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Exploration of specific brain areas involved in verbal workingmemory (VWM) is a powerful but not widely used tool for the study
of different sensory modalities, especially in children. In this study, for the first time, we used electroencephalography (EEG) to
investigate neurophysiological similarities and differences in response to the same verbal stimuli, expressed in the auditory and
visual modality during the n-back task with varying memory load in children. Since VWM plays an important role in learning
ability, we wanted to investigate whether children elaborated the verbal input from auditory and visual stimuli through the same
neural patterns and if performance varies depending on the sensorymodality. Performance in terms of reaction times was better in
visual than auditory modality (p � 0.008) and worse as memory load increased regardless of the modality (p< 0.001). EEG
activation was proportionally influenced by task level and was evidenced in theta band over the prefrontal cortex (p � 0.021), along
the midline (p � 0.003), and on the left hemisphere (p � 0.003). Differences in the effects of the two modalities were seen only in
gamma band in the parietal cortices (p � 0.009).(e values of a brainwave-based engagement index, innovatively used here to test
children in a dual-modality VWM paradigm, varied depending on n-back task level (p � 0.001) and negatively correlated
(p � 0.002) with performance, suggesting its computational effectiveness in detecting changes inmental state duringmemory tasks
involving children. Overall, our findings suggest that auditory and visual VWM involved the same brain cortical areas (frontal,
parietal, occipital, and midline) and that the significant differences in cortical activation in theta band were more related to
memory load than sensory modality, suggesting that VWM function in the child’s brain involves a cross-modal
processing pattern.

1. Introduction

(e term working memory (WM) [1] refers to the type of
memory that is active and relevant for short periods of time,
usually only seconds [2]. Specifically, it is the theoretical
construct used in cognitive neurosciences to refer to the
system or mechanism underlying the maintenance of rele-
vant information during cognitive task performances [3, 4].

Baddeley-Hitch’s WM model proposes a tripartite system
organized in a central executive and two subsidiary systems:
the phonological loop, capable of holding verbal informa-
tion, and the visuospatial sketchpad, which exercises a
parallel function for spatial information [1, 5].

Although the WM multicomponent model is influential
in scientific thinking, its neural basis remains poorly
specified [6].
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(ere is evidence that WM provides a mental workspace
used in many fundamental learning activities during life-
span, including literacy [7, 8], reading [9], and numeracy
[10]. (ese findings have important implications in edu-
cation, particularly for children with neurodevelopmental
disorders and sensory deficits [11].

N-back task [12] has become a prototypical measure
in functional neuroimaging studies that allows identifi-
cation of the neural mechanisms supporting WM [13]
(see [14] for a meta-analysis). In fact, studies consistently
find that n-back performance is associated with activation
in prefrontal and parietal cortical regions widely recog-
nized as the primary neural substrates that underlie
working memory processes [2, 14–18] and in particular
visual and auditory stimuli processing [19, 20]. Moreover,
patterns of neural activation associated with n-back
performance have been shown to vary with the type of
information held in working memory (e.g., verbal or
spatial), as well as task difficulty (i.e., 0-, 1-, and 2-back)
(see [21, 22] for review).

It has been suggested that the prefrontal cortex (PFC)
is critical for resilient information maintenance during
WM tasks [23]. Given its functional connections with the
posterior parietal cortex, Dorsolateral PFC plays a crucial
role in both verbal and visuospatial WM [14, 24] (see [25]
for review). Moreover, stronger frontoparietal synaptic
connectivity may be one of the mechanisms involved in
WM capacity development during childhood [26]. In-
vestigators have mapped WM-related activity to sensory
association cortices and PFC and some regions show
specificity to sensory stimuli modality (see [27, 28] for
review).

Adults have been demonstrated to have functional
hemispheric specialization for WM with a refinement of
verbal processing operated by the left hemisphere, whereas
the right hemisphere appears more specialized in visuo-
spatial processing [22, 29–31]. Few studies have examined
this potential sensorial input dissociation or whether more
distinct or lateralized patterns of brain responses and
considered signature of WM emerge across development
[32]. In fact, brain structures and neural processes sub-
serving WM continue to develop during childhood [33, 34],
and it is known that changes in PFC are related to cognitive
development achievements occurring during childhood as
well [35–37].

Neuroimaging assessments for verbal [38] and visuo-
spatial [39–41] stimuli support the evidence that WM-re-
lated activation is greater and more widely distributed in the
child brain than the adult brain [33, 42]. (is may reflect
ongoing maturation and synaptic fine tuning during de-
velopment [37].

EEG neuroimaging studies, principally in adult
populations, have evidenced enhanced activity during
WM load-specific modulations by different bands, in
particular theta, alpha, and gamma in numerous brain
areas [43–47]. Moreover, a brainwave-based mental en-
gagement index (EI) previously defined by Pope and
colleagues [48] as

EI �
Beta

Alpha + Theta
, (1)

has proven to be successful in distinguishing brain attentive
states and to correlate with emotions and mental workload
in memory tasks [49–52]. Furthermore, McMahan and
colleagues [53], comparing EI with other EEG engagement
indexes (frontal theta, ratio of frontal theta to parietal alpha),
found the ratio between beta and the sum of alpha and theta
to be the best algorithm for calculating the engagement levels
of players playing video games. Research has shown that
classifiers using physiological features are able to determine
the level of cognitive activity in tasks with a high level of
accuracy [54]. However, studies that have applied EI to
assess children’s cognitive engagement are rare (see [55, 56]),
and to the best of our knowledge, there are no published
EEG studies involving the assessment of WM through the
n-back task in children younger than 13.

To date, there have not been many investigations on the
specific relationship between cognitive and neurophysio-
logical developmental changes in WM functions during
childhood [57–60]. Furthermore, several studies focus on
the visuospatial component of WM processing (e.g.,
[61–63]). Better understanding of the development of WM
functions would help in the determination of what is normal
and what is pathological at different ages and in the de-
velopment of new learning, teaching, and cognitive training
strategies [64–69].

Verbal WM (VWM) is a specific human form of WM
that appears to play a significant role in language com-
prehension and problem solving [70]. It is particularly
important given the role that linguistic processes play in the
higher-cognitive processes [18]. Most of our knowledge of
the neural network underlying VWM is based on studies
using visually presented stimuli [22, 39, 71]. (ere have been
few reports of investigations on the purely neural basis of
auditory VWM [72–74], and even fewer have directly ex-
amined modality differences using similar tasks in a within-
subjects design [6]. Specifically, with the aim of digging into
the neural mechanisms underlying the model of processing
of the verbal components of WM (e.g., phonological loop
[75]), only four neuroimaging studies concerning adult
populations have considered the effect of n-back task mo-
dality on brain activation [6, 76–78]. (ose studies reported
contrasting findings and employed neuroimaging tech-
niques different from EEG, which we selected for its high
temporal resolution. It is noteworthy that most of the
published studies on working memory involve the use of
brain-imaging techniques that are more invasive and less
ecological than EEG, such as fMRI (e.g., [63, 79–81]) and
PET (e.g., [82]) that are often impractical for use on children
[59, 83]. Precisely, no studies have used EEG to assess neural
responses during verbal n-back tasks with different sensory
stimuli (visual and auditory), in particular in healthy
children.

(e aim of this study is to examine EEG activation
during VWM processing of auditory and visual stimuli
presented to children during n-back task performance [12].
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(e distinction between auditory VWM and visual VWM is
important, with implications for both theoretical and ex-
perimental research on the neural processes underlying
WM. In fact, as Crottaz-Herbette and colleagues [6] pointed
out, elucidation of similarities and differences in the pro-
cessing of different types of stimuli can provide insight into
the internal representations of stimuli in WM. Indeed, to
date, the considerable theoretical debate on WM features is
evident in the many cognitive studies (e.g., [84–86]) that
investigate whether WM storage is mediated by distinct
subsystems for auditory and visual stimuli [5] or by a single
central capacity system [87].

Moreover, the discrepancies in the studies regarding
adults reported above, on the assumption of an a-modal
VWM system [6, 76–78] and the absence of studies on
healthy and clinical child populations, evidence a scientific
void that must be filled. In an attempt to tackle this issue, the
experimental investigation of the neural underpinnings of
auditory and visual stimuli processing and the consideration
of a possible cross-modal activation during childhood in a
VWM task appears extremely important for the evaluation
of healthy development of children with or without sensory
impairment.

We hypothesized that, in children, the involvement of
the theoretical phonological loop [75], which underpins
verbal WM processing, is neurally mediated indifferently by
both auditory and visual stimuli. (us, with both visual and
auditory-verbal WM n-back tasks, we expected to find the
following:

(1) (ere are no differences in EEG activation patterns
in the cortical areas involved in VWM function in
response to the two different sensory stimuli.

(2) As largely confirmed by the literature on adults
presented above, significant differences in EEG ac-
tivation in response to auditory and visual stimuli
depend only on memory load variations (0-1-2-
back) and the EEG findings correlate with behavioral
results also in children.

Confirmation of our hypotheses could indicate the
possibility of identifying a neurophysiological benchmark of
auditory-visual VWM in healthy young individuals, also
allowing further comparisons with clinical research groups.

2. Material and Methods

2.1. Participants. (irteen right-handed children aged 7–13
years (for age and sample size definition (children were
selected according to previous studies), see [88, 89]) were
enrolled in the study. Two participants were subsequently
excluded because of the lack of cooperation in the task
training accomplishment. (erefore, the final experimental
sample was composed of 11 children (6 M and 5 F; mean
age� 10.83± 1.87 yr).

Prior to the experiment, participants and their parents
were informed about the study. We obtained informed
written consent from the parents and verbal assent from the
children. Participation in the study was voluntary; partici-
pants did not receive compensation for taking part. (e

experiment was conducted according to the principles
outlined in the Helsinki Declaration of 1975, revised in 2000,
and approved by the Institutional Ethics Committee of
Policlinico Umberto I- Rome (no. 259/2020).

Subject selection was based on diagnostic screening
using the Peabody Picture Vocabulary Test-III [90], a stan-
dardized measure of receptive oral vocabulary, and Raven’s
Standard Progressive Matrices [91], a standardized test of
nonverbal spatial reasoning. Both tests use standardized
scoring based on participant age (µ�100, SD� 15). Exclu-
sion criteria for enrollment in the study were left-handed
children, due to past evidence of handedness influence on
cerebral laterality [92]; children with scores below the
standard average for their age (taken from test norms) on
PPVTand RPM; and those diagnosed with neuropsychiatric
disorders and/or sensorial deficits.

2.2. Experimental Design and Procedure. Participants per-
formed two verbal n-back tasks [12] with varying memory
load from 0-back to 2-back during EEG recording: (i) an
auditory n-back task (AUD-task) in which stimuli were
presented aurally and (ii) a visual n-back task (VIS-task) in
which stimuli were presented visually on a computer screen.

Task administration order was randomized across par-
ticipants. (erefore, approximately half of the participants
started with the AUD-task and the second half with VIS-
task. In addition, the order of presentation of the n-back
blocks was randomized across participants; in other words, it
did not follow an increasing level order.

Stimuli: verbal material consisted of auditory and visual
stimuli referring to seven consonants (c, g, k, p, q, t, and
v), already used and described in previous studies
[93–96]. Vowels were excluded in order to reduce the
likeliness of participants developing chunking strate-
gies, as suggested in Grimes et al. [97]. Stimuli exposure
pretest was performed to ensure correct perception by
participants. Auditory stimuli, lasting 500ms and
presented with an interstimulus interval (ISI) of
2500ms [96], were spoken by a female voice set at 65 dB
SPL intensity, in order to ensure comfortable audibility,
transmitted by two audio speakers placed at face level
1meter in front of the participant. Visual stimuli
(duration 500ms; ISI 3000ms) [88] consisted of the
same seven consonants (Consolas font-130) presented
one at a time on a grey background in the center of a
monitor screen placed at eye level, 50 cm distant from
the participant.
Task execution: participants had to respond in the ISI
just after the presentation of each letter by pressing a
button (D/K) to indicate whether the letter was a target
(K) or a nontarget (D); thus, there was a behavioral
response in either case. In the 0-back condition, the
letter X was the target. In the 1-back condition, a letter
was a target when it was the same as the one presented
immediately before. In the 2-back condition, a letter
was a target when it was the same as the one that
presented two letters before. Participants were given
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detailed instructions for proper task performance and a
training session before the effective measurement
session in order to familiarize them with the experi-
mental procedures (Figure 1).
Task structure: the three WM load levels (0-1-2-back)
were presented in six blocks (2 for each level) for each
task (auditory and visual). (e blocks were constituted
by 21 randomized stimuli (30% target) [88]. At the
beginning of each modality task, there was a Baseline
phase, during which subjects were asked to remain
relaxed, with no task except to look at the screen while
auditory or visual stimuli were presented. During the
Baseline phase, the 7 stimuli were repeated randomly 3
times (duration 500ms with 3000ms ISI), creating a 21
item block, analogous to the experimental blocks.
Subsequently, the Task phase consisted of two ran-
domized presentations of each of the three blocks,
which began. (us, every single session consisted of 3
n-back levels per 2 presentations, for a total of 6 blocks
in randomized order for both audio and video tasks
(Figure 2). Half of the participants started with the
visual stimuli task and the other half with the auditory
task.
A Lenovo PC (monitor resolution 1024× 768) dis-
played and controlled stimuli presentation and par-
ticipant responses (reaction times (RTs); correct
responses (CRs)) through the software package
E-Prime (Psychology Software Tools, Pittsburgh, Pa,
Version 3.0).
Procedure: the participant was seated on a comfortable
chair in an audiometric test room, and the experi-
mental procedure was explained. In order to reduce
muscular artifacts in the EEG signal, participants were
instructed to assume a comfortable position and to
avoid unnecessary movement. After each Task phase,
participants indicated the perceived task difficulty
(easy-medium-hard) on a stylized image (Figure 3). At
the end of the entire experimental session, they were
asked to evaluate which of the two tasks (visual or
auditory) was the most difficult.

2.3. Behavioral Data Analysis. Performance was assessed in
terms of accuracy (ACC) and RTs. ACCwas calculated as the
percentage of CRs for each task condition (each n-back level
for both auditory and visual modality tasks); RTs were
measured from the time of stimulus offset. In order to in-
tegrate these two aspects of performance, Inverse Efficiency
Score (IES�RT/1−PE) [98] was calculated, where RT is the
subject’s average RTs for correct answers (target/nontarget),
and PE is the subject’s proportion of errors for each con-
dition. IES can be interpreted as the RT corrected for the
number of errors committed [99].

2.4. EEG Recording and Data Analysis. EEG was recorded
through a digital ambulatory monitoring system (BePlus
System -EBNeuro, S.p.A., Italy) with a sampling frequency of
256Hz. Twenty channels (Fpz, Fz, F3, F4, F7, F8, Cz, C3, C4,

T7, T8, Pz, P3, P4, P7, P8, Cp5, Cp6, O1, and O2) were
referred to the participants’ earlobes, and impedance was
kept below 10 kΩ. A 50Hz notch filter was then applied to
remove power interference. EEG signal was band-pass fil-
tered with a 5th order Butterworth band-pass filter
(1–45Hz) to reject continuous components and high-fre-
quency interferences like muscular artifacts. (e Fpz
channel was used to remove eye-blink contributions by the
REBLINCA algorithm [100, 101] without losing data. Other
artifacts were eliminated by specific procedures of the
EEGLAB toolbox [102].

EEG dataset was segmented into epochs starting 500ms
before stimulus onset and ending 2500ms after its offset.
(is temporal windowing was chosen to respect EEG sta-
tionarity and allow for a high number of observations
compared to the number of variables considered in the
analysis [103].(ree criteria were applied in order to identify
artifacts according to published procedures [55, 104]. In
particular, all the epochs exceeding the threshold criterion
(±80 µV) were marked as artifacts, as well as those that did
not meet the trend estimation criterion (slope higher than
40 µV/s or less than 0.3 µV/s). (e EEG epoch was also
considered an artifact if the signal sample to sample dif-
ference (sample to sample criterion) in terms of absolute
amplitude was higher than 30mV, that is, when an abrupt
variation (nonphysiological) occurred. Finally, epochs
marked as artifact were removed from the EEG dataset such
that all analyses were based on clean EEG signals [105–109].
Definition of EEG bands of interest involved the identifi-
cation of subjective differences in terms of brain activity.
Individual Alpha Frequency (IAF) in Hertz was computed
on a 60-second long-closed eyes segment, recorded before
the Baseline phase [110].

Each band was then defined as IAF± x where x was an
integer in the frequency domain [110]; thus, electrophysi-
ological activity was divided by filtering EEG signals in the
following frequency bands: theta (IAF – 6÷ IAF – 2Hz), low
alpha (IAF – 2÷ IAF Hz); upper alpha (IAF÷ IAF + 2), alpha
(IAF – 2÷ IAF + 2Hz), beta (IAF + 2÷ IAF + 16Hz), and
gamma (IAF + 16÷ IAF + 30Hz).

(en, the Power Spectral Density (PSD) [111] was cal-
culated for each epoch and channel, using a Hanning
window of 1 sec and an overlap of 500ms. Cortical distri-
bution of bandmodulation analysis was based on averages of
the data for frontal, parietal, occipital, midline, and

Figure 1: Explanation of task execution before training section.
(e picture shows a representation of the detailed explanation of
the task to each participant before the effective measurement
session.
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hemisphere electrode locations. (e specific channels con-
sidered were frontal, F3, F4, F7, F8, and Fz; parietal, P4, P3,
P7, and P8; occipital, O1 and O2; midline, Fz, Cz, and Pz; left

hemisphere, F3, C3, T7, P3, and O1; and right hemisphere,
F4, C4, T4, P4, and O2.

Moreover, EI [48] was calculated according to the for-
mula specified above.

PSD data were normalized with respect to the baseline to
limit influences on scores due to subjective stimuli per-
ception on VWM EEG recording [112].

2.5. Statistical Analysis. (e statistical analyses were con-
ducted for neurophysiological and behavioral data, re-
spectively. (e Shapiro–Wilk normality test [113] was
applied to the datasets under investigation. (en, depending
on the results, parametric analysis of variance (ANOVA) or
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Figure 2: Experimental designwith trial timeline. Schematic illustration for each of the two n-back tasks (auditory and visual modalities) performed
by subjects during electroencephalography (EEG) recording. Each modality task started with the Baseline phase followed by the Task phase.

FACILE MEDIO DIFFICILE

Come ti è sembrato il gioco?

Figure 3: Illustration of perceived difficulty. Each participant was
asked to indicate through this image a level of perceived difficulty
after each visual and auditory task. Note. Translation of the Italian
text: Come ti è sembrato il gioco?�How was the game?;
Facile� easy; Medio�medium; Difficile� hard.
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nonparametric ANOVA [114] was done. Both behavioral
and neurophysiological values were entered in a 2× 3 fac-
torial ANOVA with 2 factors: factor modality (with two
levels: audio and video) and factor load (with three levels: 0-
1-2). Duncan’s post hoc test [115] was used to investigate
statistically significant results of ANOVA tests; partial eta
squared (η2p) effect sizes [116, 117] were reported. Finally,
Pearson’s correlation coefficient (r) [118] was used to assess
the relationship between behavioral data and neurophysi-
ological values. An alpha value (α) of 0.05 was used as the
cutoff of significance [119].

3. Results

3.1. Behavioral Results. Behavioral results (RT, ACC, and
IES) are presented in Tables 1 and 2.

RTs and IES increased, and ACC decreased with in-
creasing memory load. Post hoc analysis showed that au-
ditory modality produced significantly longer RTs than
visual modality (p � 0.008) (Figure 4(b)) and showed a
significant increase in RTs as the n-back level increased
(p< 0.001) both between 0- and 2-back and between 1- and
2-back (Figure 4(a)) regardless of modality.

(e overall ACC score percentages were greater during
all auditory n-back levels (96.96, 87.60, and 87.01 for 0-1-2
levels, resp.) than for visual ones (90.90, 83.33, and 74.02 for
0-1-2 levels, resp.). Post hoc analysis showed significantly
lower accuracy for both the 1-back and the 2-back compared
to the 0-back level (p � 0.007 and p< 0.001, resp.), inde-
pendently of modality (Figure 4(c)). (is trend was reflected
in the IES data: post hoc results showed significant differ-
ences between 0 and 2 and 1 load (p< 0.001 and p � 0.028
resp.) and between 1 and 2 loads (p � 0.002) (Figure 4(d)).

3.2. Neurophysiological Results. EEG activation during ses-
sion recordings is shown in Figure 5; neurophysiological
statistical results are shown in Table 3.

Post hoc analysis regarding the frontal area revealed that
theta power was higher in 2-back than in 0-back level tasks
(p � 0.008) (Figure 6(a)). Similar increased theta band ac-
tivity was also evidenced in the midline area, where post hoc
analysis showed higher activation related to increasing
n-back task difficulty (from 0-back to 1-back levels,
p � 0.013; from 0-back to 2-back levels, p � 0.001)
(Figure 6(b)).

(e remarkable effect of load factor on theta band ac-
tivity was also evidenced in the left hemisphere comparing 2-
and 0-back levels (p � 0.001) by post hoc analysis
(Figure 6(c)). (e significant different activation on theta
band did not depend on modality factor. Differently, post
hoc analysis of gamma activity in the parietal area showed
sensitivity to audiomodality for each level of load×modality
interaction, except for 0-back video condition (p � 0.165)
(Figure 7). Specifically, gamma activation was lower during
the 2-back level in the audio task than for the same level in
the video task (p � 0.017) and also compared to 1-back level
audio (p � 0.005) and video (p � 0.005) stimulation. (e
difference in gamma activation during the audio 2-back level

condition was even more pronounced when compared to
that seen with the 0-back level in audio presentation
(p � 0.004).

Finally, the post hoc test evidenced increased EI values
comparing both the 2-back and 0-back levels (p< 0.001) and
the 2-back and 1-back levels (p � 0.031), regardless of mo-
dality. Moreover, a negative correlation was observed be-
tween EI values and reaction times (r (64)� –0.36; p � 0.002)
(Figure 8).

4. Discussion

4.1. Performance. RTs were statistically significant regarding
both load and modality factors, as reported in previous
studies (i.e., [94]). Participants’ responses were significantly
slower during the hardest level (2-back) task than the me-
dium (1-back) and simplest (0-back) levels and during
auditory compared to visual tasks (Figures 4(a) and 4(b)).
(e latter finding conflicts with the hypothesis that auditory
stimuli have more durable feature binding [120] and longer
lasting representations and thus stimulate enhanced per-
formance [121, 122]. However, there are exceptions to the
finding that the auditory condition improves the speed of
responses during WM tasks (i.e., [6, 123, 124]). A possible
explanation, also advanced by Amon et al. [124], might be
that visual stimuli were processed more quickly, but the
accuracy scores (90.55% versus 82.33% for auditory and
visual conditions, resp.) suggest a more accurate stimulus
processing. Furthermore, longer RTs during the auditory
condition (µ� 731.70± 262.794) reflected the subjects’ per-
ception of difficulty (54.54% of the participants perceived
more difficulty with auditory than visual tasks). Another
plausible interpretation, complementary to the previous one,
could be that visual WM reaches functional maturity earlier
than the corresponding auditory system [33]. Response
accuracy (ACC) and IES worsened with increasing n-back
levels, but the effect of memory load performance was
generally more statistically evident in relation to RT than
ACC and IES, possibly due to a ceiling effect [125]
(Figures 4(c) and 4(d)).

4.2. Electroencephalographic Activation. Neural oscillations
provide an effective measure to assess the underlying neural
mechanism that enables and controls memory load and
memory decay [126]. Previous reports on a quantitative
comparison of neurophysiological patterns during different
n-back tasks (e.g., [127–131]) involved mostly adult pop-
ulations (see, e.g., the meta-analyses in [21, 132, 133] study);
only rarely did they involve visual and auditory VWM, in
particular in children. (is study, instead, focused on cor-
tical activation in children during auditory and visual n-back
tasks.

As expected, we found that stimulation of VWM in
children appears to activate generally the same brain regions
as in adults (Figure 5), albeit in a more widely distributed
pattern [38]. (us, our investigation of EEG differences in
stimuli processing during n-back tasks may be an important
tool for understanding developing neural functioning.
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Table 1: Descriptive statistics of behavioral results.

MEAN (±d.s.)
Load

Modality n− 0 n− 1 n− 2

Behavioral variables

RTs Audio 646.417 (±231.639) 674.638 (±3.3.793) 874.047 (±202.921)
Video 468.303 (±228.142) 564.106 (±242.782) 762.179 (±282.728)

ACC Audio 0.969 (±0.070) 0.876 (±0.131) 0.870 (±0.108)
Video 0.909 (±0.166) 0.833 (±0.215) 0.870 (±0.168)

IES Audio 664.880 (±218.066) 836.421 (±474.344) 1021.001 (±346.921)
Video 516.207 (±180.57) 732.827 (±361.078) 1130.646 (±485.263)

Table 2: ANOVA analysis of behavioral results.

ANOVA
Load Modality Load×Modality

F p η2p F p η2p F p η2p
RTs 25.038 <0.001 0.714 10.744 <0.008 0.517 1.285 0.298 0.113
ACC 11.7 <0.001 0.539 3.036 0.112 0.232 2.189 0.138 0.179
IES 17.671 <0.001 0.638 0.371 0.555 0.035 3.421 0.052 0.254
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Figure 4: Continued.
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Figure 4: Behavioral results. Significantly different ANOVA (see Tables 1 and 2) behavioral results (RT (a) and (b); ACC (c); IES-4 (d))
according to load and modality factors. Note. Significant differences between load condition, modality condition, and load x modality
condition emerging from the post hoc test are indicated (∗p≤ 0.05; ∗∗p≤ 0.01; ∗∗∗p≤ 0.001).
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Figure 5: Topographical representation of visual and auditory-verbal working memory in the different frequencies of interest. Topoplots
represent the average Power Spectral Density (PSD) of all eleven subjects in the 19 electrodes sites on the scalp for alpha, theta, beta, and
gamma frequency bands during the Baseline phase and during each n-back task condition (n-level x modality). Colors describe high (warm-
color coded) and low (cold-color coded) intensities of PSD (see color bars).

Table 3: Neurophysiological results of ANOVA analysis.

Electrode clusters EEG bands
Load Modality Load×Modality

F p η2p F p η2p F p η2p

Brain
areas

Frontal F3, F4, F7, F8, Fz (eta 4.6571 0.021 0.317 0.672 0.431 0.063 2.273 0.128 0.185
Midline Fz, Cz, Pz (eta 7.697 0.003 0.434 1.11 0.316 0.099 2.415 0.114 0.194
Left

Hemisphere F3, C3, T7, P3, O1 (eta 7.624 0.003 0.432 0.016 0.901 0.001 1.958 0.167 0.163

Parietal Pz, P3, P7, P8 Gamma 2.021 0.158 0.168 0.018 0.895 0.001 5.851 0.009 0.369

Engagement
Index (EI)

Fz, F3, F4, F7, F8, Cz, C3,
C4, T7, T8, Pz, P3, P4, P7,
P8, Cp5, CP6, O1, O2

Beta/
(Alpha+(eta) 8.674 0.001 0.464 0.116 0.74 0.011 0.937 0.408 0.085
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Figure 6: (eta band results. Significantly different ANOVA (see Table 3) neurophysiological theta results in different brain areas (resp., in
frontal (a); midline (b); and left hemisphere (c) in relation to load. Note. Significant differences between load conditions emerging from the
post hoc test are indicated (∗p≤ 0.05; ∗∗p≤ 0.01; ∗∗∗p≤ 0.001).
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We observed a significant increase in theta power in the
frontal area related to memory load (Figure 6(a)). (is
observation is in line with the findings of an EEG study by
Gevins et al. [43], reporting the relationship between the
increase in frontal theta activity and the task difficulty in
subjects performing an n-back task. One interpretation of
this activation pattern can be that the increase reflects en-
hanced attention [45, 134, 135] or effortful cognitive pro-
cesses [136, 137]. Moreover, multiple function
neuroimaging studies have shown that some areas of the
PFC are engaged in maintenance and recall of WM rep-
resentation [14].

EEG evidence of human theta band activity is maximal
on the scalp close to the frontal midline; it is often present
during waking and is stronger on average during various
types of demanding cognitive tasks [43, 138]. Significant
theta power changes in the midline area (Figure 6(b)) under
various conditions show that this pattern increases with
memory load, in agreement with previous studies demon-
strating that theta band power in frontal midline scalp in-
creases withmental effort [45, 138–140].We note that, in our
investigation, there was no evidence that theta band activity
in frontal and midline areas was influenced by modality
(auditory or visual) (Figures 6(a) and 6(b)), results that
appear to support our prediction of an a-modal processing
of VWM.

(e study included exploratory analysis to investigate
possible hemispheric lateralization of auditory and visual
VWM. It is known that children show hemispheric later-
alization in the left frontal and temporal lobes during the
VWM task [38] and greater activation of spatial WM in the
right frontal, parietal, and occipital cortices [141]. (us,
there may be hemispheric asymmetry for verbal and spatial
WM [22], but to date, there have been no reports of in-
vestigations on specific modality dissociation of VWM in
children. Our results showed a significant strength of lat-
eralization of theta activity in the left hemisphere related to
increasing task difficulty but no significant variations related
to different task modalities (Figure 6(c)). Lack of influence of
audio or video modality on verbal WM is also supported by

the absence of significant differences in activation on the F7
electrode that coincides with the Brodmann [142] areas
44–45 corresponding to the Broca [143] language area
[144, 145]. (e absence of differences in activation of this
area related to modality, auditory or visual, could be an
indication that VWM is processed as language regardless of
stimulus modality in our sample.

Gamma band is another candidate for an EEG signature
of WM load [146]. (ere is evidence that gamma oscillations
are involved in perception [147, 148] and are thought to
reflect processes related to activation and maintenance of
neuronal object representations [149]. Data also suggest a
role of gamma in WM as well as perception [150]. Several
studies associate this band with higher-cognitive processes
[151–154]. Studies have also shown that, in addition to
perceptual processing, gamma band activity accompanies
many other important cognitive functions such as attention
[155–157], arousal [158], language perception [159], and
object recognition [160].

Our results show decreasing gamma power in parietal
areas to audio stimulation within n-levels (Figure 7). Indeed,
the activation trend is inversely proportional to the audio
task level, whereas no significant evidence is observed for the
video task within n-levels. Comparison of the findings re-
garding responses to the two different sensory modalities
leads us to hypothesize that gamma activity in the parietal
cortex is the strongest during the simplest audio condition
(0-back) and decreases in the most complex task (2-back).
(e stronger activation observed during the auditory task
(but not visual) seems to be the opposite of the findings of an
fMRI study [6]. However, this latter study differed from ours
in relation to both the neuroimaging technique used as well
as the experimental sample (adults instead of children) and
the type of stimuli administered. On the other hand, our
finding partially agrees with those of other studies that
report enhanced unisensory auditory gamma band activity
[161, 162]. (us, the differences found in parietal areas seem
to be of “sensorial origin” rather than strictly connected to
the cognitive task. (is hypothesis is in line with Karakas
et al.’s [163] results showing that the gamma response in the
100ms after stimulations (in different tasks) has a sensory
origin, independent of cognitive tasks. (erefore, in our
study, the gamma differences observed in parietal cortices
could be attributed directly to the sensory and noncognitive
components connected to the VWM task. (is result is
partially in line with findings supporting consistent varia-
tions in gamma activity in relation to memory loads [146]
and promotes the hypothesis that parietal regions are part of
a network of brain areas that mediate short-term storage and
retrieval of phonologically coded verbal material [164]. One
might propose that, for both modalities, stimuli appear to be
processed in essentially the same regions during the verbal
WM task. (is idea, as observed by Crottaz-Herbette and
colleagues [6], is consistent with the Baddeley model of WM
[5, 165, 166], which proposed that both visual and auditory-
verbal stimuli are translated into a code stored and ma-
nipulated in the phonological loop. (is interpretation is
further supported by our finding of no significant differences
in gamma activation for different modality stimulation in
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either the Broca area (i.e., language region) or temporal areas
(i.e., auditory-verbal regions), which are active during the
processing of visual or auditory-verbal representation, re-
spectively [167].

Emotions are omnipresent in human life. Learning is
strictly related to emotions [168], and cognitive processes are
greatly intertwined with emotional states [169]. Research on
emotion and WM has focused primarily on adult clinical
populations [170], but some studies investigated emotion-
cognition interaction in both clinical and nonclinical pop-
ulations across development [171, 172]. Other studies have
demonstrated that the association between negative affect
and academic performance in school is mediated [173] or
moderated by WM functioning [174]. Chaouachi and col-
leagues [175], in order to study the learner’s affective changes
on the value of EI, found that emotional states are strongly
correlated with the learner’s EI; therefore, the evaluation of
EI may facilitate in-depth investigation of the eventual
impact that affective changes have on cognitive processes
[175]. Our results showed that EI values decrease for each
level of difficulty (from 2 to 0-back). Interestingly, this trend
is inversely correlated to behavioral performance data (RTs)
(Figure 8). Although the statistical analysis did not reveal a
strong correlation between performance and EI, our result is
in line with the above-mentioned study by Chaouachi et al.
[175] that demonstrates the validity of EI as an indicator of
learner performance and suggests the effectiveness of EI also
in memory tasks involving children. (us, considering that
also the emotional factor is crucial in learning, we can
speculate that, in a pedagogical intervention strategy aimed
at optimizing the WM process, mental engagement should
be taken into account in addition to other behavioral per-
formance indicators. (e absence of a statistically significant
impact of the sensorial modality on EI could be an important
factor in the development of pedagogical intervention aimed
at enhancement of cognitive functions even in clinical
populations with sensorial deficits.

5. Conclusion

Our findings were consistent with our predictions. Our
hypothesis for the identification of an a-modal neural
mediation of the theoretical phonological loop which
underpins auditory-visual VWM is comprehensively
supported. Specifically, the results confirm our double
expectations:

(1) Although the same brain areas appear to be involved
in both auditory and visual VWM, there were no
significant differences in the activation of neural
signals with the two modalities, suggesting cross-
modal processing of VWM in children.

(2) (e strongest significant differences in EEG activa-
tion in responses to auditory and visual n-back WM
tasks depend on memory load variation. Moreover,
the correlation between EI and RT results suggests
how the simultaneous study of physiological and
behavioral variables related to VWM could be an
effective tool to enhance learning in children.

To the best of our knowledge, the present study is the first
attempt to identify a neurophysiological benchmark of
auditory and visual VWM in healthy children, and the
results pave the way to the understanding of fine sensory
influences on VWM. However, the present study is not
without limitations, like the size of the sample analyzed
and the average age of the participants, which means that
the results could not be generalized to an older pop-
ulation. Moreover, we are aware that the use of 20 EEG
channels cannot allow the precise indication of the areas
corresponding to the activation detected at the selected 20
electrodes. Further studies on larger populations and
subjects with particular clinical and sensorial conditions
could contribute to the identification of eventual specific
deficits and to the elaboration of training for target en-
hancement of WM development in childhood. Finally, the
use of an experimental setup with more than 20 EEG
channels could offer further developments to these first
results.
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pp. 330–357, 1861.

[144] M. Okamoto, H. Dan, K. Sakamoto et al., “(ree-dimen-
sional probabilistic anatomical cranio-cerebral correlation
via the international 10e20 system oriented for transcranial
functional brain mapping,” NeuroImage, vol. 21, Article ID
99e111, 2004.

[145] L. Koessler, L. Maillard, A. Benhadid et al., “Automated
cortical projection of EEG sensors: anatomical correlation
via the international 10e10 system,” NeuroImage, vol. 46,
Article ID 64e72, 2009.

[146] M. W. Howard, D. S. Rizzuto, J. B. Caplan et al., “Gamma
oscillations correlate with working memory load in
humans,” Cerebral Cortex, vol. 13, no. 12, pp. 1369–1374,
2003.
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