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In the image reconstruction of the electrical capacitance tomography (ECT) system, the application of the total least squares
theory transforms the ill-posed problem into a nonlinear unconstrained minimization problem, which avoids calculating the
matrix inversion. But in the iterative process of the coefficient matrix, the ill-posed problem is also produced. For the effect on the
final image reconstruction accuracy of this problem, combined with the principle of the ECT system, the coefficient matrix is
targeted and updated in the overall least squares iteration process. )e new coefficient matrix is calculated, and then, the
regularization matrix is corrected according to the adaptive targeting singular value, which can reduce the ill-posed effect. In this
study, the total least squares iterative method is improved by introducing the mathematical model of EIV to deal with the errors in
the measured capacitance data and coefficient matrix. )e effect of noise interference on the measurement capacitance data is
reduced, and finally, the high-quality reconstructed images are calculated iteratively.

1. Introduction

Electrical capacitance tomography (ECT) is a typical method
for multiphase flow detection.)e principle is to collect data
through the electrode array installed on the outside of the
pipe to make real-time visualization of the dielectric con-
stant distribution inside the pipe, then to process, collect,
filter, and amplify the capacitance data between the electrode
pairs acquired by the sensor through the data acquisition
unit, and then to reconstruct the image through the image
reconstruction algorithm to carry out the image output to
obtain the final image process. )e ECT system has been
gradually applied in the field of multiphase flow because of
its noninvasive, fast response, simple structure, no radiation,
wide range of applications, and good real-time performance
[1–3]. )e image reconstruction algorithm is the most
critical step in the whole process of implementing capaci-
tance tomography, which directly affects the clarity and
accuracy of imaging, and is therefore a key point that needs
to be addressed effectively.

)e ECT system has a “soft field” effect, which makes the
image reconstruction more difficult, and the obtained solution

is only an approximate solution of the system, which has a
certain error compared with the exact solution [4].Typical
direct algorithms include the LBP algorithm, Tikhonov reg-
ularization algorithm, and so on [5]. )e LBP algorithm is
relatively simple, with fast imaging speed and low computation,
but the disadvantage is that the reconstructed image is prone to
distortion, blurred contours, and low accuracy, which is
suitable for applications with low accuracy requirements. )e
Tikhonov algorithm has some advantages in dealing with
pathology-related problems, but the solution of the algorithm is
too smooth, resulting in a serious loss of information in the
reconstructed image itself, so that the results are not satis-
factory. )e typical algorithm of the iterative class is the
Landweber algorithm, which is simple in principle and has high
image accuracy, but is not suitable for applications with high
real-time requirements [6]. )e improved Gauss–Newton
image reconstruction algorithm and the Broyden family cor-
rection image reconstruction algorithm are recent image re-
construction algorithms, both of which have improved the
reconstruction results to some extent [7, 8]. An optimized
particle swarm combinedwith the Landweber algorithm for the
case of getting stuck in a local optimum [9]. )e gradient
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projection sparse reconstruction algorithm is used to address
the problem of poor image accuracy when the medium is
distributed close together in a two-phase flow [10].

To better solve the ill-posed nature of the inverse
problem in the image reconstruction process and reduce the
impact of complex noise on the reconstructed images, our
work proposes an image reconstruction algorithm based on
a combination of improved total least squares and EIV
models, conducts simulation experiments on four flow
types, and analyzes the impact of the noise environment on
the imaging quality.

2. Basic Principles of Capacitance
Chromatography Imaging

As shown in Figure 1, a 12-electrode ECT image recon-
struction system consists of three parts: a capacitance sensor
unit, a capacitance data acquisition and signal processing
unit, and an image reconstruction unit. )e capacitance
sensor unit consists of an insulated pipe, measurement
electrodes, and a grounded shield. )e image reconstruction
unit receives the capacitance data from the data acquisition
unit, and it reconstructs images and calculates the other
necessary parameters.

In the ECT system, the measured capacitance data be-
tween each electrode can be expressed as follows:

Ci,j � 􏽚
D

􏽚 ε(x, y)S(x, y)dxdy. (1)

Among them, Ci,j is the capacitance between i and j, D is
the cross-section to be measured, ε(x, y) is the distribution
of relative permittivity in the region to be measured, and
S(x, y) denotes the sensitivity distribution of the cross-
section. )e following mathematical model is obtained by
normalizing the parameters:

C � SG. (2)

In equation (2), C is the m × 1 capacitance vector, S is the
m × n sensitivity distribution matrix, and G is the n × 1
normalized dielectric constant distribution vector.When the
dielectric constant changes, the capacitance data between
different plates of the capacitance sensor change, and the
capacitance data are sent to the data acquisition system, and
then, the collected capacitance data and the known sensi-
tivity field data are used to calculate the dielectric constant
distribution in the pipe by the reconstruction algorithm,
which is finally expressed as a visual image.

Image reconstruction is the inverse problem of the ECT
system. )e images are reconstructed by the measurement
capacitance data, which are transfered from the data ac-
quisition system according to dielectric constants of the
flow. )e image reconstruction can be defined as follows:

G � QC. (3)

In equation (3), Q is the n × m inverse sensitivity matrix.
From equation (2), the inverse matrix exists only when
m � n. )en, there are two problems in deriving equation (3)
from equation (2):

(1) Normally, the number of capacitance data measured
is much smaller than the number of pixels of the
reconstructed image, i.e., m< n; therefore, solving
the inverse problem is solving a system of ill-con-
ditioned equations, which is the typical ill-posed
problem in ECT technology.

(2) )e inverse matrix of S does not exist, and equation
(2) is a typical ill-conditioned equation whose so-
lution is unstable; it means that when a perturbation
is caused by the capacitor C, the gray scale G of the
image changes along with it.

)e solution to the inverse problem of the ECTsystem is
generally not available, and if it is, the solution is nonunique
and unstable. )is is the ill-posed problem of ECT image
reconstruction.

Because the required projection data are much larger
than the actual projection data obtained, and because the
sensitive field is influenced by the distribution of the me-
dium in the object to be measured, errors are inevitable in
the measurement process. )erefore, the impact of errors
should also be taken into account during the calculation and
image reconstruction.

In this study, the total least squares theory is combined
and applied to image reconstruction, which transforms the
ill-posed problem into a nonlinear unconstrained minimi-
zation problem and avoids the matrix inversion problem.

3. ECT Image Reconstruction Based on
Improved Ill-Posed Total Least Squares

3.1. Total Least Squares 'eory. Least squares (LS) is ubiq-
uitous in various applications that need to process obser-
vation data. )e Gauss–Markov model (G–M model) is an
adjustment model which takes into account the random
error e of the observation vector A [11], and it is expressed as
follows:

AX � b + e. (4)

Among them, A is the given m × n matrix, b is the
m-dimensional known vector, e is the random observation
error, and X is the variable to be estimated.

LS requires the input data matrix A to assume that there
is no error, and all errors are limited to the observation
vector b. Due to sampling error, human error, modeling
error, and instrument error, the data matrix A may be in-
accurate. )erefore, this assumption is usually unrealistic
[12].

In this study, the total least squares theory is combined
with the ECT image reconstruction algorithm model. A is
the sensitivity matrix in the ECT system. )e estimate X

represents the result of the inversion of the capacitance and
sensitive field data during the image reconstruction. Simi-
larly, inaccuracies in data matrix A may be caused by various
errors, which lead to biased results in the final image
reconstruction.

In this case, the total least squares (TLS) method is
designed. )e concept of TLS was proposed in 1980 [13]. To
fit the “best” subspace to the measurement data [A, b] means
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to seek the perturbation matrix E ∈ Rm×n and the pertur-
bation vector e which can minimize ‖[E, f]‖F and make
equation (5) compatible, where ‖ · ‖F is the Frobenius norm
of the matrix [14, 15].

(A + E)X � b + e. (5)

3.2. Ill-Posed Total Least Squares Regularization Method.
Based on the G–M model, the adjustment model and the
least squares adjustment criterion are as follows:

L � AX + e, e ∼ N 0, σ20I􏼐 􏼑,

f(e) � e
T
e � min .

⎧⎪⎨

⎪⎩
(6)

In equation (6), A is the m × n coefficient matrix, L is the
m × 1 observation vector, X is the n × 1 unknown parameter
vector, σ2 is the unit weight variance, and e is the n × 1
random error vector. )e least square estimation and the
covariance of the estimation are

􏽢X � A
T
A􏼐 􏼑

−1
A

T
L,

cov( 􏽢X) � σ20 A
T

A􏼐 􏼑
−1

.

⎧⎪⎨

⎪⎩
(7)

)e least squares estimator belongs to unbiased esti-
mation, and the variance can be expressed as the trace of
covariance matrix [16]:

D( 􏽢X) � tr[cov( 􏽢X)] � σ20 􏽘

n

i�1

1
Λ2i

. (8)

In the formula, Λi is the singular value of coefficient
matrix A.

Considering the possibility of error in coefficient matrix
A, the EIV observation model is introduced [17]; due to the
complexity and diversity of measurement data, the adjust-
ment of TLS in EIV model is reasonable. )e EIV model is

L � A + EA( 􏼁X + e. (9)

In equation (9), L is the m × 1 observation vector, A is
the given m × n matrix, EA is the error matrix of the co-
efficient matrix A, X is the n × 1 unknown parameter vector,
and e is the random observation error.

Equation (9) can be expressed as follows:

L � A + EA( 􏼁X + e � AX + IX
T ⊗ I􏽨 􏽩

e

eA

􏼢 􏼣,

eA � vec EA( 􏼁

e

eA

􏼢 􏼣 ∼ N
0

0
􏼢 􏼣, σ20

In 0

0 Im ⊗ Im

􏼢 􏼣􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

In equation (10), EA is the error matrix of coefficient
matrix A, ⊗ is the Kronecker product, vec(·) is the
straightening transformation, In is the unit matrix. )e
adjustment criterion is

f EA, e( 􏼁 � e
T
AeA + e

T
e � min. (11)

)e Lagrange objective function is constructed as
follows:

F EA, e( 􏼁 � e
T
AeA + e

T
e + 2λT

L − e − AX − EAX􏼂 􏼃. (12)

It can be concluded that the normal equation is as
follows:

A
T
A 􏽢X − A

T
L � 􏽢X

(L − A 􏽢X)
T
(L − A 􏽢X)

1 + 􏽢X
T 􏽢X

. (13)

Let 􏽢μ(k) � (L − A 􏽢X
(k)

)T(L − A 􏽢X
(k)

)/1 + 􏽢X
(k)T 􏽢X

(k), and
we can get the iterative formula:

􏽢X
(k+1)

� A
T
A􏼐 􏼑

−1
A

T
L + 􏽢X

(k)
􏽢μ(k)

􏼒 􏼓. (14)

)e least square estimation can be used as the initial
value of iteration. )e iteration will stop when ‖ 􏽢X

(k+1)
−

􏽢X
(k)

‖< ε (k is the number of iterations, and ε is the iteration
threshold).

Considering the possible errors in the coefficient matrix,
the inversion process of normal matrix ATA will become
very unstable, and the mean square error is used as the basis
of valuation, It can be seen from equation (8) that when Λi is
close to zero, the variance will be very large, resulting in that
the estimated parameters are not referential [18].

In the EIV adjustment model, the regularization method
adds a stable functional to the TLS adjustment criterion:

f EA, e( 􏼁 � vec EA( 􏼁
Tvec EA( 􏼁 + e

T
e + αX

T
RX � min.

(15)

In the formula, R is the regularization matrix, and α is
the regularization parameter greater than zero. Parameters
are based on

􏽢X
(k+1)

� A
T
A + α 1 + 􏽢X

(k)T 􏽢X
(k)

􏼒 􏼓R􏼔 􏼕
−1

A
T
L + 􏽢X

(k)
􏽢μ(k)

􏼒 􏼓.

(16)

)e regularization iteration is performed according to
equation (16). )e iteration will stop when 􏽢X

(k+1)
− 􏽢X

(k) < ε.
It can be concluded from equation (16) that the inversion

of normal matrix ATA will become stable after adding the
corresponding stable functional, and the estimated pa-
rameters will be reliable.

3.3. Ill-Posed Total Least Squares Targeted Singular Value
Correction. )e targeting matrix is based on the composi-
tion of eigenvectors corresponding to smaller eigenvalues
[19], and its structure is shown in the following equation:

􏽢R � 􏽘
n

i�j

GiG
T
i . (17)

In equation (17), Gi is the eigenvector corresponding to
the small singular value of the normal matrix ATA. A value is
a small eigenvalue when the sum of the standard deviation
components of the eigenvalue accounts for more than 95%
of the standard deviation, such as
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􏽘

n

i�j

1
Λi

≥ 95%􏽘

n

i�1

1
Λi

. (18)

In equation (18), Λi is the eigenvalue of ATA. )e matrix
􏽢R only corrects small singular values, and it can reduce
variance and avoid unnecessary deviation at the same time
and make the valuation more reasonable.

Ill-posed problems exist in the total least squares iterative
algorithm. In the process of total least squares iterative
calculation applied to ECT, the coefficient matrix changes
slightly, and the targeting matrix also changes, which leads
to the unreliability and error of the final estimation. )is
means that the sensitivity matrix is constantly changing
slightly as it participates in the iterative calculation process,
which can ultimately result in large errors in the image
reconstruction. Aiming at the change of target matrix, the
following target singular value correction method is adopted
[20].

According to the EIV model L � (A + Ee)X + e and ill-
conditioned TLS adjustment criterion [21],

f EA, e( 􏼁 � vec EA( 􏼁
Tvec EA( 􏼁 + e

T
e + αX

T
RX � min.

(19)

Construct the Lagrange objective function:

F EA, e( 􏼁 � e
T
AeA + e

T
e + αX

T
RX + 2λT

L − e − AX − EAX􏼂 􏼃.

(20)

)e first-order partial derivative of a formula is

zF

ze
� 2e

T
− 2λT

� 0,

zF

ze
� 2e + 2λT 􏽢X

T ⊗ In􏼒 􏼓 � 0,

zF

ze
� 2α 􏽢X

T
R − 2λT

A + EA( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

)e equation that e � λ and E � λXT can be obtained
from equation (20), and substitute parameters into the EIV
model (9):

L − A 􏽢X � EA
􏽢X + e � λ 􏽢X

T 􏽢X + 1􏼒 􏼓. (22)

According to equation (22),

e � λ � (L − A 􏽢X) 􏽢X
T 􏽢X + 1􏼒 􏼓

−1
. (23)

)erefore, we can figure out that

􏽢EA � λ 􏽢X � (L − A 􏽢X)( 􏽢X 􏽢X + 1)
−1 􏽢X

T
. (24)

)en, the coefficient matrix 􏽢A is reconstructed by EA:
􏽢A � A + EA. (25)

)en, the parameter 􏽢X is solved by the regularization
method:

􏽢X � A + EA( 􏼁
T

A + EA( 􏼁 + αR􏽨 􏽩
−1

A + EA( 􏼁
T
L � 􏽢A

T 􏽢A + αR􏼒 􏼓
−1

􏽢A
T
L.

(26)

)e iterative calculation is carried out according to
equations (24)–(26). )e iterative formula is as follows:

􏽢E
(k)

A � L − A 􏽢X
(k)

􏼒 􏼓 􏽢X
(k)T 􏽢X

(k)
+ 1􏼒 􏼓 􏽢X

(k)T
,

􏽢X
(k+1)

� 􏽢A
(k)T 􏽢A

(k)
+ αR􏼒 􏼓

− 1
􏽢A

(k)T
L.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

)e iteration will stop when 􏽢X
(k+1)

− 􏽢X
(k) < ε.

4. Algorithm Implementation Steps

4.1. Pretreatment. A specific sensitive field strength and
noise factor of the surrounding environment is preset to
verify the feasibility of the algorithm by comparing the
imaging accuracy and clarity of the algorithm under dif-
ferent environments through the control variables method.

data
measurement

control
signal

data collection system image reconstruction calculationcapacitance sensor

1

2
34

5

6

7

8
9 10

11

12

Figure 1: Structure of 12-electrode ECT system.

4 Computational Intelligence and Neuroscience



)e capacitance data come from four different flow types:
core flow, laminar flow, circulation flow, and multidrop
flow, and the corresponding medium distribution matrices
collected by the capacitance sensor array in the noise-free
case and in different noise environments are simultaneously
normalized to obtain the measurement data.

4.2. Algorithm Implementation.
(1) )e normalized data are brought into the least square

estimation to get the iterative initial value G, and the
least square function is constructed as follows:

f(G) � SG − C
2����
���� � min. (28)

Get G which satisfies the minimum value of the
function result, and 􏽢X0 is used as the initial value of
iteration for subsequent steps;

(2) )e initial error matrix EA of coefficient matrix is
obtained by substituting 􏽢X0 into equation (27)

(3) Take EA into equation (25) to get the initial value 􏽢A

of the modified coefficient matrix
(4) According to the modified coefficient matrix 􏽢A, the

corresponding normal matrix is obtained, and the
initial value 􏽢R of the targeting matrix is constructed
according to equation (17);

(5) According to the targeting matrix 􏽢R, use the L-curve
method to obtain the corresponding regularization
parameter α

(6) Iterative operation according to equation (27).When
􏽢X

(k+1)
− 􏽢X

(k) < ε, the iteration ends and the experi-
mental target valuation is obtained. )e smaller the
value of ε, the smaller the error between the results of
the reconstructed image and the real image, but more
iterations are calculated.

5. Simulation and Experimental Results

5.1. Experiment Preparation. Based on the above theory, this
study conducts simulation experiments to verify the effec-
tiveness of the algorithm and the effect of coping with the
inverse problem. For the four flow types, core flow, laminar
flow, circulation flow, and multidrop flow, the experimental
parameters are preprocessed and the simulation experi-
ments are performed using Matlab with the ECTsystem.)e
ECTsystem is a 12-electrode system with a pipeline split into
900 units.

5.2. Experimental Results and Analysis. In order to verify
the feasibility of this study’s algorithm in ECT image
reconstruction, two evaluation metrics are introduced:
image error and correlation coefficient. )e calculation
formula is shown in equation (29) as well as equation (30),
and the correlation coefficient can reflect the similarity
between the reconstruction result and the actual
prototype.

error �
􏽢e − e

e
× 100%, (29)

ρ
e􏽢e �

􏽐
N
i�1(􏽢e − 􏽥e)(e − e)

�����������

􏽐
N
i�1 (􏽢e − 􏽥e)

2
􏽱 �����������

􏽐
N
i�1 (􏽢e − 􏽥e)

2
􏽱 . (30)

In equation (30), e denotes the distribution of the di-
electric constant of the original image and represents the
gray value of the image, the average of which is e; 􏽢e denotes
the distribution of dielectric constants of the image obtained
after image reconstruction using the algorithm, and the
average gray value is noted as 􏽥e. N is the dimension of e and
􏽢e.)e relationship between the change in the resultant image
of the image reconstruction and the original image can be
derived from the calculation of equations (29) and (30). )e
value of error indicates the error between the resultant
image of the image reconstruction and the real image, and
the value of ρ

e􏽢e indicates the similarity between the resultant
image of the image reconstruction and the real image. )e
magnitude of the closeness between the result and the
original image is positively correlated with the value of ρ

e􏽢e
and negatively correlated with the value of ρ

e􏽢e.

5.2.1. Comparison of Noise-Free Reconstruction Results.
)e image reconstruction process was simulated using the
classical LBP algorithm, the classical Landweber algorithm,
and the algorithm of this study for core, laminar, circulation,
and multidrop flows, respectively. )e imaging results were
divided into 900 pixel units using a circular grid, and the
reconstruction results without noise interference are given
in Table 1, and the error comparison is given in Table 2 and
Figure 2.

From the error results, it can be seen that the re-
construction accuracy of the algorithm in this study is
improved to different degrees for the four selected flow
types. Compared with the LBP algorithm, the recon-
struction effect of the algorithm in this study is signifi-
cantly improved in the case of loop flow and multidrop
flow, and compared with the Landweber algorithm, the
reconstruction effect is significantly improved in the case
of core flow.

5.2.2. Comparison of Noise-Free Reconstruction Results.
In this study, the improved total least squares algorithm
theory is selected for image reconstruction, with the aim of
solving the problem that both the measurement data and the
coefficient matrix have different degrees of error in a noisy
environment. To verify the adaptability of the algorithm to
noise, experiments are conducted for four flow types: core
flow, laminar flow, circulation flow, and multidrop flow, and
random noise is added to the normalized capacitance C and
coefficient matrix S, respectively, eL ∼ N(0, σ2Im), eA

∼ N(0, σ2Im ⊗ In), σ � 0.1, random noise generated by
Matlab.

)e LBP algorithm, Landweber algorithm, and the
algorithm in this study were used for image reconstruc-
tion in this experimental setting. Due to the randomness
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of adding noise, to increase the general adaptability of the
experiment, the validation data were tested 30 times, and
finally, the image reconstruction was compared by cal-
culating the average value, and the reconstruction results
are given in Table 3, and the error comparison is given in
Table 4 and Figure 3.

As can be seen from Figure 3, by adding noise, the overall
error value of the algorithm in this study is low, and the image
reconstruction accuracy and robustness are good, which have
certain advantages comparedwith other algorithms; thus, it can
be concluded that the algorithm in this study has good anti-
interference ability under complex noise environment.

Table 1: Reconstruction comparison without noise.

Flow type Core flow Laminar flow Circulation flow Multidrop flow

Original image

LBP algorithm

Landweber algorithm

Algorithm of this study

Table 2: Comparison of errors without noise.

Flow type Core flow Laminar flow Circulation flow Multidrop flow
LBP algorithm 0.25419 0.30449 0.37352 0.53718
Landweber algorithm 0.27336 0.29671 0.36381 0.31372
Algorithm of this study 0.24845 0.2965 0.35791 0.30335

Core flow

0.6

0.5

Er
ro

r v
al

ue

0.4

0.3

0.2

0.1

0
Laminar

flow
Circulation

flow
Multi-drop

flow

LBP
Landweber
Algorithm of this paper

Figure 2: Error analysis without noise.
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6. Conclusion

In this study, we propose an ECT image reconstruction al-
gorithm based on the improved total least squares theory.
Based on the analysis of the ill-posed nature of the total least
squares problem iteration and the ill-posed nature of the ECT
inverse problem, we construct adaptive targeting matrices
based on the total least squares theory for the problem that both
measurement data and coefficient matrices have different

degrees of error in complex noisy environments and use the
EIV model as the basic model for image reconstruction. )e
simulation results show that the resistance to different kinds of
noise is effectively enhanced, which can better improve the
situation that the image reconstruction process is easily dis-
torted by noise, while improving the robustness and recon-
struction accuracy of the reconstructed image, thus providing
an effective method for ECT image reconstruction and pro-
viding a reference for subsequent research.

Table 3: Comparison of reconstruction results with noise.

Flow type Core flow Laminar flow Circulation flow Multidrop flow

Original image

LBP algorithm

Landweber algorithm

Algorithm of this study

Table 4: Comparison of errors with noise.

Flow type Core flow Laminar flow Circulation flow Multidrop flow
LBP algorithm 0.27994 0.33879 0.38838 0.5612
Landweber algorithm 0.28809 0.31012 0.37915 0.34572
Algorithm of this study 0.25214 0.30354 0.36019 0.32267

Core flow

0.6

0.5

Er
ro

r v
al

ue

0.4

0.3

0.2

0.1

0
Laminar

flow
Circulation

flow
Multi-drop

flow

LBP
Landweber
Algorithm of this paper

Figure 3: Error analysis with noise.
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