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In this article, a singularity-free terminal sliding mode (SFTSM) control scheme based on the radial basis function neural network
(RBFNN) is proposed for the quadrotor unmanned aerial vehicles (QUAVs) under the presence of inertia uncertainties and
external disturbances. Firstly, a singularity-free terminal sliding mode surface (SFTSMS) is constructed to achieve the finite-time
convergence without any piecewise continuous function. *en, the adaptive finite-time control is designed with an auxiliary
function to avoid the singularity in the error-related inverse matrix. Moreover, the RBFNN and extended state observer (ESO) are
introduced to estimate the unknown disturbances, respectively, such that prior knowledge on system model uncertainties is not
required for designing attitude controllers. Finally, the attitude and angular velocity errors are finite-time uniformly ultimately
bounded (FTUUB), and numerical simulations illustrated the satisfactory performance of the designed control scheme.

1. Introduction

Due to the advantages of a large range of applications of
QUAVs, the attitude control of QUAVs has received ex-
tensive attention in many fields. Designing a suitable control
law according to the type of flight mission is important for
the study of QUAVs attitude control [1]. However, the
control scheme proposed in [1] only achieves the asymptotic
convergence of the attitude or tracking error, which means
that the system states converge to zero within an infinite
time. In practical applications, the controller design needs
specific requirements for convergence speed and control
accuracy. *us, finite-time control (FTC) methods have
been proposed to deal with the control problems of different
nonlinear systems [2–4]. In [2], a parameter update law was
constructed to compensate for parameter uncertainty, and
an adaptive sliding mode control (SMC) scheme was con-
structed to ensure the finite-time convergence of the
tracking error of QUAV. In [3], combining integral back-
stepping technology and terminal SMC, a FTC method was

designed to guarantee the position and attitude tracking
stability of QUAVs, such that the system states are semi-
global practical FTUUB. In [4], a FTC scheme was proposed
to guarantee the finite-time convergence of position and
attitude states in the QUAV tracking error system.

To solve the dependence of the FTC on a nonlinear
system model, multiple control methods have the capability
to approximate nonlinear functions, which is used to im-
plement the estimation task of the nonlinear system, i.e.,
adaptive control [5] and optimal control [6]. In the past
years, a method called RBFNN has been widely introduced
to approximate the dynamic parameters of nonlinear sys-
tems, such that no prior knowledge of model information is
required in [7, 8]. In [7], a RBFNN method was devolved to
estimate the unknown model uncertainties of robot ma-
nipulators. In [8], a RBFNN-based SMC scheme was pre-
sented to guarantee the asymptotic convergence of the
system states under the model uncertainties. Compared with
other estimation methods [5, 6], RBFNN has faster con-
vergence speed and local approximation capability to avoid
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local minima problems. *us, RBFNN is more suitable for
real-time control, such as QUAV attitude control.

Moreover, for complex coupled systems, extended state
observer (ESO) as an alternative approach to solve the
bounded disturbances is used to decouple the system by
treating the coupling terms as a part of the lumped un-
certainties. Due to its satisfactory disturbance estimation,
ESO-based controllers are widely applied in different
practical nonlinear systems, such as rigid spacecrafts [9] and
robot manipulators [10]. In [9], a SMC based on back-
stepping and ESO methods was used to achieve a faster
convergence in the rigid spacecraft attitude control system.
In [10], an FTC with the model-assisted ESO was used to
compensate the bounded uncertainties and guarantee the
finite-time convergence of the system states. Although
RBFNN and ESO have been successfully applied to a variety
of uncertain nonlinear systems [7–10], it is less used in
QUAVs.

Inspired by the above discussions, an RBFNN-based
finite-time adaptive attitude tracking controller is designed
for the attitude tracking problem of QUAVs with inertial
uncertainty and unknown external disturbances, and the
main contributions are summarized in the following:

(i) Instead of employing any piecewise continuous
functions, a SFTSMS is proposed to avoid the
singularity directly in the differential of the sliding
variable

(ii) An auxiliary function is designed to handle a po-
tential singularity resulted from the use of the error-
related inverse matrix in the attitude controller
design

(iii) By employing RBFNN and ESO to estimate the
unknown dynamics, prior knowledge on system
model uncertainties is not required in the controller
design, and the tracking errors are FTUUB by the
proposed control law

*e structure of this article is given as follows. *e at-
titude model and necessary preliminaries are given in
Section 2. Section 3 shows the detailed design process of
SFTSMS. Controller design and rigorous theoretical proofs
are depicted in Sections 4 and 5, respectively. Section 6
shows the effective simulations, and the conclusion is given
in Section 7.

2. Model Description and Preliminaries

2.1. Quadrotor Attitude Dynamics. As depicted in Figure 1,
the dynamics of the QUAV is represented as follows [11]:
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and the dynamics model is expressed as

J _ω � − ω×
Jω + u + d, (4)

where ω ∈ R3×1 denotes the angular velocity, J ∈ R3×3 is a
positive definite inertia matrix, u � [u1, u2, u3]

T ∈ R3×1

represents the generalized control torque produced by ro-
tating propellers, and d � [d1, d2, d3]

T ∈ R3×1 denotes the
unknown but bounded continuous external disturbances.

Defining J � J0 + ΔJ, (4) is expressed as

J0 _ω � − ω×
J0ω − ω×ΔJω − ΔJ _ω + u + d, (5)

where J0 and ΔJ are denoted as the nominal and the un-
known inertia matrix, respectively.

*e angular velocity tracking error is
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, (6)

where ωr is given by
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From (5)–(7), the tracking error model is expressed as

Pitch
(θ)

Fr

Fb

τr

τI

τf

FI

Ff

τb

Z
Yaw(⫛)

Roll (ϕ)

LRIGHT

FRONT

BACK

LEFT

Y

X

Figure 1: *e schematic of quadrotor UAVs.
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_eq � eω,

_eω � − J
− 1
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0 ΔJ _ω + J

− 1
0 u + J

− 1
0 d − _ωr

.

(8)

Remark 1. Unit quaternion is able to represent the attitude
uniquely because the equilibrium states correspond to a
unique physical equilibrium orientation [12] in the QUAV.

2.2. RBFNN. In practical systems, neural networks (NNs)
are online estimation techniques for unknown nonlinear
uncertainties. Due to the approximation characteristics and
faster learning convergence, RBFNN is widely used in the
estimation of nonlinear functions in the field of control. *is
section will introduce the structure of RBFNN.

RBFNN consists of three parts: input layer, output layer,
and hidden layer. As shown in Figure 2, x ∈ [x1, x2, . . . , xn]T

is the neural network input vector, W ∈ [W1, W2, . . . , Wm]T

is the weight of the mth network node, y represents the
output vector, and ϕ(x) � [ϕ1, ϕ2, . . . , ϕm]T is the basis
function, which can approximate nonlinear uncertainties
with high precision through the linear combination of
Gaussian functions, which is given by the following [7]:

ϕk(x) � exp
− x − μk( 

T
x − μk( 

a
2
k

 , k � 1, 2, . . . , m,

(9)

where μk is the center of the RBF and ak means the scaling
parameter of the network node m.

*us, the output vector y is expressed as

y � 
m

k�1
Wkϕk. (10)

Considering that RBFNN has good nonlinear approxi-
mation ability [13], the approximate system model of the
nonlinear function F is

F(x) � W
Tϕ(x) + ε, (11)

where ε represents the estimation error.

2.3. Useful Lemmas

Lemma 1 (see [14]). For Λ1 > 0, Λ2 > 0, and 0< ι< 1, a
Lyapunov condition of finite-time stability is expressed as
_V(x) + Λ1V(x) + Λ2Vι(x)≤ 0, where the settling time sat-
isfies T0 ≤ (1/Λ1(1 − ι))ln(Λ1V1− ι(x0) + Λ2/Λ2), where
V(x0) represents the initial state of V(x).

Lemma 2 (see [15]). Given a1, a2, . . . , an > 0 and p> 0, the
following relationships hold:
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(12)

Lemma 3 (see [16]). Given a continuous function f(x) �

xι − ιx with 1≤ ι≤ 2, for any x> 0, there exists the following
inequality:

x
ι

ι
≥x +

1 − ι
ι

. (13)

3. SFTSMS and Auxiliary Function Design

3.1. SFTSMS. A SFTSMS is constructed as

S � sig eq  +
Λ1
2 − a

sig2− a
eω + Λ2sig eq  , (14)

where S � [S1, S2, S3]
T ∈ R3×1, Λ1 > 0, Λ2 > 0, and

0< a � a1/a2 < 1, a1 and a2 are positive odd integers, and the
term sigr(x) is given by

sigr
(x) � x1



rsgn x1( , x2



rsgn x2( , x3



rsgn x3(  

T
,

(15)

where x � [x1, x2, x3]
TR3×1 and r> 0.

*e time derivative of (14) is expressed as

_S � eω + Λ1 eω + Λ2sig eq 



1− a

· _eω + Λ2eω( . (16)

Due to the facts that 1 − a> 0, the singularity will not
occur in (16).

When S � 0, (14) is rewritten as
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According to 2 − a> 1, the following equation is ob-
tained as
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From (18), the equivalent equation of (14) is obtained as
follows [12]:
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Figure 2: *e structure of RBFNN.
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To illustrate eq is finite-time convergent, a Lyapunov
function is chosen as

V1 �
1
2
e

T
q eq. (21)

From (20), the time derivative of V1 is
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where Λ1 � 2Λ2, Λ2 � 23− a/4− 2a(2 − a/Λ1)
1/2− a, and

ι0 � (1/2) + (1/4 − 2a).
According to Lemma 1 and (8), eq and eω converge to the

equilibrium within a finite-time Ts satisfying

Ts ≤
1

Λ1 1 − ι0( 
ln
Λ1V

1− ι0
1 eq(0)  + Λ2
Λ2

, (23)

where eq(0) represents the initial states of eq(t).
*is completes the proof.

3.2. Auxiliary Function Design. Substituting (8) into (16)
yields

_S � eω + Λ1 eω + Λ2sig eq 
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where Y � diag(Y1, Y2, Y3) ∈ R3×3, Yi � Λ1|Θi|
1− a with

i � 1, 2, 3, eq � [eq1, eq2, eq3]
T, Θ � eω + Λsig(eq), and F0 �
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Due to the existence of the term of F0 in the ex-
pression of Y− 1, it may cause the potential singularity
issue when Θ � 0. Consequently, an auxiliary function φ
is constructed to solve the singularity caused by Y− 1 in the
controller design.

*us, (24) is expressed as
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From the definition of S and Θ, it has
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From (26), the auxiliary function φ is defined as

φ �
1
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and (25) can be rewritten as
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where F denotes the lumped uncertainties presented by
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4. Controller Design

4.1. ESO. *e bounded external disturbances D in (28) are
estimated by the ESO. Considering the disturbances D as an
extended state, system (28) is rewritten as

_S � Y J
− 1
0 u + D + F  − Λ2S,

_D � h(t),
(30)

where h(t) represents the derivative of D.
*en, the second-order ESO for (30) is constructed as

E1 � Z1 − S,

_Z1 � Y J
− 1
0 u + Z2 + F  − Λ2S − Z1E1,

_Z2 � − Z2fal E1( ,

(31)

where E1 ∈ R3×1 means the ESO’s estimation error,
Z1, Z2 ∈ R3×1 denote the observer outputs, and Z1 and Z1
represent the observer gains. *e function fal(·) is given by
the following [17]:
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fal E1i(  �

E1i



c

E1i( , E1i


> δ,

E1i

δ1− c
, E1i


≤ δ,
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(32)

where i � 1, 2, 3, 0< c< 1, and δ > 0.
Define the observer error

E2 � D − Z2. (33)

According to the analysis in [18], the observer
error satisfies |E2i|≤ ζm, i � 1, 2, 3, where ζm � maxi�1,2,3
|E2i| > 0.

4.2. Finite-Time Controller Design. Use (11) to approximate
the nonlinear uncertainties (29).

Fi xi(  � W
∗T
i ϕ1 xi(  + εi, (34)

where xi ∈ [eqi, _eqi,ωr, _ωr]T ∈ R4 is the NN input vector,
W∗ ∈ R4 represents the ideal weight vector, εi is the ap-
proximation error satisfying |εi|≤ εN, εN > 0, and ϕ1(x) ∈ R4

denotes the Gaussian function (9).
An exponential reaching law is given by the following

[19]:
_S � − K1S + K2 · sigc

(S)( , (35)

where K1 > 0, K2 > 0, and 0< c< 1.
With the unknown nonlinear uncertainties F and the

disturbances D estimated by the RBFNN and ESO, re-
spectively, the finite-time control law u is given by

u � J0 − K1S − K2sig
c
(S) − W

Tϕ1(x) − Z2 − K3YS ,

(36)

where K3 > 0, W � diag( W1,
W2,

W3), and Wi is used to
estimate W

∗
i with i � 1, 2, 3.

*e update law of Wi is given by
_Wi � δi YiSiϕ1i − ϖi

Wi , (37)

where δi > 0 and ϖi > 0 with i � 1, 2, 3.

5. Stability Analysis

Theorem 1. Considering the tracking error system (8) and
the control schemes (36) and (37), all the signals of the closed-
loop system are UUB, and the sliding variable S and the
tracking errors eq and eω are FTUUB, respectively.

Proof. Design a Lyapunov function V2

V2 �
1
2
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T
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3
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2δi

W
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i
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where Wi � W∗i − Wi.
From (28), differentiating (38) leads to
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W
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i
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Substituting (34) and (36) into (39), one has
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1ϕ1 + ε + D − Z2 − K3YS  − 
3

i�1

1
δi

W
T

i
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(40)

where ε � [ε1, ε2, ε3]
T. From (33), (40) is modified as

_V2 � S
T

Y − K1S − K2sig
c
(S) + W

T

1ϕ1 + ε + E2 − K3YS  − 

3

i�1

1
δi

W
T

i
_Wi . (41)
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Substituting (37) into (40) yields
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where K3 � K3′ + K3″ .
From Young’s inequality, the following relationships

hold:
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����
����
2

+
ϖi

2
W
∗
i

����
����
2
.

(43)

Substituting (43) into (42) yields
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where μ � min 2K3′Y
2
i , δiϖi  and Φ1 � (ϖi/2)‖W∗i ‖2 +

(3ε2N/4K3″ ).
According to (38)–(44), one can conclude that S, W1,

W2, and W3 are UUB. From (20) and the bounded values
W∗1 , W∗2 , and W∗3 , the uniform ultimate boundedness of eq,
eω, W1, W2, and W3 is guaranteed, and thus Yi is also UUB.
Due to (8) and (36), _eω and u both are UUB. Since ‖ϕ1(x)‖ is
bounded in (9), one can conclude ‖STY W

Tϕ1‖≤ η1,
‖STYε‖≤ η2, and ‖STYE2‖≤ η3, where η1, η2, and η3 are
positive constants.

*en, design a Lyapunov function
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Substituting (36) into (46) yields
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Tϕ1 + ε + E2 − K3YS 

≤ − K1

3

i�1
YiS

2
i − K2

3

i�1
Yi Si



1+c

− K3

3

i�1
Y
2
i S

2
i + S

T
Y W

Tϕ1

+ S
T

Yε + S
T
YE2 ≤ − ρ1V3 − ρ2V

1+c/2
3 +Φ2,

(47)

where ρ1 � min 2K1Yi, 1 , ρ2 � min 21+c/2K2Yi, 1 , and
Φ2 � η1 + η2 + η3.

*us, (47) can be transformed into the following form:

_V3 ≤ − ρ1 −
Φ2
V3

 V3 − ρ2V
1+c/2
3 or _V3

≤ − ρ1V3 − ρ2 −
Φ2

V
1+c/2
3

⎛⎝ ⎞⎠V
1+c/2
3 .

(48)

Due to Lemma 2 and (48), S can converge into ΔS

satisfying

ΔS � min
Φ2
ρ1

,
Φ2
ρ2

 

2/1+c⎧⎨

⎩

⎫⎬

⎭, (49)

within a finite-time bounded by

Ts ≤
1

ρ1(1 − (1 + c/2))
ln
ρ1V

1− (1+c/2)
3 S0(  + ρ2

ρ2
, (50)

where S0 is the initial value of S.
From (14), one has

Sj



 � sig eqj
  +

Λ1
2 − a

sig2− a
eωj

+ Λ2sig eqj
  




� ηj,

ηj



≤ΔS,

(51)

where j � 1, 2, 3.
*e terms (Λ1/2 − a)sig2− a(eωj

+ Λ2sig(eqj
)) and

sig(eqj) are both positive or negative. Considering only
positive case and Lemma 3, the following relationship exists
without loss of generality:

eωj
+ Λ2sig eqj

 





2− a

2 − a
≥ eωj

+ Λ2sig eqj
 




+

a − 1
2 − a

.
(52)
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Multiplying Λ1 and adding sig(eqj
) on both sides of (52),

it has

sig eqj
  +
Λ1 eωj

+ Λ2sig eqj
  

2− a

2 − a

≥ sig eqj
  + Λ1 eωj

+ Λ2sig eqj
   +

Λ1(a − 1)

2 − a
.

(53)

Substituting (53) into (51) yields

sig eqj
  + Λ1eωj

+ Λ1Λ2sig eqj
 ≤ΔS, (54)

where ΔS � ΔS + (Λ1(1 − a)/2 − a).
From (54), the attitude tracking errors eq and angular

velocity eω are finite-time stable. *us, eq and eω converge
into small regions:

eqj



≤
ΔS

1 + Λ1Λ2
,

eωj



≤
2ΔS
Λ1

,

(55)

within a finite-time, respectively.
From the above discussion, the convergence time T of

closed-loop system states in (8) is bounded, which satisfies

T � Tr + Ts ≤
1

Λ1 1 − ι0( 
ln
Λ1V

1− ι0
1 eq(0)  + Λ2
Λ2

+
1

ρ1(1 − (1 + c/2))
ln
ρ1V

1− (1+c/2)
3 S0(  + ρ2

ρ2
.

(56)

Consequently, the sliding variable S and the tracking
errors eq and eω are FTUUB.

*is completes the proof.

Remark 2. *e convergence time is determined by the
parameters Λ1, Λ2, K1, K2, and ι0. From (56), we can find
that when the parameters Λ1, Λ2, K1, and K2 are selected
to be larger, the convergence speed will become faster
while it will cause some chattering issues. *us, the
choice of Λ1, Λ2, K1, and K2 should be set appropriately to
keep a balance between convergence speed and
chattering.

6. Simulations Results

In this section, numerical simulations are displayed to show
the attitude tracking performance. To indicate the superi-
ority of the designed control scheme, two different control
schemes are given for comparison, i.e., SFTSM controller
[20] and adaptive linear sliding mode (ALSM) controller
[21].

To intuitively display the physical meaning of the ref-
erence attitude trajectories, the reference attitude quaternion
[qr

0, qr
v1, qr

v2, qr
v3] is expressed as

q
r
0

q
r
v1

q
r
v2

q
r
v3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

cos
ψd

2
cos

θd

2
cos

ϕd

2
+ sin

ψd

2
sin

θd

2
sin

ϕd

2

cos
ψd

2
cos

θd

2
sin

ϕd

2
− sin

ψd

2
sin

θd

2
cos

ϕd

2

cos
ψd

2
sin

θd

2
cos

ϕd

2
+ sin

ψd

2
cos

θd

2
sin

ϕd

2

sin
ψd

2
cos

θd

2
cos

ϕd

2
− cos

ψd

2
sin

θd

2
sin

ϕd

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(57)

where [ϕd, θd,ψd] are the desired Euler angles.
*e parameters in (8) are J0 � diag([0.1, 0.1,

0.1]) kg/m2, ω(0) � [0, 0, 0]T, and ΔJ � diag([1,1,2])kg/m2,
and the external disturbances are set as ϕ(0) �

θ(0) �ψ(0) � 0°, and d(t) � [0.5 sin(0.1t),0.5 sin (0.1t),

0.5 cos(t)]TN ·m.
In SFTSM, the parameters in (14) are set as Λ1 � 0.1,
Λ2 � 0.4, and a � 5/7. *e parameters in (36) are chosen as
K1 � 0.5, K2 � 1.1, K3 � 4, and c � 0.1. *e number of
RBFNN nodes is 10. *e corresponding parameters in (9)
and adaptive update law (37) are chosen as μi ∈ (− 2, 2),
ai � π, δi � 0.1, ϖi � 0.2, and W(0) � [0, 0, 0, 0]T.

In ALSM, the linear sliding variable S is given by

S � eω + Λ0eq, (58)

where Λ0 � 7.5, and the controller is

u � J0 Λ0eω + _ωr
+ θ0sgn(S) − K1S + K2sig

c
(S)(  , (59)

in which the updating law of θ0 is given by

_θ0 � c0 ‖S‖ − ε0θ0 , (60)

where c0 � 1, and the other parameters in the ALSM are set
the same as those of SFTSM.

To illustrate the better tracking performance and tran-
sient convergence performance in SFTSM, the fixed initial
Euler angles are selected with ϕd � θd � ψd � 10° as the
reference trajectories. Figures 3 and 4 show the time re-
sponse of control inputs in SFTSM and ALSM, respectively.
It is concluded that the maximum amplitude of the control
input is 10N · m. *e comparative results of the Euler angle
tracking performance are shown in Figures 5–7. From
Figure 5, the convergence time of ϕ in SFTSM is 0.5 s, and
the convergence time of ϕ in ALSM is 1.5 s. Due to the same
analysis in Figures 6 and 7, SFTSM can achieve faster
convergence rate and better transient performance of Euler
angles than ALSM.

For the purpose of showing the superiority of SFTSM,
the corresponding attitude quaternion tracking performance
in ALSM is presented in Figures 8–11.*e convergence time
of SFTSM is faster almost 1 s than ALSM, which means
SFTSM can realize the better transient performance than
ALSM. Based on the mentioned analysis, quaternion-based
tracking performance in SFTSM is still outperformed than

Computational Intelligence and Neuroscience 7
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Figure 3: Control input in SFTSM.

1 1.50 20.5
Time (s)

1 1.50 20.5
Time (s)

1 1.50 20.5
Time (s)

-10
0

10

u 3
 (N

·m
)

-10
0

10

u 2
 (N

·m
)

-10
0

10

u 1
 (N

·m
)

Figure 4: Control input in ALSM.
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ALSM. According to Figures 3–11, it is illustrated that
SFTSM can guarantee faster convergence speed and better
tracking performance in the QUAV’s attitude tracking
control.

7. Conclusion

In this study, a finite-time convergent RBFNN-based
adaptive controller has been constructed to resolve a
tracking problem of quadrotor UAVs. Firstly, a SFTSMS is
proposed to realize the finite-time convergence of the
tracking errors, which can directly avoid the potential sin-
gularity problem without requiring any piecewise contin-
uous functions. Besides, an auxiliary function is proposed to
purposely prevent the hidden singularity issue caused by the
error-related matrix in the controller design. *en, a finite-
time attitude controller is designed to guarantee that the
system states were FTUUB. With the presented control
scheme by RBFNN and ESO, prior knowledge about the
unknown nonlinear uncertainties and external disturbances
is not required. Finally, comparative simulations have shown
the effectiveness of the designed control scheme.
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