between the selected fea-
tures fselect and the candidate features fk; secondly, it selects
the most relevant features to the optimal feature subset S by
iteration, and its pseudocode is as follows.

From Algorithm 1, line 1 initializes set S and counters k.
In lines 2 to 7, the mutual information of each feature in the
set F is calculated. In lines 8 to 10, at the same time, the
selected optimal feature fk is removed from set F, and
feature fk is added to set S. At this time, the candidate
feature fk becomes the selected feature fselect. In lines 11 to
18, the values of I(fk; C|fselect), I(fk; fselect|C), and
I(fselect; C) are calculated.

,e NDCRFS algorithm consists of 2 “for” loops and 1
“while” loop. ,erefore, the time complexity of the NDCRFS
algorithm is O(Tmn) (T represents the number of selected
features, n represents the number of all features, and m

represents the number of all samples, where T≪ n). ,e
complexity of theNDCRFS algorithm is higher than that of the
MIM algorithm, IWFS algorithm, CMIM algorithm, DWFS
algorithm, and CIFE algorithm, but the NDCRFS algorithm is
lower than the IG-RFE algorithm, mainly because the
NDCRFS algorithm also needs to calculate CU(fselect,

fk), I(fk; fselect|C) − I(fselect; C), I(fk; C|fselect).

6. Experiments and Results

6.1. Introduction to the Data Set. In order to verify the ef-
fectiveness of the NDCRFS algorithm, a total of 12 data sets
were used in the experiments. ,e experimental data sets
were selected from the internationally renowned UCI [3]
and ASU [14] general data sets, which are described in detail
in Table 1. From Table 1, we know that the sample range is
from 60 to 7494, the feature range is from 16 to 19 993, and
the classification label range is from 2 to 20. ,e experi-
mental data sets involve biomedical (Lymphography, Der-
matology, Lung Cardiotocography, Lymphoma, Nci9, SMK-
CAN-187, and Carcinom), face image data (COIL20 and
Pixraw10P), and text data (PCMAC and Pendigits).

6.2. Experimental Environment Setup. NDCRFS was com-
pared with six feature selection algorithms, MIM, IG-RFE,
IWFS, CMIM, DWFS, and CIFE, to verify its effectiveness.
,e experiments were conducted using KNN, SVM, and
C4.5, respectively, on the same feature subsets. ,e number
of feature subsets was set as (K); for example, K� 10 for
Lymphography and Pendigits and K � 30 for the rest of the
settings. ,e experimental environment for this paper was
an Intel-i7 processor with 8GB RAM, and the simulation
software was Python 2.7. A 5-fold cross-validation method
was used in the experiments to obtain the average classifi-
cation accuracy of the current classifier for that feature
selection algorithm’s average classification accuracy. In the
experiment, the incomplete samples are deleted, and, at the
same time, according to Kuarga [32], the class attribute
dependence maximization method is used to discretize
continuous data.

6.3. Discussion and Analysis of Experimental Results

6.3.1. Comparison of Algorithm Variability. ,is paper
proposes a method to measure the difference between two
selected feature subsets using the Jaccard method. Among
them, S1 ⊂ F, S2 ⊂ F, S1 ≠ S2.S1 represents the feature subset
selected by the NDCRFS algorithm, and S2 represents the
feature subset selected by other feature selection algorithms.
,e specific formula (11) is as follows:

Jaccard S1, S2(  �
S1 ∩ S2




S1 ∪ S2



. (11)
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As can be seen in Table 2, the mean values of the dif-
ference between NDCRFS and MIM, NDCRFS and IG-RFE,
NDCRFS and IWFS, NDCRFS and CMIM, NDCRFS and
DWFS, and NDCRFS and CIFE are 0.355, 0.389, 0.261,
0.222, 0.286, and 0.166, respectively, indicating that the
difference between features is not considered. When sorting
the relationship, the NDCRFS algorithm is significantly
different from the other feature selection algorithms.

6.4. Comparison of Classification Accuracy. Tables 3 to 5
show the average classification accuracy on the 12 data sets
using KNN, C4.5, and SVM. Bold represents the highest
accuracy value in the feature selection algorithm for that
data set. Tables 3–5 show that the NDCRFS algorithm had
the highest average classification accuracy of 88.734%,

81.574%, and 79.213%, respectively. “Wins/Ties/Losses”
describes the number of wins/ties/losses between NDCRFS
and MIM, IG-RFE, IWFS, CMIM, DWFS, and CIFE.

From Table 3, it is clear that the NDCRFS algorithm
outperforms the MIM, IG-RFE, IWFS, CMIM, DWFS, and
CIFE algorithms in most data sets by 12, 12, 12, 12, 12, and
12, respectively. In Figure 1(a), the classification accuracy of
the NDCRFS algorithm is the highest compared to the six
classification algorithms (97.769%, the required number of
features is 23), which is 5.605%, 5.605%, 9.257%, 6.979%,
1.089%, and 10.63% higher, respectively. In Figure 1(b), the
classification accuracy of the NDCRFS algorithm is the
highest compared to the six classification algorithms
(98.589%, the number of required features is 5), which is
0.188%, 0.188%, 0.188%, 0.188%, 0.0%, and 0.188% higher,

(1) Input: Original feature set F � f1, f2, . . . , fn ; Class label set C; ,reshold K

(2) Output: Optimal feature subset S

(3) initialization: S � ϕ, k � 0;
(4) for k≤ n do
(5) Calculate the mutual information value of each feature and label I(fk; C);
(6) if I(fk; C)≤ 0 then
(7) remove fk from F and continue;
(8) end
(9) end
(10) JNDCRFS(k) � argmax(I(fk; C));
(11) F⟵F\ fk ;
(12) S⟵ fk ;
(13) while k≤K do
(14) calculate the value of I(fk; C|fselect);
(15) if I(fk; C|fselect)> 0 then
(16) calculate the value of I(fk; fselect|C);
(17) calculate the value of I(fselect; C);
(18) Update JNDCRFS(fk) using equation (10);
(19) find the candidate feature fk with the largest JNDCRFS;
(20) end
(21) F⟵F\ fk ;
(22) S⟵ fk 

(23) k � k + 1;
(24) end

ALGORITHM 1:NDCRFS algorithm.

Table 1: Experimental data set description.

No. Data set Samples Features Categories Data
sources

1 Lymphography 148 18 8 UCI
2 Dermatology 358 34 6 UCI
3 Cardiotocography 2126 41 3 UCI
4 Pendigits 7494 16 10 UCI
5 Lung 203 3312 5 ASU
6 Carcinom 174 9182 11 ASU
7 Nci9 60 9712 9 ASU
8 PCMAC 1943 3289 2 ASU
9 Pixraw10P 100 10,000 10 ASU
10 SMK-CAN-187 187 19,993 2 ASU
11 Lymphoma 96 4026 9 ASU
12 COIL20 1440 1024 20 ASU

Table 2: ,e difference between NDCRFS and the comparison
algorithms.

No. MIM IG-RFE IWFS CMIM DWFS CIFE
1 0.667 0.818 0.333 0.333 0.429 0.176
2 0.935 0.935 0.765 0.765 0.818 0.765
3 0.538 0.579 0.5 0.463 0.5 0.5
4 0.818 0.818 0.333 0.333 0.25 0.25
5 0.017 0.017 0.017 0.0 0.132 0.0
6 0.0 0.017 0.017 0.0 0.034 0.091
7 0.579 0.622 0.053 0.224 0.017 0.034
8 0.429 0.5 0.224 0.395 0.25 0.091
9 0.034 0.017 0.017 0.017 0.091 0.017
10 0.091 0.017 0.818 0.0 0.765 0.0
11 0.132 0.132 0.034 0.132 0.071 0.071
12 0.017 0.2 0.017 0.0 0.071 0.0
Average 0.355 0.389 0.261 0.222 0.286 0.166
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respectively. In Figure 1(c), the classification accuracy of the
NDCRFS algorithm is the highest compared to the six
classification algorithms (76.69%, the required number of
features is 28), which is 1.25%, 2.678%, 7.666%, 0.571%,
28.261%, and 19.44% higher, respectively. In Figure 1(d), the

classification accuracy of the NDCRFS algorithm is the
highest compared to the six classification algorithms
(70.014%, the number of required features is 15), which is
1.621%, 1.01%, 0.014%, 4.267%, 1.593%, and 11.138% higher,
respectively.

Table 3: Average classification accuracy (%) of KNN classifier.

Data set NDCRFS MIM IG-RFE IWFS CMIM DWFS CIFE
Lymphography 38.3 34.78 35.59 35.59 34.88 35.28 34.78
Dermatology 97.769 92.164 92.164 88.512 90.79 96.68 87.139
Cardiotocography 98.589 98.401 98.401 98.401 98.401 98.589 98.401
Pendigits 97.919 97.145 97.145 97.238 97.505 98.159 97.625
Lung 88.636 88.064 83.712 76.391 81.678 87.681 74.922
Carcinom 85.48 68.037 32.255 60.035 65.84 67.026 31.952
Nci9 76.69 75.44 74.012 69.024 76.119 48.429 57.25
PCMAC 87.648 85.538 86.155 82.348 84.765 85.743 78.952
Pixraw10P 93.0 88.0 91.0 88.0 92.0 88.0 92.0
SMK-CAN-187 70.014 68.393 69.004 70.0 65.747 68.421 58.876
Lymphoma 95.667 84.722 84.75 69.806 90.083 72.056 82.833
COIL20 84.662 80.733 79.743 71.667 77.114 72.024 60.652
Average accuracy rate 88.734 84.24 76.994 75.584 83.64 76.507 71.28

Wins/Ties/Losses 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0
,e “Average” column gives the average accuracy value of the feature selection algorithm over all datasets. Bold represents the highest average classification
prediction under this dataset.

Table 4: Average classification accuracy (%) of C4.5 classifier.

Data set NDCRFS MIM IG-RFE IWFS CMIM DWFS CIFE
Lymphography 43.935 41.893 41.473 41.347 42.322 43.002 42.322
Dermatology 95.021 94.434 94.149 94.187 95.021 93.337 94.727
Cardiotocography 98.401 98.401 98.401 98.401 98.401 98.401 98.401
Pendigits 94.569 94.343 94.196 93.782 93.768 94.222 93.675
Lung 87.774 79.918 85.113 75.964 83.842 84.157 77.236
Carcinom 70.604 54.586 25.79 48.292 56.822 53.999 24.3
Nci9 69.929 61.012 65.095 60.667 71.083 57.929 60.226
PCMAC 87.906 86.464 86.515 82.502 85.897 86.669 80.805
Pixraw10P 99.0 97.0 96.0 92.0 95.0 92.0 95.0
SMK-CAN-187 64.125 62.006 61.494 63.656 62.077 65.747 57.852
Lymphoma 87.75 79.75 80.0 69.528 82.806 69.417 86.917
COIL20 79.876 67.614 72.762 63.186 62.895 70.629 58.295
Average accuracy rate 81.574 76.452 75.082 73.626 77.495 75.792 72.48

Wins/Ties/Losses 11/1/0 11/1/0 11/1/0 10/1/1 10/1/1 11/1/0

Table 5: Average classification accuracy (%) of SVM classifier.

Data set NDCRFS MIM IG-RFE IWFS CMIM DWFS CIFE
Lymphography 45.147 42.499 43.329 41.45 42.825 43.329 42.825
Dermatology 98.317 93.777 93.824 93.283 94.079 97.761 93.53
Cardiotocography 98.448 98.401 98.401 98.401 98.401 98.401 98.401
Pendigits 63.331 63.331 63.331 55.35 59.741 56.979 57.219
Lung 84.788 77.89 78.391 77.891 86.203 85.311 77.402
Carcinom 87.964 50.998 25.028 50.447 51.545 55.773 20.915
Nci9 76.512 78.119 76.69 62.595 74.429 57.929 58.821
PCMAC 85.589 85.588 85.486 82.194 85.333 85.382 80.394
Pixraw10P 92.0 91.0 91.0 91.0 91.0 91.0 91.0
SMK-CAN-187 70.982 70.569 62.532 71.593 65.32 71.053 57.255
Lymphoma 85.5 81.278 79.611 67.056 81.972 72.194 86.194
COIL20 68.352 63.886 62.067 52.824 55.933 48.638 40.905
Average accuracy rate 79.213 73.363 71.641 70.226 73.898 71.979 65.333

Wins/Ties/Losses 10/1/1 12/0/0 12/0/0 11/0/1 10/0/2 11/0/1
,e “Average” column gives the average accuracy value of the feature selection algorithm over all datasets. Bold represents the highest average classification
prediction under this dataset.
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From Table 4, the NDCRFS algorithm is superior to the
MIM, IG-RFE, IWFS, CMIM, DWFS, and CIFE algorithms
in the majority of data sets, with 11, 11, 11, 10, 10, and 11,
respectively. In Figure 2(a), the classification accuracy of the
NDCRFS algorithm is the highest compared to the six
classification algorithms (43.935%, the required number of
features is 7), which is 2.042%, 2.462%, 2.588%, 1.613%,
0.933%, and 1.613% higher, respectively. In Figure 2(b), the
classification accuracy of the NDCRFS algorithm is the
highest compared to the six classification algorithms
(94.569%, the number of required features is 10), which is
0.226%, 0.373%, 0.787%, 0.801%, 0.347%, and 0.894%
higher, respectively. In Figure 2(c), the classification accu-
racy of the NDCRFS algorithm is the highest compared to
the six classification algorithms (87.774%, the required
number of features is 30), which is 7.856%, 2.661%, 11.81%,
3.932%, 3.617%, and 10.538% higher, respectively. In
Figure 2(d), the classification accuracy of the NDCRFS al-
gorithm is the highest compared to the six classification
algorithms (87.75%, the required number of features is 4),
which is 8.0%, 7.75%, 18.222%, 4.944%, 18.333%, and
0.833% higher, respectively.

From Table 5, the NDCRFS algorithm is superior to the
MIM, IG-RFE, IWFS, CMIM, DWFS, and CIFE algorithms
in the majority of data sets, with 10, 12, 12, 11, 10, and 11,
respectively. In Figure 3(a), the classification accuracy of the
NDCRFS algorithm is the highest compared to the six

classification algorithms (87.964%, the number of required
features is 28), which is 36.966%, 62.936%, 37.517%,
36.419%, 32.191%, and 67.049% higher, respectively. In
Figure 3(b), the classification accuracy of the NDCRFS al-
gorithm is the highest compared to the six classification
algorithms (85.589% with 20 required features), which is
0.001%, 0.102%, 3.394%, 0.255%, 0.206%, and 5.194% higher,
respectively. In Figure 3(c), the classification accuracy of the
NDCRFS algorithm is the highest compared to the six
classification algorithms (92%, the number of required
features is 5), which is 1%, 1%, 1%, 1%, 1%, and 1% higher,
respectively. In Figure 3(d), the classification accuracy of the
NDCRFS algorithm is the highest compared to the six
classification algorithms (68.352%, the number of features
required is 24), which is 4.466%, 6.285%, 15.528%, 12.419%,
19.714%, and 27.447% higher, respectively.

6.5. Runtime Analysis of the Algorithm. Calculating the
running time of feature selection algorithms is also one of
the criteria to measure the importance of feature selection
algorithms. Now, the running times of the NDCRFS algo-
rithm, the MIM algorithm, the IG-RFE algorithm, the IWFS
algorithm, the CMIM algorithm, the DWFS algorithm, and
the CIFE algorithm are compared. In Table 6, these feature
selection algorithms are the final runtimes derived from the
feature ranking of all features of the 12 data sets. ,e
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Figure 1: Comparison of accuracy in KNN classifier.
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Figure 2: Comparison of accuracy in C4.5 classifier.
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Figure 3: Comparison of accuracy in SVM classifier.
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NDCRFS algorithm’s runtimes are well within acceptable
limits.

,e results of the 5-fold cross-validation experiments on
the ASU and UCI data sets show that the proposed NDCRFS
algorithm is able to select a subset of features with better
classification performance, which can further improve the
discrimination ability of the data set under data dimen-
sionality compression.

7. Conclusion

Feature selection is an important tool for the data pre-
processing phase in high-level small sample data. ,e main
objective of feature selection is to select the optimal subset of
features and should have a high classification accuracy.
,erefore, in this paper, a nonlinear dynamic conditional
correlation feature selection algorithm is proposed. ,e al-
gorithm first uses mutual information, conditional mutual
information, and interactive mutual information to deter-
mine and identify the relevance and redundancy of inde-
pendent features and dependent features. Secondly, the “max-
min” principle is used to eliminate redundant and irrelevant
features from the original feature set iteratively. Finally, the
effectiveness of this algorithm is verified through experiments,
which demonstrate that the NDCRFS algorithm significantly
outperforms feature selection algorithms MIM, IG-RFE,
IWFS, CMIM, DWFS, and CIFE in most of the data sets.

However, the NDCRFS algorithm also has an unsatis-
factory selection of feature subsets on some data sets. In the
future, it will be necessary to optimize the NDCRFS, while
verifying the proposed method in research fields.
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