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,is paper solves the drawbacks of traditional intelligent optimization algorithms relying on 0 and has good results on CEC 2017
and benchmark functions, which effectively improve the problem of algorithms falling into local optimality. ,e sparrow search
algorithm (SSA) has significant optimization performance, but still has the problem of large randomness and is easy to fall into the
local optimum. For this reason, this paper proposes a learning sparrow search algorithm, which introduces the lens reverse
learning strategy in the discoverer stage.,e random reverse learning strategy increases the diversity of the population and makes
the search method more flexible. In the follower stage, an improved sine and cosine guidance mechanism is introduced to make
the search method of the discoverer more detailed. Finally, a differential-based local search is proposed. ,e strategy is used to
update the optimal solution obtained each time to prevent the omission of high-quality solutions in the search process. LSSA is
compared with CSSA, ISSA, SSA, BSO, GWO, and PSO in 12 benchmark functions to verify the feasibility of the algorithm.
Furthermore, to further verify the effectiveness and practicability of the algorithm, LSSA is compared withMSSCS, CSsin, and FA-
CL in CEC 2017 test function. ,e simulation results show that LSSA has good universality. Finally, the practicability of LSSA is
verified by robot path planning, and LSSA has good stability and safety in path planning.

1. Introduction

In recent decades, the swarm intelligence optimization al-
gorithm has been favored by many scholars due to its simple
structure and high solving efficiency. Plenty of intelligent
optimization algorithms have appeared continuously, such
as monarch butterfly optimization (MBO) [1], smooth
mount algorithm (SMA) [2], mother search algorithm
(MSA) [3], hunter games search (HGS) [4], naked mole-rat
algorithm (NMRA) [5], and Harris hawks optimization
(HHO) [6]. Xue and Shen [7] proposed a sparrow search
algorithm (SSA) that simulates the nature of sparrows
foraging for food with the advantages of simple principle,
fewer adjustment parameters, less programming difficulty,
etc. Compared with grey wolf optimizer (GWO) [8], particle
swarm optimization (PSO) [9], and genetic algorithm (GA)
[10] in function optimization, it has better search results.
Although excellent ability has been strongly confirmed,
however, the SSA algorithm also has its own shortcomings.
SSA is highly dependent on a certain role in the group and

lacks learning ability. It is still easy to fall into the local
optimum on high-dimensional complex problems.

At present, lots of scholars have carried out a series of
studies so as to minify the shortcomings of the SSA itself.
Scholars have studied and improved it separately, for the
sake of further improving the optimization ability of the
SSA. For example, Lu et al. [11] proposed a chaotic sparrow
search algorithm (CSSA). ,e algorithm first used the tent
mapping based on random variables to generate a better
individual sparrow sequence and introduced tent pertur-
bation as well as Gaussian mutation in the optimization
process to carry out the solution found by the sparrow. ,e
update prevents the algorithm from appearing premature;
furthermore, the effectiveness of the algorithm is verified in
the test function and image segmentation issues. At the same
time, they stated an improved sparrow search algorithm
(ISSA) to apply to the multithreshold image segmentation
problem [12] and achievedmeaningful results. In the process
of algorithm optimization, the idea of a bird swarm algo-
rithm is applied. ,e benchmark function and
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multithreshold image segmentation based on the variance
between classes and Kapur entropy verify that the improved
algorithm has strong search and development capabilities.
Mao and Zhang [13] illustrated an improved sparrow search
algorithm that combines Cauchy mutation and opposition-
based learning. At first, a sin chaotic mechanism with an
unlimited number of folds was used to initialize the pop-
ulation, and the previous generation global optimal solution
was employed into the position update formula. For the aim
of generating a new solution of higher quality, the infor-
mation exchange of the algorithm was sped up, and the
adaptive weight strategy was introduced to coordinate the
local and global search capabilities, and the fusion Cauchy
mutation and reverse learning strategy were utilized to
perform disturbance mutation at the optimal position,
which improved the ability of the algorithm to jump out of
the local optimum. Eight test functions verify that the al-
gorithm has been greatly improved in global optimization.
Liu et al. [14], in order to better apply the SSA in 3D path
planning, also adopted chaos strategies to enhance the di-
versity of the population and used adaptive inertial weights
to balance the convergence speed and exploration capabil-
ities of the algorithm. Finally, they adopted the Cau-
chy–Gaussian mutation strategy to get rid of the ability of
the later algorithm stagnation, through the effect of planning
the route, so that the improved SSA with a strong search
ability is able to plan the route which is safer. Wang et al. [15]
proposed a chaotic map sparrow search algorithm, which
uses a dynamic adaptive weight mechanism to control the
search range of the sparrow and finally uses reverse learning
and Gaussian mutation to prevent the algorithm from falling
into local optimality and balance the development of the
algorithm and searchability as well. ,e 12 test functions
proved that the improved algorithm has strong optimization
capabilities. Zhang and Ding [16] also proposed a chaotic
sparrow search algorithm, which strengthens the global
search ability of the algorithm by introducing logistic
mapping, adaptive hyperparameter, and mutation opera-
tion. ,e effectiveness of the algorithm is verified by the test
function, and then, it is applied to the random configuration
network.,e results show that the proposed model has good
regression accuracy.

,e abovementioned authors have carried out a lot of
experiments to verify the advantages of the proposed al-
gorithm, but still there are some shortcomings:

(1) Most papers put forward chaos theory. Chaos theory
itself has uncertainty and cannot change the ran-
domness of the algorithm. ,erefore, a flexible
search mechanism is needed to improve the
situation.

(2) ,e existing literature does not fundamentally
change the optimizationmechanism of the algorithm
itself and lacks learning ability, so there is still a
probability of falling into the local optimum when
encountering high-dimensional complex problems.

(3) At present, the improved algorithms are only tested
on the function of the optimal value dimension 0,

which lacks rationality and cannot fully explain the
effectiveness of the algorithm.

(4) Researchers only consider the update of the best
location, but ignore the update of the worst location
of SSA.,e searchmethod of SSA is closely related to
the worst position.

Based on the above shortcomings, this paper proposes a
learning sparrow search algorithm, with the help of lens
reverse learning and random reverse learning to improve the
learning ability of the algorithm and adapt to various
complex models. ,e improved sine and cosine algorithm is
used to guide the followers to update the position and
improve the search precision. As a result, the local search
based on the difference is used to update the optimal so-
lution to improve the quality of the solution. LSSA is
compared with CSSA, ISSA, SSA, beetle swarm optimization
(BSO) [17], GWO, and PSO in 12 benchmark functions to
verify the feasibility of the algorithm. In order to further
verify its effectiveness and practicability, LSSA is compared
with multistrategy serial cuckoo search algorithm (MSSCS)
[18], CSsin [19], and firefly algorithm with courtship
learning (FA-CL) [20] in CEC 2017 test function. All the
three algorithms are verified in the CEC test function; finally,
the results show that the LSSA algorithm has strong uni-
versality. ,e contributions of this paper are as follows:

(i) ,e fusion of two opposition-based learning strat-
egies is proposed to improve the algorithm’s global
search capability

(ii) An improved sine and cosine algorithm is proposed
to improve the flexibility of the algorithm

(iii) A local search based on the difference is proposed to
improve the quality of the solution each time

(iv) It has a good effect on the benchmark function and
the CEC 2017 function and, at the same time,
minifies the defect of the algorithm close to the
origin

(v) LSSA is applied to robot path planning, and good
results are achieved

,is reminder of this paper is organized as follows.
Section 2 introduces the basic sparrow search algorithm and
analyzes it. Section 3 describes the process and validation of
LSSA. Section 4 shows the experiment and analysis of each
algorithm on benchmark function and CEC 2017 test
function. Section 5 provides discussion and future research
directions.

2. Sparrow Search Algorithm

,e SSA is divided into three phases: discoverer, follower,
and investigator. As the name implies, the discoverer dis-
covers food, searches for food, and provides direction for
other individuals in the population. ,erefore, the discov-
erer searches for a wide range of food, which accounts for
20% of the population. ,e location update formula for the
discoverer is
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In formula (1), h represents the current number of it-
erations, M is the maximum number of iterations, Xi,j

denotes the current position of the ith sparrow in the jth
dimension, αε[0, 1] is a random number,R2 and ST rep-
resent warning and safety values, respectively, and when
R2 < [0, 1], ST< [0.5, 1], Q is a normal distribution of ran-
dom numbers, and L means 1 with all the elements of 1×D.
When R2 < ST, this indicates that the community envi-
ronment is safe at this time, no predators are found around
them, and the discoverer can perform a wide search
mechanism. When R2 ≥ ST, this indicates that the individual
within the group has discovered the predator and issued an
alert, that all individuals in the group will make anti-
predatory actions, and that the discoverer will lead the
follower to a safe location.

Followers perform food searches after the discoverer and
neighborhood searches around the discoverer’s location.
Followers’ location updates the formula as follows:
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In formula (2), Xp is the optimal position currently
occupied by the discoverer, Xworst represents the worst
position currently, andA is a matrix of 1× d, where the value
of each element is 1 or −1, and A+ � AT(AAT)− 1. When
i> n/2, at this point, the sparrow population will counter-
attack when it senses danger.

Investigators are randomly selected individuals within
the population. When predators invade, they will send out
signals to make sparrows escape to a safe position. ,e
behavior formula of investigators is as follows:
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In formula (3), Xbest is the current global optimal lo-
cation, β is the control step parameter, which is a random
number with the normal distribution of mean value 0 and
variance 1, K ∈ [− 1, 1] is a random number, fi is the fitness
value of the sparrow,fg andfw are the best and worst fitness
values in the current search range, respectively, and ε is the
smallest real number to prevent the denominator from 0.
When fi ≠fg, it means that the sparrow is at the boundary
of the population and vulnerable to predators, so it needs to
adjust its position. When fi � fg, this indicates that the
sparrow individuals in the population are aware of the

danger and need to be close to other sparrows in order to
avoid the danger. K represents the direction of the sparrow
movement and can also control the movement step.

2.1. Performance Analysis. SSA can be divided into three
stages: discoverer, follower, and scout. From the three
formulas, it can be seen that sparrow individuals depend on
the search of the discoverer stage. ,e idea of adaptive
weight is introduced in formula (1), but the adaptive weight
still has defects in the face of high-dimensional complex
functions and cannot open up a global vision.,erefore, it is
necessary to make use of lens reverse learning and random
reverse learning to dig out more hidden positions, but also
increase the diversity of the population and make full
preparation for the optimization in the later stage. Formula
(2) has the defect of near-zero points; hence, nonlinear sine-
cosine guidance is used to balance the local and global
search. From the overall formula, the update distance be-
tween the front and back position of SSA is far, so the blind
area between them becomes more. ,e local search based on
the difference can improve the search precision and reduce
the scope of the blind areas.

3. Learning Sparrow Search Algorithm

3.1. Opposition-Based Learning Strategy Based on Lens
Principle. ,e discoverer leads other individuals to search
for food, and the search method directly affects the overall
search performance, so the discoverer must have a wide
range and flexible search mechanism. To solve these
problems, researchers have proposed the corresponding
learning mechanism [21–23]. ,e general opposition-based
learning strategy only solves the problem in a certain space
[24–26], which still has monotonicity and risk of local
optimization. As for this phenomenon, this paper provides
two fusion opposition-based learning strategies to jointly
improve the searchability of the discoverer. ,e opposition-
based learning strategy based on the lens principle [27] is
used to effectively update the location of the discoverer. ,e
schematic diagram is shown in Figure 1. It is the opposition-
based learning solution of the lens principle that is flexible
and diverse, which is conducive to mining new solutions in
the unknown area and increasing the diversity of the
population. ,e principle is as follows:

In a certain space, suppose an individual P of height h,
and individual Xp is the projection of individual P onto the
X-axis. A lens of focal length f is placed on the base point
position O, O is the midpoint of [aj, bj], and aj and bj

represent the upper and lower limits of the jth dimension of
the current solution. An image P′ of height H′ is obtained by
the lens imaging process, and its projection on the coor-
dinate axis is XP

′ (reverse point). At this point, XP
′ is the new

individual generated by Xp through the opposition-based
learning strategy based on the principle of lens imaging.
,e schematic diagram is shown in Figure 1.

As shown in Figure 1, the corresponding reverse point
XP
′ of individualXp is obtained by takingO as the base point,

which can be obtained by the lens imaging principle:
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a + b/2 − xp

xp
′ − a + b/2

�
h

h′
. (4)

Let h/h′ � k, and k is the scaling factor. After trans-
formation, the reverse point can be obtained as

xp
′ �

a + b

2
+

a + b

2k
−

xp

k
. (5)

,us, when k� 1,

xp
′ � a + b − xp. (6)

Formula (6) is called a general opposition-based learning
strategy. From the above formulas, it is known that the
general learning strategy is only a specific case of lens im-
aging opposition-based learning strategy, and the new in-
dividuals obtained by the general opposition-based learning
strategy are fixed each time. In high-dimensional complex
functions, new individuals with the fixed range also have the
possibility of falling into the local optimum, and they are
monotonic. By adjusting the parameter K, the new indi-
viduals based on the lens imaging learning strategy are
dynamic, which improves the diversity of the population.

In this paper, we generalize the formula to the d-di-
mensional space:

x
’j
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aj + bj

2
+

aj + bj

2k
−

x
j
p

k
. (7)

In formula (7), x
j
p and x

′j
p are the j-dimensional com-

ponents of xp and xp
′, respectively, and aj and bj represent the

j-dimensional components of the upper and lower bounds of
decision variables, respectively.

3.2. Opposition-Based Learning of the Worst Position.
After the discoverer has searched, the worst position they get
is not necessarily reliable. From formulas (2) and (3), it is
known that the worst solution will affect the later stage of
optimization, and the minimum value will give followers a
better search range. ,is means that updating at the worst
location is extremely important, which is also a point that
scholars tend to ignore, only pursuing the optimal location
and ignoring the integrity of the algorithm. ,is paper uses

the random opposition-based mechanism to update the
worst position; the specific formula is as follows:

xworst′ (t) � aj + rand · bj − xworst􏼐 􏼑. (8)

3.3. Guidance Strategy Based on Improved Sine-Cosine
Algorithm. In the follower location update formula of SSA,
the follower searches the location of the follower immedi-
ately after the discoverer, and there are few dynamic pa-
rameters, so it is easy to limit the search range of sparrow
population and blindness, which limits the searchability of
the algorithm. To solve these problems, the strategy of sine-
cosine guidance [28–30] is used in the follower stage to
dynamically update the sparrow’s individual position and
expand the search scope by using the sine-cosine charac-
teristics. ,e formula for updating follower positions with
sine-cosine strategy is

X
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X
t
i + r1 · sin r2( 􏼁 · r3 · X

t
P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, r4 ≤ 0.5,

X
t
i + r1 · cos r2( 􏼁 · r3 · X

t
P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, r4 > 0.5,

⎧⎪⎨

⎪⎩

(9)

r1 � a − t ·
a

M
. (10)

In the above formula, r1 is a parameter, determined by
the number of iterations, and it is the key to determine the
individual search range. As the number of iterations in-
creases, r1 gets smaller and smaller, and the sparrow search
range is also smaller and smaller. a is a constant, and the
value of a in this paper is 2. r2 is a random number in the
range [0, 2π], which determines the individual movement
distance; r3 and r4 are random numbers in [0, 2] and [0, 1],
respectively.

It can be seen from the formula that r1 uses linear decline
to balance the search scope, but this approach is easily
trapped into local optimal [31, 32] when facing high-di-
mensional complexity functions. ,erefore, this paper
adopts nonlinear decline to set r1 to balance local and global
search [33]. ,e specific formula is as follows:

h

Lens

P

O

f

xp

P′

h′
bj

X′p

Figure 1: Lens schematic diagram.
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r1 � c +
b

exp 4 ×(t/M)
4

􏼐 􏼑 + 1
. (11)

Among them, b is the fixed value of 0.1 and c is the
regulating factor. After many experiments, when c� 0.9, the
best effect is achieved.,e introduction of an improved sine-
cosine guidance strategy reduces the blindness of sparrow
searches, accelerates information exchange between indi-
viduals in the population and those in the best and worst
positions, and makes followers more purposeful in their
searches. According to the characteristics of the above
formulas, it is clear that the nonlinear decreasing parameters
make the search more detailed and improve the convergence
accuracy of the algorithm.

3.4. Local Search Based on Difference. Sparrows do not al-
ways get reliable optimal solutions for each search. Preco-
cious phenomena occur when local extremes are
encountered, which paralyzes the algorithm. In order to
overcome this limitation, a differential local search is pro-
posed to get rid of the attraction of local extremes and
improve the quality of the solution. P1 and P2 are the historic
optimal solution and the historic suboptimal solution of the
population, respectively, in the process of SSA optimization.
In this paper, the difference between the two solutions is
used to guide P1 to search for a reliable optimal solution in
the neighborhood. Differential guidance is accurate. ,is
strategy enables sparrows to search between solutions to
avoid missing high-quality solutions and blind searches. ,e
implementation is as follows:

P1′ � P1 + r · Ct · P1 − P2( 􏼁, (12)

where P1′ is the updated historical optimal solution, r is the
uniform random number between [−1, 1], and Ct is the local
scaling factor. In the early stage of the algorithm, P1 is far
away from the optimal solution, so a larger search range is
needed to speed up the search speed. In the later stage, the
distance is relatively short, and a smaller search range is
needed to achieve higher mining accuracy. ,erefore, the
idea of inertia weight is introduced here, and the linear
decline strategy is adopted. ,e range gradually shrinks as
the number of iterations increases:

Ct+1 � Ct ·
1 − i

M
􏼒 􏼓. (13)

,e greedy strategy is adopted to preserve the solution P1′
obtained by local search as follows:

P1 �
P1′, fit P1′( 􏼁> fit P1( 􏼁,

P1, otherwise,

⎧⎨

⎩ (14)

where fit(x) is the fitness value of x.

3.5. Learning Sparrow Search Algorithm. Compared with
other algorithms, the SSA has better performance, but it has
more random parameters, which leads to increased ran-
domness and the probability of falling into the local extreme

value. ,erefore, a learning sparrow search algorithm is
proposed in this paper. Two learning mechanisms are in-
troduced in the finder stage, and the opposition-based
learning based on the lens principle is adopted to enlarge the
finder search range, improve the diversity of the population,
and make the search method more flexible. In the follower
stage, an improved sine and cosine strategy is introduced to
adjust the sine and cosine by adopting a nonlinear de-
creasing method to reduce the blind search in the follower
stage and make its search method more detailed. In the end,
a local search based on difference is expounded to update the
optimal solution and promote the quality of the solution
during the iteration. ,e algorithm flow chart is shown in
Figure 2. ,e specific pseudocode is shown in Algorithm 1.

3.6. Algorithm Validity Test. For making it obvious that
LSSA improves the optimization mechanism of SSA and
verify the scientificity and effectiveness of the LSSA algo-
rithm, this paper takes the Schwefel function as an example
and gives the individual distribution map of the two algo-
rithms in the optimization process. Let the maximum
number of iterations be 20 and the population number be 50.
,e function model diagram is shown in Figure 3. ,e
individual distribution diagram of the two algorithms is
shown in Figures 4 and 5.

From Figures 4 and 5, the LSSA algorithm converges fast,
and most individuals are close to the optimal value, from the
initial individual to the final individual distribution, while
the SSA algorithm is still in a decentralized state, and the
convergence speed is slow. ,erefore, the LSSA algorithm’s
search mechanism is broad and detailed, and it can quickly
find the best in the optimization process.

3.7. Time Complexity Analysis. Time complexity is an im-
portant index to judge an algorithm and determine the
rationality of the algorithm. Let the population size of the
algorithm in this paper be P, the maximum number of it-
erations beM, the dimension be D, and the ratio coefficients
of discoverers and followers are R1 and R2, respectively. ,e
time complexity of this paper is analyzed as follows:

From a macropoint of view, the time of the intelligent
optimization algorithm is O(P × M × D), so is the sparrow
search algorithm. ,e improved sparrow search algorithm
not only does not change the structure of the algorithm but
also increases the number of cycles; in this way, its time
complexity is O(P × M × D), the same as the basic sparrow
search algorithm.

From amicroscopic point of view, the improved sparrow
search algorithm increases a certain amount of computa-
tional complexity, and the opposition-based learning of the
lens and the opposition-based learning of the worst position,
respectively, increase the complexity of O(R1 × P × M × D)

and O(M). ,e computational complexity of introducing
the sine and cosine guiding mechanism is
O(R2 × P × M × D), and the time complexity of introducing
the local search based on the difference is O(M). It can be
seen that the introduction of each strategy does not improve
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the order of magnitude of the sparrow search algorithm, and
the time complexity is still O(P × M × D).

4. Benchmark Function Test

In order to better verify the optimization ability of the LSSA
algorithm, this paper first selects 10 standard test functions
for verification and compares them with the six algorithms
of PSO, GWO, SSA, ISSA, CSSA, and BSO. BSO is a new and
hot research fusion algorithm in recent years. ,e specific
parameters are shown in the literature. ,e test function
information table is shown in Table 1. F1–F6 are complex
unimodal functions, and F7–F9 are high-dimensional
complex functions; the rest is a fixed-dimensional function,
where F1–F9 are tested in 30 and 100 dimensions. ,e
population size and maximum iteration number of each
algorithm are 100 and 500, respectively. ,e two learning
factors in the particle swarm algorithm are c1� c2�1.429
and weight w � 0.729, and each algorithm runs 30 times
independently and calculates the best value (best), average
(Ave), and standard deviation (std) of the running results.
,ree indicators comprehensively evaluate the optimization
ability of each algorithm in function. For performance
evaluation, simulations are performed on Windows 10
having Matlab 2019a, Intel(R) Core (TM) i5-10200H CPU@
2.40GHz with 16GB RAM.

From Tables 2 and 3, the LSSA algorithm exhibits good
optimization effects in both 30 and 100 dimensions. In the
unimodal function, both LSSA and basic SSA algorithm can

find the optimal value, indicating that the LSSA algorithm
does not reduce the optimization ability of the algorithm
itself, which shows the rationality of the LSSA algorithm. In
the multimodal function, LSSA can show a strong optimi-
zation ability and has better convergence accuracy than
other algorithms, and it does not significantly weaken the
optimization ability of the LSSA algorithm in the 100 di-
mensions. In the fixed dimension function F10–F12, the LSSA
algorithm has good stability and can find the same value
almost every time, which is close to the theoretical optimal
value.

In order to better describe the optimization process and
convergence speed of each algorithm, the 30-dimensional
convergence graph of each algorithm on each function is
given, as shown in Figure 6.

As shown in Figure 6, LSSA has great advantages in the
optimization speed and convergence accuracy of each
function. It converges quickly on the unimodal function and
has better antilocal attraction ability on the multimodal
function. It can be seen that the LSSA algorithm gets rid of
the constraints of the original algorithm’s search mechanism
and develops a better search space.

5. CEC 2017 Function Test

5.1. Algorithm Complexity. According to the requirements
of CEC 2017 test standard, the complexity of the proposed
algorithm needs to be calculated. ,erefore, the following
code is used to calculate the running time T0 of LSSA:

Input
M: Maximum number of iterations
PD: Discoverer
SD: Individuals who are aware of the danger
R2: Alert value
N: Population sparrows
Output: Xbest, fg

Initialize population
t� 1;
While (t<M)
Find the position of the best and worst sparrow individuals according to fitness values.
R2 � rand(1)
For i� 1 : PD
Update the location of the discoverers according to formulas (1) and (7);
End for
Update the worst location found by the discoverer according to formula (8);
For i� (PD+ 1) : N
Update the location of the followers according to formulas (2) and (9);
End for
For l� 1 : SD
Get the individual position of a sparrow that is aware of danger according to formula (3);
End for
Get the Location of the New Optimal Individual;
Update the individual location according to formulas (12)–(14);
t� t+ 1
End while
Return: Xbest, fg

ALGORITHM 1: ,e framework of the LSSA.
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for i� 1 :1,000,000
x� 0.55 + double(i); x� x+ x; x� x/2; x� x∗ x;
x� sqrt(x); x� log(x); x� exp(x); x� x/(x+ 2);
end

T1 is the calculation time of the F18 function under
200,000 evaluation times, and T2 is the average calculation
time of the F18 function for 5 times under the same con-
dition. ,e specific algorithm complexity is shown in
Table 4.

5.2. Function Test. Experiments on benchmark functions
alone cannot show the universality and effectiveness of the
algorithm. To better illustrate the effectiveness of the LSSA
algorithm and avoid the situation that the LSSA algorithm
depends on the optimal value of 0, the algorithm is tested on
CEC 2017 test function [34], and the number of evaluations
is 10,000∗ dim, the dimension is 50 or 30, and the pop-
ulation number is 50. ,e test results of LSSA and SSA,
CSSA, MSSCS, CSsin, and FA-CL are compared, and the
specific parameters of each algorithm are shown in Table 5.
Each algorithm runs 30 times independently and calculates
five indexes of the results of each algorithm running on the
function, namely, the best, the worst, the median, the mean,
and the standard deviation. Each index can clearly reflect the
optimization ability of each algorithm.,e best value in each
indicator is treated in bold font. At the same time, the
Wilcoxon rank test is used to show whether there is a
significant difference in each algorithm, and the experiment
is carried out at the significance level of 5%. “ + ” means that
the LSSA algorithm is better than other algorithms in the
optimization effect, “−” means the opposite, and “� ” means
the same performance. Finally, the comparison of each al-
gorithm is counted. ,e test results are shown in Tables 6
and 7.

Start

Initialize the initial
position and the number of
populations and iterations. 

Calculate the cost function
of each population to find

the maximum and minimum
values of the cost function. 

Update the location of the
discoverers according to

formulas (1) and (7) 

Update the worst location
found by the discoverer

according to formula (8) 

Update the location of the
sparrow aware of the danger. 

Has the maximum number of
iterations been reached? 

Output best position
and minimum cost 

Yes

No

End

Get the minimum cost
and corresponding

position 

Update the location of the
followers according to
formulas (2) and (9) 

Update the individual
 location according to formulas

(12)–(14)

Figure 2: Algorithm flowchart.
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Figure 3: Schematic diagram of the Schwefel function.
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From Tables 6 and 7, it is apparent that LSSA has a better
optimization effect in both 30 and 50 dimensions, and each
function is close to the theoretical optimal value, but the
effect on the F4 function is poor. AlthoughMSSCS and CSsin
have better optimization effects, they show the very poor
effects on F1, F3, and F12-13 in 50 dimensions. It can be seen
that these two algorithms have limitations in this kind of
problem. Other algorithms perform poorly and rarely ap-
proach the theoretical optimal value. From the statistical
test, the LSSA algorithm is significantly different from other
algorithms, showing better advantages, and some functions
are similar to MSSCS and CSsin. Generally speaking, the
LSSA algorithm has high universality and is more suitable
for some complex optimization problems than other
algorithms.

6. Robot Path Planning

,is paper takes the classic robot path planning case to
explore it. In path planning, each sparrow is a feasible path.

Suppose that there are n feasible paths, and dimension D is
determined by the number of lines from the starting point to
the target point. ,e grid method is used for environment
modeling, and the grid method is to use 1× 1. According to
the grid value, the obstacles in the equivalent position are
calculated. Grid number 0 is defined as the feasible area, and
1 is the obstacle area. ,en, the robot can plan the path on
the grid assigned to 0, and dimension D is the column
number of the grid map.,e cost function of the path length
of the ith sparrow is shown in the following equation:

f(x) � 􏽘
D−1

j�1

����������������������

xj+1 + xj􏼐 􏼑
2

+ yj+1 − yj􏼐 􏼑
2

􏽲

. (15)

In equation (12), j is the jth dimension of a sparrow.
In order to better verify the practicability of the im-

proved algorithm, LSSA is applied to robot path planning
and SSA is used for comparative experiments. ,e number
of populations is 50, and the number of iterations is 20.
Other environmental parameters are consistent with the
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Figure 4: Individual distribution of SSA. (a) SSA individual initialization map. (b) Individual distribution of SSA in 100 generations.
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Figure 5: Individual distribution of LSSA. (a) LSSA individual initialization map. (b) Individual distribution of LSSA in 100 generations.
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Table 2: Comparison table of optimization effect of each algorithm (30 dimensions and fixed dimensions).

Function Algorithm Best Ave Std

F1(x)

LSSA 0 0 0
BSO 1.8337 9.2351 8.0567
CSSA 0 0 0
ISSA 0 0 0
SSA 0 0 0
GWO 2.9726E− 42 9.9797E− 41 2.3113E− 40
PSO 1.562E− 12 7.3034E− 11 1.5384E− 10

F2(X)

LSSA 0 0 0
BSO 9.4317E− 10 5.8438 19.6417
CSSA 0 0 0
ISSA 0 0 0
SSA 0 7.0603E− 92 3.8713E− 91
GWO 1.2722E− 15 1.6521E− 11 5.6379E− 11
PSO 2.4597 6.8764 4.6663

F3(X)

LSSA 0 0 0
BSO 0.0417 1.5546 1.2080
CSSA 0 0 0
ISSA 0 3.7672E− 158 2.0634E− 157
SSA 0 0 0
GWO 1.0249E− 11 1.3528E− 10 1.3629E− 10
PSO 0.06008 0.1756 0.08657

F4(X)

LSSA 1.3707E− 10 8.2877E− 06 1.5080E− 05
BSO 233.8862 971.7400 841.0884
CSSA 3.47E− 09 7.3760E− 05 1.0942E− 04
ISSA 1.0562E− 07 1.2681E− 04 2.7208E− 04
SSA 7.6415E− 09 3.1722E− 05 5.9606E− 05
GWO 45.1861 46.6720 0.7848
PSO 10.0094 102.2121 51.6541

F5(X)

LSSA 0 8.3405E− 32 1.7901E− 31
BSO 0 3.6491E− 21 1.9700E− 20
CSSA 2.4651E− 32 6.1469E− 29 1.7338E− 28
ISSA 4.6878E− 29 1.3501E− 25 3.1929E− 25
SSA 3.0814E− 32 2.7691E− 29 7.1572E− 29
GWO 3.3762E− 07 1.0734E− 06 3.7183E− 07
PSO 8.9363E− 32 1.9760E− 30 5.1909E− 30

F6(X)

LSSA 7.5495E− 06 3.6715E− 04 3.4039E− 04
BSO 1.8821E− 03 8.0499E− 03 4.1052E− 03
CSSA 1.5867E− 05 1.7275E− 04 1.2860E− 04
ISSA 1.0528E− 05 2.2030E− 04 1.7169E− 04
SSA 8.2819E− 06 1.6418E− 04 1.7567E− 04
GWO 1.8171E− 04 5.6482E− 04 3.1679E− 04
PSO 7.1929E− 03 1.8162E− 02 7.2361E− 03

F7(X)

LSSA −12569.4866 −12151.0951 724.9186
BSO −12569.4866 −11205.6626 1020.4548
ISSA −10141.2347 −9080.1757 568.2124
CSSA −10022.9333 −9045.4556 574.4343
SSA −10258.1903 −8724.1633 718.2918
GWO −8262.1714 −6362.1144 709.0298
PSO −8324.1386 −6844.9716 752.6817

F8(X)

LSSA 3.5924E− 19 1.5863E− 15 3.8647E− 15
BSO 0.1323 0.9448 0.6457
CSSA 8.7326E− 15 2.3930E− 12 4.4060E− 12
ISSA 1.9914E− 14 2.6662E− 12 5.2284E− 12
SSA 3.4524E− 15 1.4887E− 11 3.5684E− 11
GWO 1.4151E− 06 0.01468 9.2774E− 03
PSO 6.4837E− 14 0.08643 0.2527
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Table 2: Continued.

Function Algorithm Best Ave Std

F9(X)

LSSA 4.9797E− 04 719.9689 812.9308
BSO 3.8182E− 04 1272.5502 983.9231
CSSA −9082.3593 −8132.3934 763.6265
ISSA 2191.2870 3460.1076 584.0178
SSA 2587.7399 4017.9491 668.5352
GWO 4518.4944 6050.6684 801.1268
PSO 4601.8502 6257.0871 952.5740

F10(X)

LSSA 0 0 0
BSO 0 0.3556 0.3866
CSSA 0 1.8488E− 33 7.0361E− 33
ISSA 0 0 0
SSA 0 8.2173E− 33 4.5008E− 32
GWO 3.2417E− 10 4.6721E− 08 3.9041E− 08
PSO 0 0 0

F11(X)

LSSA 7.1484E− 17 1.0144E− 09 3.9939E− 09
BSO 0 0.4704 1.7733
CSSA 8.9576E− 13 1.1160E− 08 2.0300E− 08
ISSA 2.8781E− 12 1.1195E− 07 2.9258E− 07
SSA 2.6178E− 13 2.3804E− 07 1.0194E− 06
GWO 3.5322E− 06 0.1966 0.4975
PSO 6.6552E− 07 8.9930E− 04 8.7012E− 03

F12(X)

LSSA 0.998 0.998 0
BSO 0.998 1.8886 1.4519
CSSA 0.998 1.0641 0.3622
ISSA 0.998 2.3662 3.3602
SSA 0.998 2.4984 3.3421
GWO 0.998 1.7255 0.9724
PSO 0.998 1.1305 0.3436

Table 3: Comparison table of optimization effect of each algorithm (100 dimensions).

Function Algorithm Best Ave Std

F1(x)

LSSA 0 0 0
BSO 195.6467 757.4745 391.4064
CSSA 0 0 0
ISSA 0 0 0
SSA 0 0 0
GWO 5.0820E− 18 2.6308E− 17 2.1089E− 17
PSO 1.0668 12.4586 30.0289

F2(X)

LSSA 0 0 0
BSO 0.0680 154.2623 315.1105
CSSA 0 1.9637E− 206 0
ISSA 0 0 0
SSA 0 1.0517E− 212 0
GWO 0.4399 11.8139 13.5850
PSO 6831.9888 4185.5172 7632.0184

F3(X)

LSSA 0 0 0
BSO 0.04267 1.7935 1.3896
CSSA 0 1.1926E− 184 0
ISSA 0 1.3563E− 144 7.4285E− 144
SSA 0 1.9421E− 165 0
GWO 2.0983E− 03 0.05209 0.0865
PSO 7.3782 9.5753 1.2667
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above CEC 2017 test. Each algorithm works in a 15×15
model, and the optimal route is shown in Figure 7. In order
to eliminate the chance, each algorithm is tested 10 times,
and the optimal route, average route, and worst route of each
algorithm are counted. ,ree indicators are used to measure
the stability and feasibility of each algorithm in this ex-
periment. ,e optimization statistics of each algorithm are
shown in Table 8.

It can be seen from Table 8 and Figure 7 that the
minimum cost of LSSA planning is 19.7990, while the
minimum cost of SSA is 25.4558. It can be seen that the route
planning ability of LSSA is strong, and through the average
value and the worst value, it can be seen that the route
planned by LSSA has good stability. ,erefore, LSSA has a

good effect on robot path planning and can plan a more
stable and safe route.

7. Conclusions

A learning sparrow search algorithm is proposed in this
paper, overcoming the shortcomings of the SSA. ,e lens
reverse learning and random reverse learning are introduced
in the discoverer’s position and the worst position, re-
spectively, which make the discoverer’s search method more
flexible. ,en, the improved sine-cosine guidance makes the
follower search more detailed. Finally, the local search based
on the difference is used to update the optimal solution,
which improves the quality of each solution.

Table 3: Continued.

Function Algorithm Best Ave Std

F4(X)

LSSA 2.9056E− 09 2.6894E− 05 2.4742E− 05
BSO 1077.0368 1.3748E+ 04 1.3239E+ 04
CSSA 4.2237E− 08 2.5499E− 04 3.4620E− 04
ISSA 2.1761E− 07 2.6971E− 04 6.66094E− 04
SSA 9.1735E− 09 7.9045E− 05 1.3805E− 04
GWO 95.6787 96.9734 0.9208
PSO 651.0884 3221.6846 6748.9024

F5(X)

LSSA 2.5013E− 11 9.1120E− 08 1.8203E− 07
BSO 244.9986 777.9455 539.4453
CSSA 4.0102E− 10 2.6523E− 07 3.6092E− 07
ISSA 4.5456E− 11 1.9716E− 07 3.2439E− 07
SSA 2.2699E− 10 9.0256E− 08 1.3690E− 07
GWO 5.3138 6.7272 0.6593
PSO 1.0675 4.4194 5.3378

F6(X)

LSSA 2.4150E− 06 1.2529E− 04 8.5801E− 05
BSO 0.02903 0.1136 0.06599
CSSA 3.137E− 05 3.1911E− 04 3.8926E− 04
ISSA 1.1119E− 05 2.3439E− 04 1.9717E− 04
SSA 2.4052E− 06 2.3133E− 04 1.8927E− 04
GWO 9.4823E− 04 2.6521E− 03 1.1372E− 03
PSO 0.4998 1.1219 0.3632

F7(X)

LSSA −41082.3952 −36443.6428 4817.9562
BSO −40261.0069 −33461.9674 3925.7756
ISSA −26395.4326 −24633.4955 981.1676
CSSA −26934.0704 −24515.6636 1327.8950
SSA −27320.1874 −24637.4984 1078.1888
GWO −22404.2115 −16606.7711 2437.1531
PSO −23435.5935 −20056.7171 2277.0807

F8(X)

LSSA 1.1891E− 15 1.9561E− 12 3.1614E− 12
BSO 0.1178 0.9327 0.6212
CSSA 2.6323E− 15 1.1686E− 11 2.9995E− 11
ISSA 2.4668E− 10 2.1636E− 07 1.1233E− 06
SSA 2.1460E− 15 7.6085E− 12 2.1375E− 11
GWO 2.1287E− 06 0.01593 9.1126E− 03
PSO 2.3296E− 13 0.08298 0.1774

F9(X)

LSSA 0.4063 4843.1939 4063.8163
BSO 1803.1299 7726.7640 4238.1062
CSSA 1.4004E+ 04 1.7119E+ 04 1070.6257
ISSA 2191.2870 3460.1076 584.0178
SSA 1.4549E+ 04 1.7425 + 04 1198.2007
GWO 2.0063E+ 04 2.4918E+ 4 2683.4939
PSO 1.6965E+ 04 2.2306E+ 04 4297.4782
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Figure 6: Continued.
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Table 4: Complexity of the LSSA algorithm.

Dim T0 T1 T2 |T2 −T1|/T0

30 0.0838 4.9412 3.9684 11.6085
50 9.1498 5.3006 54.1031

Table 5: Parameters of each algorithm.

Algorithm SSA CSSA MSSCS CSsin FA-CL LSSA

Parameter Discoverers� 0.2×N
Investigators� 0.6×N

Discoverers� 0.2×N
Investigators� 0.6×N

α� 0.01
β� 1.5
Pa � 0.25
C� 0.2

PAmax � 0.35
PAmin � 0.25

Pmax � 0.75
Pmax � 0.25
Freq� 0.5

α� 0.01
βmin � 0.2
β� 1
c � 1

Discoverers� 0.2×N
Investigators� 0.6×N

Table 6: Test results of each algorithm in CEC 2017(dim� 30).

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F1(x)

Best 1.01E+ 02 1.03E+ 02 1.00E+ 10 1.00E+ 10 8.21E+ 05 1.10E+ 02
Worst 2.03E+ 04 1.98E+ 04 1.00E+ 10 1.00E+ 10 1.85E+ 06 1.86E+ 04
Median 2.12E+ 03 4.55E+ 03 1.00E+ 10 1.00E+ 10 1.20E+ 06 1.84E+ 03
Mean 4.80E+ 03 6.27E+ 03 1.00E+ 10 1.00E+ 10 1.28E+ 06 4.47E+ 03
Std 5.74E+ 03 5.94E+ 03 0.00E+ 00 0.00E+ 00 2.96E+ 05 5.61E+ 03
P 0.8073(�) 0.0484(+) 1.21E− 12(+) 1.21E− 12(+) 3.02E− 11(+)

F3(x)

Best 3.52E+ 02 3.00E+ 02 3.08E+ 02 3.14E+ 02 8.98E+ 02 3.00E+ 02
Worst 2.48E+ 03 3.00E+ 02 1.07E+ 03 8.75E+ 02 5.10E+ 03 3.00E+ 02
Median 7.72E+ 02 3.00E+ 02 4.21E+ 02 4.15E+ 02 1.91E+ 03 3.00E+ 02
Mean 9.05E+ 02 3.00E+ 02 4.82E+ 02 4.55E+ 02 2.25E+ 03 3.00E+ 02
Std 2.93E+ 01 1.77E− 03 1.64E+ 01 1.27E+ 02 2.17E+ 01 8.17 E− 04
P 3.02E− 11(+) 0.0292(+) 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+)

F4(X)

Best 4.00E+ 02 4.28E+ 02 4.00E + 02 4.00E + 02 4.68E+ 02 4.00E+ 02
Worst 5.21E+ 02 5.17E+ 02 4.89E+ 02 4.67E+ 02 5.32E+ 02 4.64E+ 02
Median 4.74E+ 02 4.90E+ 02 4.84E+ 02 4.04E+ 02 5.15E+ 02 4.01E+ 02
Mean 4.72E+ 02 4.94E+ 02 4.65E+ 02 4.18E+ 02 5.06E+ 02 4.09E+ 02
Std 2.93E+ 01 2.12E+ 01 3.30E+ 01 2.41E+ 01 2.17E+ 01 1.64E + 01
P 1.41E− 09(+) 4.08E− 11(+) 1.10E− 08(+) 0.1241(�) 3.02E− 11(+)

F5(X)

Best 5.69E+ 02 6.14E+ 02 5.36E+ 02 5.26E + 02 6.36E+ 02 5.54E+ 02
Worst 8.27E+ 02 8.01E+ 02 5.73E+ 02 5.69E + 02 7.33E+ 02 5.96E+ 02
Median 7.56E+ 02 7.03E+ 02 5.58E+ 02 5.53E + 02 6.91E+ 02 5.79E+ 02
Mean 7.53E+ 02 7.01E+ 02 5.57E+ 02 5.52E + 02 6.84E+ 02 5.77E+ 02
Std 5.71E+ 01 4.74E+ 01 9.13E+ 00 9.40E+ 00 2.59E+ 01 1.08E+ 01
P 2.87E− 10(+) 3.02E− 11(+) 4.31E− 08(−) 1.17E− 09(−) 3.02E− 11(+)

F6(X)

Best 6.13E+ 02 6.09E+ 02 6.00E + 02 6.00E + 02 6.28E+ 02 6.00E+ 02
Worst 6.59E+ 02 6.37E+ 02 6.00E + 02 6.00E + 02 6.57E+ 02 6.00E+ 02
Median 6.40E+ 02 6.21E+ 02 6.00E + 02 6.00E + 02 6.46E+ 02 6.00E+ 02
Mean 6.40E+ 02 6.21E+ 02 6.00E + 02 6.00E + 02 6.45E+ 02 6.00E+ 02
Std 1.12E+ 02 6.40E+ 00 1.08E+ 01 6.79E− 03 9.34E+ 01 1.06E− 03
P 3.02E− 11(+) 3.02E− 11(+) 4.34E− 05(+) 0.002156(+) 3.02E− 11(+)

F7(X)

Best 1.02E+ 03 8.66E+ 02 7.82E+ 02 7.69E+ 02 8.86E+ 02 7.60E+ 02
Worst 1.37E+ 03 1.26E+ 03 8.27E+ 02 8.07E+ 02 1.26E+ 03 8.04E+ 02
Median 1.27E+ 03 9.66E+ 02 8.07E+ 02 7.92E+ 02 1.07E+ 03 7.87E+ 02
Mean 1.23E+ 03 1.00E+ 03 8.08E+ 02 7.90E+ 02 1.07E+ 03 7.86E+ 02
Std 1.12E+ 02 1.08E+ 02 1.03E+ 01 8.80E + 00 9.34E+ 01 1.08E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 8.48E− 09(+) 0.20620(�) 3.02E− 11(+)
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Table 6: Continued.

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F8(X)

Best 9.22E+ 02 8.64E+ 02 8.42E+ 02 8.40E+ 02 8.74E+ 02 8.39E+ 02
Worst 1.03E+ 03 1.01E+ 03 9.03E+ 02 8.75E+ 02 9.80E+ 02 8.77E+ 02
Median 9.79E+ 02 9.45E+ 02 8.81E+ 02 8.61E+ 02 9.26E+ 02 8.60E+ 02
Mean 9.75E+ 02 9.42E+ 02 8.78E+ 02 8.59E+ 02 9.23E+ 02 8.58E+ 02
Std 2.41E+ 01 2.93E+ 01 1.51E+ 01 1.00E+ 01 2.42E+ 01 9.56E+ 00
P 3.02E− 11(+) 7.39E− 11(+) 2.32E− 06(+) 0.6414(�) 3.34E− 11(+)

F9(X)

Best 4.50E+ 03 1.95E+ 03 9.00E + 02 9.00E + 02 2.27E+ 03 9.00E+ 02
Worst 5.47E+ 03 5.86E+ 03 9.49E+ 02 9.26E + 02 6.12E+ 03 9.93E+ 02
Median 5.39E+ 03 5.15E+ 03 9.05E+ 02 9.05E+ 02 4.53E+ 03 9.04E+ 02
Mean 5.30E+ 03 4.74E+ 03 9.07E + 02 9.07E + 02 4.31E+ 03 9.11E+ 02
Std 5.53E+ 02 9.76E+ 02 3.25E+ 02 7.14E+ 00 6.15E+ 02 1.79E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 0.66272(�) 0.9823(�) 3.02E− 11(+)

F10(X)

Best 4.01E+ 03 4.06E+ 03 3.24E+ 03 2.31E+ 03 3.61E+ 03 2.76E+ 03
Worst 6.07E+ 03 5.93E+ 03 4.81E+ 03 3.95E+ 03 6.19E+ 03 3.92E+ 03
Median 5.07E+ 03 4.71E+ 03 4.10E+ 03 3.38E+ 03 5.19E+ 03 3.36E+ 03
Mean 5.16E+ 03 4.83E+ 03 4.03E+ 03 3.35E + 03 5.03E+ 03 3.36E+ 03
Std 5.53E+ 02 5.42E+ 02 3.25E + 02 3.97E+ 02 6.15E+ 02 3.25E+ 02
P 3.02E− 11(+) 3.02E− 11(+) 1.01E− 08(+) 0.91170(�) 8.99E− 11(+)

F11(X)

Best 1.18E+ 03 1.14E+ 03 1.10E+ 03 1.11E+ 03 1.16E+ 03 1.11E+ 03
Worst 1.42E+ 03 1.48E+ 03 1.14E+ 03 1.14E+ 03 1.32E+ 03 1.15E+ 03
Median 1.29E+ 03 1.30E+ 03 1.12E+ 03 1.12E+ 03 1.22E+ 03 1.12E+ 03
Mean 1.30E+ 03 1.30E+ 03 1.12E+ 03 1.12E+ 03 1.23E+ 03 1.12E+ 03
Std 6.50E+ 01 7.29E+ 01 8.27E+ 00 7.78E+ 00 4.49E+ 01 7.72E+ 00
P 3.02E− 11(+) 3.34E− 11(+) 0.2707(�) 0.2588(�) 3.02E− 11(+)

F12(X)

Best 4.55E+ 04 1.32E+ 04 1.75E+ 04 8.77E + 03 1.29E+ 06 2.07E+ 04
Worst 3.89E+ 05 1.35E+ 05 1.00E+ 10 1.00E+ 10 9.36E+ 06 1.05E+ 05
Median 1.42E+ 05 4.27E+ 04 1.00E+ 10 1.00E+ 10 3.59E+ 06 5.48E+ 04
Mean 1.64E+ 05 4.83E+ 04 5.67E+ 09 5.34E + 09 4.18E+ 06 5.37E+ 04
Std 1.04E+ 04 2.58E+ 04 6.46E+ 09 5.07E+ 09 3.20E+ 04 2.18E+ 04
P 6.01E− 08(+) 1.83E− 05(+) 0.000386(+) 0.01727(+) 3.02E− 11(+)

F13(X)

Best 1.45E+ 03 2.79E+ 03 1.67E+ 03 1.35E + 03 5.41E+ 04 1.35E+ 03
Worst 5.02E+ 04 6.67E+ 04 7.40E+ 03 1.00E+ 10 2.11E+ 05 1.57E+ 03
Median 6.67E+ 03 8.49E+ 03 2.52E+ 03 1.42E+ 03 1.19E+ 05 1.41E+ 03
Mean 1.05E+ 04 1.44E+ 04 2.89E+ 03 6.67E+ 08 1.13E+ 05 1.43E+ 03
Std 1.04E+ 04 1.84E+ 04 1.18E+ 03 2.54E+ 09 3.20E+ 04 6.46E + 01
P 1.46E− 10(+) 3.02E− 11(+) 3.02E− 11(+) 0.1857(�) 3.02E− 11(+)

F14(X)

Best 2.70E+ 03 1.59E+ 03 1.45E+ 03 1.43E + 03 3.41E+ 03 1.43E+ 03
Worst 4.36E+ 04 1.74E+ 04 1.49E+ 03 1.46E + 03 5.26E+ 04 1.46E+ 03
Median 9.44E+ 03 4.69E+ 03 1.47E+ 03 1.44E + 03 2.86E+ 04 1.44E+ 03
Mean 1.12E+ 04 5.25E+ 03 1.47E+ 03 1.44E + 03 2.54E+ 04 1.44E+ 03
Std 8.21E+ 03 3.19E+ 03 8.17E+ 00 8.03E + 00 1.32E+ 04 8.04E+ 00
P 3.02E− 11(+) 3.02E− 11(+) 6.70E− 11(+) 0.1580(�) 3.02E− 11(+)

F15(X)

Best 2.01E+ 03 1.79E+ 03 1.57E+ 03 1.51E+ 03 1.94E+ 04 1.51E+ 03
Worst 4.62E+ 04 4.34E+ 04 1.62E+ 03 1.53E + 03 6.21E+ 04 1.54E+ 03
Median 1.01E+ 04 4.19E+ 03 1.59E+ 03 1.52E + 03 4.36E+ 04 1.52E+ 03
Mean 1.62E+ 04 9.43E+ 03 1.59E+ 03 1.52E + 03 4.08E+ 04 1.52E+ 03
Std 3.42E+ 02 1.06E+ 04 1.26E+ 01 5.28E + 00 3.21E+ 02 2.08E+ 02
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 0.1536(�) 3.02E− 11(+)

F16(X)

Best 2.25E+ 03 2.20E+ 03 1.71E+ 03 1.76E+ 03 2.49E+ 03 1.82E+ 03
Worst 3.62E+ 03 3.39E+ 03 2.45E+ 03 2.42E + 03 3.68E+ 03 2.35E+ 03
Median 2.96E+ 03 2.77E+ 03 2.02E + 03 2.05E+ 03 3.07E+ 03 2.03E+ 03
Mean 2.93E+ 03 2.74E+ 03 2.05E + 03 2.07E+ 03 3.09E+ 03 2.07E+ 03
Std 3.42E+ 02 3.21E+ 02 2.08E+ 02 1.69E+ 02 3.21E+ 02 1.53E+ 02
P 6.70E− 11(+) 2.61E− 10(+) 0.5011(�) 0.6734(�) 3.02E− 11(+)
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Table 6: Continued.

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F17(X)

Best 1.98E+ 03 1.79E+ 03 1.76E+ 03 1.73E + 03 1.79E+ 03 1.73E+ 03
Worst 2.88E+ 03 2.71E+ 03 1.89E + 03 1.99E+ 03 2.54E+ 03 1.96E+ 03
Median 2.47E+ 03 2.23E+ 03 1.79E+ 03 1.80E+ 03 2.08E+ 03 1.77E+ 03
Mean 2.47E+ 03 2.26E+ 03 1.80E+ 03 1.82E+ 03 2.13E+ 03 1.79E+ 03
Std 2.33E+ 02 2.21E+ 02 2.87E+ 01 6.63E+ 01 2.40E+ 02 5.62E + 01
P 3.02E− 11(+) 1.78E− 10(+) 0.005828(+) 0.07978(�) 9.76E− 10(+)

F18(X)

Best 2.71E+ 04 8.67E+ 03 1.15E+ 04 1.87E + 03 5.21E+ 04 1.89E+ 03
Worst 5.02E+ 05 2.96E+ 05 7.70E+ 04 2.81E+ 03 6.73E+ 05 2.51E+ 03
Median 1.15E+ 05 1.07E+ 05 3.44E+ 04 1.98E + 03 2.36E+ 05 1.98E+ 03
Mean 1.56E+ 05 1.12E+ 05 3.59E+ 04 2.07E+ 03 2.47E+ 05 2.01E+ 03
Std 1.60E+ 04 7.56E+ 04 1.24E+ 04 2.33E+ 02 5.79E+ 05 2.63E+ 00
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 0.7844(�) 3.02E− 11(+)

F19(X)

Best 2.06E+ 03 2.27E+ 03 1.94E+ 03 1.91E+ 03 2.16E+ 05 1.91E+ 03
Worst 5.35E+ 04 5.54E+ 04 1.97E+ 03 1.92E + 03 2.39E+ 06 1.92E+ 03
Median 6.25E+ 03 7.81E+ 03 1.95E+ 03 1.91E+ 03 1.39E+ 06 1.91E+ 03
Mean 1.37E+ 04 1.49E+ 04 1.95E+ 03 1.91E+ 03 1.32E+ 06 1.91E+ 03
Std 1.60E+ 04 1.56E+ 04 7.42E+ 00 2.22E + 00 5.79E+ 05 2.63E+ 00
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 0.7505(�) 3.02E− 11(+)

F20(X)

Best 2.26E+ 03 2.25E+ 03 2.02E + 03 2.02E + 03 2.26E+ 03 2.04E+ 03
Worst 3.05E+ 03 2.82E+ 03 2.34E+ 03 2.29E + 03 2.69E+ 03 2.31E+ 03
Median 2.58E+ 03 2.40E+ 03 2.16E+ 03 2.15E+ 03 2.31E+ 03 2.08E+ 03
Mean 2.62E+ 03 2.44E+ 03 2.14E+ 03 2.13E+ 03 2.37E+ 03 2.12E+ 03
Std 2.11E+ 02 1.49E+ 02 8.20E+ 01 8.12E+ 01 1.20E+ 02 6.43E + 01
P 4.50E− 11(+) 6.07E− 11(+) 5.01E− 01(�) 0.9351(�) 1.33E− 10(+)

F21(X)

Best 2.42E+ 03 2.39E+ 03 2.20E + 03 2.20E + 03 2.37E+ 03 2.20E+ 03
Worst 2.59E+ 03 2.57E+ 03 2.40E+ 03 2.38E + 03 2.60E+ 03 2.39E+ 03
Median 2.50E+ 03 2.47E+ 03 2.38E+ 03 2.36E+ 03 2.45E+ 03 2.35E+ 03
Mean 2.50E+ 03 2.47E+ 03 2.36E+ 03 2.35E+ 03 2.45E+ 03 2.34E+ 03
Std 1.95E+ 03 4.42E+ 01 6.33E+ 01 4.11E+ 01 9.25E− 01 1.19E+ 03
P 3.02E− 11(+) 3.02E− 11(+) 2.13E− 05(+) 0.5691(�) 3.69E− 11(+)

F22(X)

Best 2.30E+ 03 2.30E+ 03 2.30E + 03 2.30E + 03 2.31E+ 03 2.30E+ 03
Worst 7.73E+ 03 8.05E+ 03 5.48E+ 03 5.34E+ 03 2.31E+ 03 5.83E+ 03
Median 6.52E+ 03 5.69E+ 03 2.30E+ 03 2.30E+ 03 2.31E+ 03 2.30E+ 03
Mean 5.96E+ 03 4.81E+ 03 3.00E+ 03 3.10E+ 03 2.31E+ 03 2.53E+ 03
Std 1.95E+ 03 2.19E+ 03 1.19E+ 03 1.19E+ 03 9.25 E− 01 8.77E+ 02
P 1.49E− 06(+) 3.91E− 02(+) 6.55E− 04(+) 8.89E− 02(+) 8.48E− 09(−)

F23(X)

Best 2.77E+ 03 2.71E+ 03 2.66E+ 03 2.67E+ 03 2.82E+ 03 2.40E+ 03
Worst 3.00E+ 03 3.00E+ 03 2.73E + 03 2.73E + 03 3.01E+ 03 2.76E+ 03
Median 2.91E+ 03 2.83E+ 03 2.71E+ 03 2.71E+ 03 2.93E+ 03 2.72E+ 03
Mean 2.90E+ 03 2.84E+ 03 2.71E+ 03 2.71E+ 03 2.92E+ 03 2.70E+ 03
Std 5.30E+ 01 6.12E+ 01 1.40E + 01 1.49E+ 01 5.79E+ 01 6.38E+ 01
P 3.02E− 11(+) 1.96E− 10(+) 9.93E− 02(�) 1.22E− 01(�) 3.02E− 11(+)

F24(X)

Best 2.95E+ 03 2.92E+ 03 2.86E+ 03 2.86E+ 03 2.94E+ 03 2.60E+ 03
Worst 3.33E+ 03 3.15E+ 03 2.94E+ 03 2.91E+ 03 3.23E+ 03 2.91E+ 03
Median 3.08E+ 03 2.98E+ 03 2.90E+ 03 2.89E+ 03 3.07E+ 03 2.88E+ 03
Mean 3.10E+ 03 3.00E+ 03 2.90E+ 03 2.89E+ 03 3.07E+ 03 2.87E+ 03
Std 1.52E+ 01 5.59E+ 01 1.75E + 00 1.30E+ 01 2.19E+ 01 7.35E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 6.38E− 03(+) 9.63E− 02(�) 3.02E− 11(+)

F25(X)

Best 2.88E+ 03 2.88E+ 03 2.88E + 03 2.88E + 03 2.89E+ 03 2.88E+ 03
Worst 2.94E+ 03 2.94E+ 03 2.89E + 03 2.89E + 03 2.96E+ 03 2.89E+ 03
Median 2.89E+ 03 2.89E+ 03 2.89E + 03 2.89E + 03 2.94E+ 03 2.89E+ 03
Mean 2.90E+ 03 2.89E+ 03 2.89E + 03 2.89E + 03 2.93E+ 03 2.89E+ 03
Std 1.52E+ 01 1.32E+ 01 1.75E+ 00 1.61E+ 00 2.19E+ 01 6.12E− 01
P 6.74E− 06(+) 6.38E− 03(+) 8.77E− 02(�) 8.77E− 01(�) 5.07E− 10(+)
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Table 6: Continued.

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F26(X)

Best 3.67E+ 03 2.90E+ 03 2.80E + 03 2.80E + 03 2.83E+ 03 2.80E+ 03
Worst 7.70E+ 03 7.46E+ 03 4.58E+ 03 4.54E+ 03 7.86E+ 03 4.28E+ 03
Median 6.38E+ 03 5.99E+ 03 2.90E + 03 3.46E+ 03 4.81E+ 03 2.90E+ 03
Mean 6.33E+ 03 5.64E+ 03 3.33E+ 03 3.60E+ 03 4.77E+ 03 2.94E+ 03
Std 8.67E+ 02 1.37E+ 03 6.98E+ 02 7.26E+ 02 1.87E+ 03 2.55E+ 02
P 3.34E− 11(+) 3.32E− 06(+) 5.28E− 02(�) 6.19E− 01(�) 6.57E− 02(�)

F27(X)

Best 3.22E+ 03 3.20E+ 03 3.18E+ 03 3.17E+ 03 3.36E+ 03 3.17E+ 03
Worst 3.39E+ 03 3.32E+ 03 3.21E+ 03 3.22E+ 03 3.67E+ 03 3.21E+ 03
Median 3.27E+ 03 3.24E+ 03 3.20E+ 03 3.20E+ 03 3.47E+ 03 3.20E+ 03
Mean 3.27E+ 03 3.25E+ 03 3.20E+ 03 3.20E+ 03 3.48E+ 03 3.20E+ 03
Std 4.95E+ 01 2.64E+ 01 3.67E+ 01 1.08E+ 01 9.39E+ 00 9.01E+ 00
P 3.02E− 11(+) 1.21E− 10(+) 9.05E− 02(�) 5.94E− 02(�) 3.02E− 11(+)

F28(X)

Best 3.10E+ 03 3.10E+ 03 3.10E+ 03 3.10E+ 03 3.18E+ 03 3.10E+ 03
Worst 3.25E+ 03 3.26E+ 03 3.21E+ 03 3.20E + 03 3.21E+ 03 3.26E+ 03
Median 3.11E+ 03 3.10E+ 03 3.10E+ 03 3.10E+ 03 3.20E+ 03 3.10E+ 03
Mean 3.14E+ 03 3.14E+ 03 3.11E+ 03 3.12E+ 03 3.20E+ 03 3.14E+ 03
Std 4.95E+ 01 6.30E+ 01 3.67E+ 01 3.92E+ 01 9.39E + 00 5.94E+ 01
P 1.33E− 02(+) 8.07E− 01(�) 5.27E− 06(−) 6.29E− 05(−) 1.00E− 03(+)

F29(X)

Best 3.80E+ 03 3.60E+ 03 3.32E+ 03 3.29E+ 03 3.88E+ 03 3.28E+ 03
Worst 4.69E+ 03 4.43E+ 03 3.63E+ 03 3.56E + 03 4.84E+ 03 3.63E+ 03
Median 4.09E+ 03 3.98E+ 03 3.47E+ 03 3.44E+ 03 4.34E+ 03 3.41E+ 03
Mean 4.16E+ 03 4.00E+ 03 3.46E+ 03 3.44E+ 03 4.33E+ 03 3.43E+ 03
Std 2.40E+ 02 2.05E+ 02 8.23E+ 01 7.44E+ 01 2.72E+ 02 7.74E+ 01
P 3.02E− 11(+) 3.69E− 11(+) 1.05E− 01(�) 5.49E− 01(�) 3.02E− 11(+)

F30(X)

Best 5.80E+ 03 5.30E+ 03 7.68E+ 03 5.27E + 03 1.15E+ 06 5.33E+ 03
Worst 2.42E+ 04 2.13E+ 04 1.17E+ 04 6.27E + 03 4.46E+ 06 6.93E+ 03
Median 9.94E+ 03 7.31E+ 03 9.56E+ 03 5.74E+ 03 2.21E+ 06 5.67E+ 03
Mean 1.10E+ 04 9.26E+ 03 9.70E+ 03 5.74E + 03 2.52E+ 06 5.80E+ 03
Std 4.95E+ 01 4.15E+ 03 1.08E+ 03 2.81E+ 02 8.37E+ 05 3.67E + 01
P 2.37E− 10(+) 2.88E− 06(+) 3.02E− 11(+) 0.9117(�) 3.02E− 11(+)

+/� /− 28/1/0 28/1/0 18/9/2 5/22/2 27/1/1

(a) (b)

Figure 7: Minimum path planning. (a) LSSA. (b) SSA.
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Table 7: Test results of each algorithm in CEC 2017(dim� 50).

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F1(x)

Best 1.06E+ 02 1.02E+ 02 1.00E+ 10 1.00E+ 10 3.48E+ 06 1.01E+ 02
Worst 2.08E+ 04 2.29E+ 04 1.00E+ 10 1.00E+ 10 6.99E+ 06 9.93E+ 03
Median 2.31E+ 03 1.15E+ 03 1.00E+ 10 1.00E+ 10 5.22E+ 06 1.19E+ 03
Mean 3.05E+ 03 2.98E+ 03 1.00E+ 10 1.00E+ 10 5.16E+ 06 2.39E+ 03
Std 4.04E+ 03 4.48E+ 03 0.00E + 00 0.00E + 00 7.96E+ 05 2.74E+ 03
P 0.3870(�) 0.7171(�) 1.21E− 12(+) 1.21E− 12(+) 3.02E− 11(+)

F3(x)

Best 1.18E+ 03 3.01E+ 02 1.47E+ 04 1.25E+ 04 2.25E+ 04 3.00E+ 02
Worst 1.02E+ 04 3.09E+ 02 4.03E+ 04 3.89E+ 04 7.91E+ 04 3.01E+ 02
Median 5.66E+ 03 3.03E+ 02 2.51E+ 04 1.99E+ 04 4.52E+ 04 3.00E+ 02
Mean 5.60E+ 03 3.03E+ 02 2.63E+ 04 2.22E+ 04 4.48E+ 04 3.00E+ 02
Std 2.82E+ 03 1.55E+ 00 6.32E+ 03 7.45E+ 03 4.63E+ 01 1.09E − 01
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+)

F4(X)

Best 4.01E+ 02 4.08E+ 02 4.00E + 02 4.09E+ 02 4.75E+ 02 4.00E+ 02
Worst 6.17E+ 02 7.30E+ 02 6.61E+ 02 5.39E + 02 6.86E+ 02 5.40E+ 02
Median 4.72E+ 02 5.33E+ 02 5.46E+ 02 4.29E + 02 6.03E+ 02 4.73E+ 02
Mean 4.88E+ 02 5.35E+ 02 5.27E+ 02 4.47E + 02 5.87E+ 02 4.60E+ 02
Std 6.85E+ 01 6.81E+ 01 7.76E+ 01 3.46E+ 01 4.63E+ 01 3.38E + 01
P 2.52E− 01(�) 3.16E− 05(+) 1.77E− 03(+) 3.15E− 02(−) 9.92E− 11(+)

F5(X)

Best 8.19E+ 02 8.19E+ 02 6.21E+ 02 5.84E+ 02 7.43E+ 02 5.75E+ 02
Worst 9.22E+ 02 9.11E+ 02 6.89E+ 02 6.74E + 02 9.00E+ 02 6.90E+ 02
Median 8.77E+ 02 8.64E+ 02 6.55E+ 02 6.36E+ 02 7.94E+ 02 6.34E+ 02
Mean 8.69E+ 02 8.66E+ 02 6.54E+ 02 6.34E + 02 7.97E+ 02 6.35E+ 02
Std 2.72E+ 01 2.24E+ 01 1.94E+ 01 2.25E+ 01 3.72E+ 01 1.99E + 01
P 3.02E− 11(+) 3.02E− 11(+) 1.06E− 03(+) 9.23E− 01(�) 3.02E− 11(+)

F6(X)

Best 6.38E+ 02 6.33E+ 02 6.00E + 02 6.00E + 02 6.43E+ 02 6.00E+ 02
Worst 6.65E+ 02 6.63E+ 02 6.00E + 02 6.00E + 02 6.67E+ 02 6.00E+ 02
Median 6.53E+ 02 6.50E+ 02 6.00E + 02 6.00E + 02 6.60E+ 02 6.00E+ 02
Mean 6.53E+ 02 6.49E+ 02 6.00E + 02 6.00E + 02 6.59E+ 02 6.00E+ 02
Std 7.26E+ 00 9.15E+ 00 2.81E− 02 9.62E − 03 1.36E+ 02 2.70E− 02
P 3.02E− 11(+) 3.02E− 11(+) 3.03E− 02(+) 2.39E− 04(−) 3.02E− 11(+)

F7(X)

Best 1.30E+ 03 1.17E+ 03 8.65E+ 02 8.35E + 02 1.27E+ 03 8.59E+ 02
Worst 1.82E+ 03 1.82E+ 03 9.60E+ 02 9.36E+ 02 1.99E+ 03 9.26E+ 02
Median 1.75E+ 03 1.56E+ 03 9.14E+ 02 9.02E+ 02 1.70E+ 03 8.95E+ 02
Mean 1.68E+ 03 1.52E+ 03 9.16E+ 02 8.98E+ 02 1.67E+ 03 8.96E+ 02
Std 1.37E+ 02 1.94E+ 02 2.30E+ 01 2.08E+ 01 1.36E+ 02 1.44E + 01
P 3.02E− 11(+) 3.02E− 11(+) 1.58E− 04(+) 3.63E− 01(�) 3.02E− 11(+)

F8(X)

Best 1.10E+ 03 1.08E+ 03 8.83E+ 02 8.79E + 02 1.03E+ 03 9.20E+ 02
Worst 1.25E+ 03 1.26E+ 03 9.76E+ 02 9.65E + 02 1.20E+ 03 1.00E+ 03
Median 1.19E+ 03 1.19E+ 03 9.30E+ 02 9.29E + 02 1.10E+ 03 9.63E+ 02
Mean 1.18E+ 03 1.19E+ 03 9.32E+ 02 9.30E + 02 1.10E+ 03 9.61E+ 02
Std 4.05E+ 01 4.04E+ 01 1.80E+ 01 2.23E+ 01 3.66E+ 01 1.79E + 01
P 3.02E− 11(+) 3.02E− 11(+) 4.11E− 07(−) 1.61E− 06(−) 3.02E− 11(+)

F9(X)

Best 1.08E+ 04 1.03E+ 04 9.38E+ 02 9.22E+ 02 1.07E+ 04 9.01E+ 02
Worst 1.46E+ 04 1.38E+ 04 1.77E+ 03 1.18E + 03 2.04E+ 04 1.66E+ 03
Median 1.31E+ 04 1.30E+ 04 1.12E+ 03 1.01E + 03 1.52E+ 04 1.06E+ 03
Mean 1.29E+ 04 1.27E+ 04 1.16E+ 03 1.03E + 03 1.54E+ 04 1.10E+ 03
Std 8.52E+ 02 8.73E+ 02 1.86E+ 02 6.47E + 01 8.38E+ 02 1.83E+ 02
P 3.02E− 11(+) 3.02E− 11(+) 1.45E− 01(�) 3.18E− 01(�) 3.02E− 11(+)

F10(X)

Best 6.33E+ 03 6.32E+ 03 5.62E+ 03 4.96E+ 03 6.23E+ 03 4.67E+ 03
Worst 9.53E+ 03 1.00E+ 04 7.60E+ 03 6.57E + 03 9.50E+ 03 6.86E+ 03
Median 8.14E+ 03 7.73E+ 03 6.47E+ 03 5.81E+ 03 8.16E+ 03 5.70E+ 03
Mean 8.12E+ 03 7.82E+ 03 6.52E+ 03 5.77E+ 03 8.02E+ 03 5.75E+ 03
Std 6.74E+ 02 8.10E+ 02 4.72E+ 02 4.02E + 02 8.38E+ 02 6.04E+ 02
P 1.07E− 09(+) 3.08E− 08(+) 5.46E− 06(+) 2.57E− 07(+) 3.35E− 08(+)
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Table 7: Continued.

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F11(X)

Best 1.20E+ 03 1.21E+ 03 1.14E + 03 1.18E+ 03 1.25E+ 03 1.14E+ 03
Worst 1.58E+ 03 1.41E+ 03 1.18E+ 03 1.40E+ 03 1.42E+ 03 1.17E+ 03
Median 1.36E+ 03 1.29E+ 03 1.16E+ 03 1.29E+ 03 1.33E+ 03 1.15E+ 03
Mean 1.37E+ 03 1.30E+ 03 1.16E+ 03 1.30E+ 03 1.34E+ 03 1.15E+ 03
Std 8.19E+ 01 4.72E+ 01 9.46E+ 00 5.71E+ 01 3.85E+ 01 8.10E+ 00
P 3.02E− 11(+) 3.02E− 11(+) 3.34E− 03(+) 8.19E− 01(�) 3.02E− 11(+)

F12(X)

Best 4.63E+ 05 1.22E + 05 1.00E+ 10 1.00E+ 10 1.04E+ 07 1.68E+ 05
Worst 3.71E+ 06 3.83E+ 06 1.00E+ 10 1.00E+ 10 5.74E+ 07 2.25E+ 06
Median 1.30E+ 06 9.68E+ 05 1.00E+ 10 1.00E+ 10 2.55E+ 07 9.61E+ 05
Mean 1.64E+ 06 1.35E+ 06 1.00E+ 10 1.00E+ 10 2.57E+ 07 1.09E+ 06
Std 9.69E+ 05 9.69E+ 05 0.00E + 00 0.00E + 00 1.06E+ 05 5.84E+ 05
P 4.68E− 02(+) 4.64E− 01(�) 1.21E− 12(+) 1.21E− 12(+) 3.02E− 11(+)

F13(X)

Best 4.81E+ 03 3.09E + 03 1.00E+ 10 1.00E+ 10 2.31E+ 05 4.40E+ 03
Worst 5.11E+ 04 4.77E + 04 1.00E+ 10 1.00E+ 10 6.39E+ 05 4.81E+ 04
Median 1.90E+ 04 1.15E+ 04 1.00E+ 10 1.00E+ 10 4.16E+ 05 1.03E+ 04
Mean 2.35E+ 04 1.66E+ 04 1.00E+ 10 1.00E+ 10 4.02E+ 05 1.55E+ 04
Std 1.54E+ 04 1.36E+ 04 0.00E+ 00 0.00E+ 00 1.06E+ 05 1.16E+ 04
P 4.84E− 02(+) 9.82E− 01(�) 1.21E− 12(+) 1.21E− 12(+) 3.02E− 11(+)

F14(X)

Best 2.89E+ 03 4.47E+ 03 1.64E+ 03 1.50E+ 03 2.95E+ 04 1.46E+ 03
Worst 2.11E+ 05 1.68E+ 05 1.93E+ 03 1.59E+ 03 4.22E+ 05 1.55E+ 03
Median 2.70E+ 04 4.00E+ 04 1.78E+ 03 1.54E+ 03 1.14E+ 05 1.50E+ 03
Mean 4.95E+ 04 4.51E+ 04 1.77E+ 03 1.54E+ 03 1.35E+ 05 1.50E+ 03
Std 4.91E+ 04 4.08E+ 04 6.03E+ 01 1.73E + 01 8.34E+ 04 2.07E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 4.69E− 08(+) 3.02E− 11(+)

F15(X)

Best 2.05E+ 03 2.48E+ 03 1.77E+ 03 1.61E+ 03 7.52E+ 04 1.56E+ 03
Worst 3.68E+ 04 3.60E+ 04 3.15E+ 03 2.00E + 03 2.26E+ 05 3.01E+ 03
Median 1.48E+ 04 1.89E+ 04 1.92E+ 03 1.68E + 03 1.48E+ 05 1.69E+ 03
Mean 1.65E+ 04 1.66E+ 04 1.99E+ 03 1.72E + 03 1.50E+ 05 1.77E+ 03
Std 1.05E+ 04 9.16E+ 03 2.56E+ 02 1.03E + 02 4.96E+ 02 2.66E+ 02
P 3.69E− 11(+) 4.08E− 11(+) 9.53E− 07(+) 8.19E− 01(�) 3.02E− 11(+)

F16(X)

Best 2.94E+ 03 2.87E+ 03 2.08E + 03 2.14E+ 03 3.04E+ 03 2.30E+ 03
Worst 4.63E+ 03 4.17E+ 03 3.21E+ 03 3.35E+ 03 4.71E+ 03 3.18E+ 03
Median 3.68E+ 03 3.53E+ 03 2.70E+ 03 2.62E + 03 4.12E+ 03 2.79E+ 03
Mean 3.77E+ 03 3.59E+ 03 2.67E+ 03 2.62E + 03 3.96E+ 03 2.78E+ 03
Std 4.72E+ 02 3.67E+ 02 2.93E+ 02 3.02E+ 02 4.96E+ 02 2.24E+ 02
P 1.78E− 10(+) 2.37E− 10(+) 1.91E− 01(�) 1.56E− 02(−) 5.49E− 11(+)

F17(X)

Best 2.35E+ 03 2.72E+ 03 2.11E+ 03 2.01E + 03 3.00E+ 03 2.01E+ 03
Worst 4.02E+ 03 4.18E+ 03 2.71E+ 03 2.70E + 03 4.31E+ 03 2.78E+ 03
Median 3.42E+ 03 3.43E+ 03 2.47E+ 03 2.31E + 03 3.57E+ 03 2.43E+ 03
Mean 3.37E+ 03 3.39E+ 03 2.43E+ 03 2.32E + 03 3.56E+ 03 2.40E+ 03
Std 4.05E+ 02 3.57E+ 02 1.74E+ 02 1.62E + 02 3.02E+ 02 1.92E+ 02
P 2.87E− 10(+) 4.08E− 11(+) 6.10E− 01(�) 7.01E− 02(�) 3.02E− 11(+)

F18(X)

Best 9.41E+ 04 7.26E+ 04 2.51E + 04 6.30E+ 04 3.20E+ 05 4.45E+ 04
Worst 9.83E+ 05 4.50E+ 05 3.71E+ 05 2.02E + 05 2.59E+ 06 2.64E+ 05
Median 2.48E+ 05 1.63E+ 05 1.17E+ 05 1.16E+ 05 1.23E+ 06 8.99E+ 04
Mean 2.78E+ 05 1.75E+ 05 1.39E+ 05 1.27E+ 05 1.23E+ 06 1.01E+ 05
Std 1.61E+ 05 8.15E+ 04 8.07E+ 04 3.92E + 04 1.18E+ 06 4.43E+ 04
P 8.89E− 10(+) 1.75E− 05(+) 3.92E− 02(+) 3.85E− 03(+) 3.02E− 11(+)

F19(X)

Best 2.98E+ 03 2.38E+ 03 2.06E+ 03 1.96E+ 03 1.03E+ 05 1.93E+ 03
Worst 4.46E+ 04 4.43E+ 04 2.73E+ 03 2.03E+ 03 3.66E+ 06 2.00E+ 03
Median 2.05E+ 04 1.69E+ 04 2.29E+ 03 1.99E+ 03 1.39E+ 06 1.95E+ 03
Mean 2.28E+ 04 2.13E+ 04 2.32E+ 03 1.99E+ 03 1.61E+ 06 1.95E+ 03
Std 1.63E+ 04 1.32E+ 04 1.37E+ 02 1.57E + 01 1.18E+ 06 1.60E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 3.02E− 11(+) 3.20E− 09(+) 3.02E− 11(+)
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Table 7: Continued.

F Index SSA CSSA MSSCS CSsin FA-CL LSSA

F20(X)

Best 2.72E+ 03 2.61E+ 03 2.25E+ 03 2.30E+ 03 2.50E+ 03 2.15E+ 03
Worst 3.87E+ 03 3.80E+ 03 2.84E+ 03 2.86E+ 03 3.82E+ 03 2.72E+ 03
Median 3.23E+ 03 3.19E+ 03 2.62E+ 03 2.56E+ 03 3.20E+ 03 2.44E+ 03
Mean 3.28E+ 03 3.20E+ 03 2.60E+ 03 2.56E+ 03 3.21E+ 03 2.46E+ 03
Std 3.19E+ 02 3.65E+ 02 1.38E + 02 1.39E+ 02 3.14E+ 02 1.50E+ 02
P 3.34E− 11(+) 1.33E− 10(+) 6.20E− 04(+) 9.07E− 03(+) 1.21E− 10(+)

F21(X)

Best 2.50E+ 03 2.55E+ 03 2.41E+ 03 2.40E + 03 2.44E+ 03 2.41E+ 03
Worst 2.85E+ 03 2.86E+ 03 2.50E+ 03 2.47E+ 03 2.78E+ 03 2.46E+ 03
Median 2.68E+ 03 2.68E+ 03 2.47E+ 03 2.43E + 03 2.63E+ 03 2.43E+ 03
Mean 2.69E+ 03 2.68E+ 03 2.46E+ 03 2.43E + 03 2.61E+ 03 2.43E+ 03
Std 9.83E+ 01 7.97E+ 01 2.11E+ 01 1.87E+ 01 2.24E+ 03 1.44E + 01
P 3.02E− 11(+) 3.02E− 11(+) 1.47E− 07(+) 8.30E− 01(�) 6.07E− 11(+)

F22(X)

Best 8.06E+ 03 8.10E+ 03 2.30E + 03 2.30 E+ 03 2.32E+ 03 2.30E+ 03
Worst 1.21E+ 04 1.11E+ 04 8.54E+ 03 8.35E + 03 1.20E+ 04 9.50E+ 03
Median 9.61E+ 03 9.92E+ 03 7.47E + 03 7.55E+ 03 1.03E+ 04 8.38E+ 03
Mean 9.79E+ 03 9.66E+ 03 6.95E+ 03 6.90E + 03 9.82E+ 03 7.88E+ 03
Std 1.08E+ 03 8.33E+ 02 1.65E+ 03 1.91E+ 03 2.24E+ 03 1.60E+ 03
P 3.96E− 08(+) 1.10E− 08(+) 2.28E− 05(−) 4.08E− 05(−) 3.96E− 08(+)

F23(X)

Best 3.02E+ 03 3.09E+ 03 2.82E+ 03 2.73E + 03 3.06E+ 03 2.74E+ 03
Worst 3.48E+ 03 3.44E+ 03 2.94E+ 03 2.91E + 03 3.59E+ 03 2.94E+ 03
Median 3.18E+ 03 3.27E+ 03 2.87E+ 03 2.87E + 03 3.31E+ 03 2.89E+ 03
Mean 3.22E+ 03 3.26E+ 03 2.87E + 03 2.87E + 03 3.31E+ 03 2.89E+ 03
Std 1.18E+ 02 7.68E+ 01 2.76E + 01 3.47E+ 01 1.28E+ 02 3.69E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 2.16E− 03(−) 2.38E− 03(−) 3.02E− 11(+)

F24(X)

Best 3.22E+ 03 3.17E+ 03 2.99E + 03 3.00E+ 03 3.32E+ 03 3.00E+ 03
Worst 3.71E+ 03 3.58E+ 03 3.15E+ 03 3.14E + 03 3.78E+ 03 3.14E+ 03
Median 3.36E+ 03 3.40E+ 03 3.07E+ 03 3.06E+ 03 3.54E+ 03 3.05E+ 03
Mean 3.38E+ 03 3.39E+ 03 3.08E+ 03 3.06E+ 03 3.53E+ 03 3.05E+ 03
Std 1.19E+ 02 9.85E+ 01 3.43E + 01 3.68E+ 01 3.30E+ 01 3.59E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 5.57E− 03(+) 5.30E− 01(�) 3.02E− 11(+)

F25(X)

Best 2.96E+ 03 2.98E+ 03 2.96E + 03 2.96E + 03 3.01E+ 03 2.96E+ 03
Worst 3.11E+ 03 3.12E+ 03 3.08E+ 03 3.06E+ 03 3.14E+ 03 3.03E+ 03
Median 3.07E+ 03 3.08E+ 03 3.03E+ 03 2.98E+ 03 3.12E+ 03 3.02E+ 03
Mean 3.05E+ 03 3.07E+ 03 3.03E+ 03 2.99E+ 03 3.11E+ 03 3.00E+ 03
Std 3.83E+ 01 2.94E+ 01 3.74E+ 01 2.99E+ 01 3.30E+ 01 2.53E + 01
P 7.60E− 07(+) 2.87E− 10(+) 1.32E− 04(+) 8.19E− 01(�) 1.29E− 09(+)

F26(X)

Best 2.90E+ 03 2.90E + 03 2.90E + 03 2.90E + 03 1.03E+ 04 2.90E+ 03
Worst 1.13E+ 04 1.13E+ 04 5.58E+ 03 5.52E + 03 1.40E+ 04 5.80E+ 03
Median 2.90E+ 03 6.53E+ 03 5.13E+ 03 4.87E+ 03 1.19E+ 04 2.90E+ 03
Mean 5.81E+ 03 6.49E+ 03 5.02E+ 03 4.18E+ 03 1.19E+ 04 3.95E+ 03
Std 3.69E+ 03 3.61E+ 03 6.09E + 02 1.15E+ 03 9.27E+ 02 1.24E+ 03
P 1.86E− 01(�) 8.07E− 01(�) 2.61E− 02(+) 2.12E− 01(�) 3.02E− 11(+)

F27(X)

Best 3.35E+ 03 3.43E+ 03 3.24E+ 03 3.20E+ 03 3.80E+ 03 3.17E+ 03
Worst 4.07E+ 03 3.84E+ 03 3.38E+ 03 3.34E+ 03 5.08E+ 03 3.33E+ 03
Median 3.57E+ 03 3.57E+ 03 3.30E+ 03 3.27E+ 03 4.44E+ 03 3.26E+ 03
Mean 3.57E+ 03 3.62E+ 03 3.31E+ 03 3.26E + 03 4.47E+ 03 3.26E+ 03
Std 1.45E+ 02 1.16E+ 02 4.11E+ 01 3.49E + 01 4.30E+ 01 3.81E+ 01
P 3.02E− 11(+) 3.02E− 11(+) 3.18E− 04(+) 8.88E− 01(�) 3.02E− 11(+)

F28(X)

Best 3.26E+ 03 3.26E + 03 3.26E + 03 3.26E + 03 3.29E+ 03 3.26E+ 03
Worst 3.32E+ 03 3.43E+ 03 3.31E+ 03 3.30E + 03 3.51E+ 03 3.31E+ 03
Median 3.30E+ 03 3.31E+ 03 3.26E + 03 3.26E + 03 3.37E+ 03 3.26E+ 03
Mean 3.30E+ 03 3.31E+ 03 3.27E+ 03 3.26E + 03 3.37E+ 03 3.26E+ 03
Std 1.69E+ 01 3.82E+ 01 1.89E+ 01 8.18E + 00 4.30E+ 01 1.49E+ 01
P 1.73E− 06(+) 8.35E− 08(+) 3.18E− 03(+) 9.06E− 08(−) 7.39E− 11(+)
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,rough 12 standard test functions, LSSA is proved to be
better than SSA, BSO, CSSA, ISSA, GWO, and PSO. At the
same time, in order to avoid LSSA only depending on the zero
point, this paper compares LSSAwithMSSCS, CSsin, and FA-
CL which have been verified by CEC function in recent years.
,e results show that the LSSA algorithm has good univer-
sality, while other algorithms have limitations in some
functions. Finally, the practicability of LSSA is verified by
robot path planning. ,e LSSA test effect is satisfying, but
there are some shortcomings; for instance, during the
function optimization process, the time consumption is large
and cannot show the best effect on some functions of CEC
2017, showing an unstable effect. Of course, the increase of
time is inevitable because we add workload. In the future, we
need to do three aspects of work, the first is how to balance the
time and optimization ability of the algorithm, the second is
how to improve the stability of the algorithm on the basis of
the previous, and the third is how to get a better application in
practical complex engineering. On the contrary, we will also
try to analyze and optimize in MBO, SMA, MSA, HGS, and
HHO and better apply to practical problems.
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