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Target Recognition of SAR Images Based on SVM and KSRC
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A synthetic aperture radar (SAR) target recognition method combining linear and nonlinear feature extraction and classifiers is
proposed. (e principal component analysis (PCA) and kernel PCA (KPCA) are used to extract feature vectors of the original
SAR image, respectively, which are classical and reliable feature extraction algorithms. In addition, KPCA can effectively make
up for the weak linear description ability of PCA. Afterwards, support vector machine (SVM) and kernel sparse representation-
based classification (KSRC) are used to classify the KPCA and PCA feature vectors, respectively. Similar to the idea of feature
extraction, KSRCmainly introduces kernel functions to improve the processing and classification capabilities of nonlinear data.
(rough the combination of linear and nonlinear features and classifiers, the internal data structure of SAR images and the
correspondence between test and training samples can be better investigated. In the experiment, the performance of the
proposed method is tested based on the MSTAR dataset. (e results show the effectiveness and robustness of the
proposed method.

1. Introduction

Synthetic aperture radar (SAR) can realize all-day and all-
weather reconnaissance through high-resolution remote
imaging. (e intelligent interpretation of massive SAR
images has become a research focus. SAR target recognition
aims to confirm the category of the target of interest in the
SAR image, mainly by combining feature extraction and
classifier [1]. Feature extraction is employed to achieve di-
mensionality reduction and compression of high-dimen-
sional SAR images, thereby improving the efficiency and
accuracy of subsequent classification. Physically relevant
features including target region, boundary, and shadow
could provide intuitive descriptions for the targets [2–6].
Data analysis algorithms represented by principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA)
[7, 8] have been widely used in SAR image feature extraction
and target recognition. And their effectiveness has been
verified by experiments. Later, with the popularity of
manifold learning algorithms [9–11], new feature extraction
methods such as nonnegative matrix factorization (NMF)
[9] further improved the target classification performance.

However, these methods are basically based on linear de-
compositions, and it is not sufficient to investigate the in-
herent complex manifold structure of SAR images. As a
remedy, researchers have improved the nonlinear processing
performance of these linear feature extraction methods by
introducing kernel functions. A typical representative is
kernel PCA (KPCA) [8]. Many signal decomposition al-
gorithms including wavelet analysis, monogenic signal, and
empirical mode decomposition have also been successfully
applied to SAR target recognition [12–15]. Besides, the
scattering center features were popular in the design of SAR
target recognition methods [16–18]. (e classifiers design
appropriate classification strategies for the extracted features
to output the target label of the test sample. At present, a rich
set of classifiers are available in SAR target recognition,
including the K nearest neighbor (KNN) classifier [7],
support vector machine (SVM) [19–21], and sparse repre-
sentation-based classification (SRC) [22–27]. Recently,
many SAR target recognition methods were developed based
on the deep learning tools, among which the convolutional
neural network (CNN) is a typical representative [28–35].
(e design of the classifier also needs to consider the
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nonlinear characteristics of feature extraction. Specifically,
when the extracted features do not have nonlinearity, it is
necessary to improve the overall nonlinear processing ability
of the recognition algorithm by adding nonlinear charac-
teristics to the classifier. On the contrary, when the extracted
features take into account the nonlinearity of the SAR image,
the classifier part can weaken the demand for the nonlin-
earity. In this way, the advantages of extracted feature and
employed classifier can be combined to enhance the clas-
sification performance.

Based on the above analysis, this paper proposes a SAR
target recognition method that combines linear and
nonlinear feature extraction and classification. First, PCA
and KPCA are used to investigate the linear and nonlinear
characteristics of the original SAR image to achieve a
comprehensive description of the pixel distribution. PCA
is a classic feature dimensionality reduction algorithm,
which has good adaptability and robustness. (e disad-
vantage is that PCA has relatively low processing capa-
bilities for nonlinear data. KPCA improves the nonlinear
ability of classic PCA by introducing the kernel function,
so it is complementary to PCA. In the classification stage,
SVM and Kernel SRC (KSRC) [36] are used to classify
KPCA and PCA feature vectors, respectively. KSRC is an
extension of SRC in the kernel space, which enhances the
nonlinear ability of the classification algorithm by de-
signing a suitable kernel function. Finally, the similarity
vectors output by the two are reliably fused by linear
weighting [37–40], and the target category is determined
according to the fused result. (is paper effectively
combines the advantages of linear and nonlinear features
and classifiers to improve the robustness of the SAR target
recognition method. In order to test the proposed method,
experiments are carried out based on the MSTAR dataset.
(e experimental results show the effectiveness of the
proposed method.

2. Feature Extraction

As an important data analysis algorithm in pattern recog-
nition, PCA has been widely used in SAR image feature
extraction [7, 8].(e basic idea is to obtain a set of projection
bases to maintain the maximum amount of information
while removing redundant information. As a supervised
feature extraction method, PCA needs the support of rich
training samples. X � x1, x2, . . . , xn􏼈 􏼉 is recorded as the
training sample set, where xi ∈ Rd, i � 1, 2, . . . , n, and the
mean vector of the training samples is calculated as follows:

x �
1
n

􏽘

n

i�1
xi. (1)

(en, the covariance matrix of X is obtained as follows:

Q � 􏽘
n

i�1
xi − x( 􏼁

T xi − x( 􏼁. (2)

(e eigenvalue decomposition is performed on Q as
follows:

[V,D] � eig(Q). (3)

In equation (3), the eigenvalues and eigenvectors of Q
are stored in the vector V and matrix D, respectively. (e
eigenvalues in V are arranged from large to small, and
several eigenvectors corresponding to the largest eigenvalues
are selected to construct the projection matrix of PCA.

KPCA is the expansion of PCA in the kernel space. By
introducing an appropriate kernel function in the vector
inner product calculation process, the nonlinear ability of
the feature extraction method can be effectively improved
[8]. Commonly used kernel functions include Gaussian
kernel function, polynomial kernel function, and loga-
rithmic kernel function.

3. Classifiers

3.1. SVM. SVM was first developed for two-class classifi-
cation problem. By minimizing the defined structural risk, a
hyperplane can be optimized to separate two types of pat-
terns. Afterwards, for an input sample x, the decision by
SVM is made as follows:

w
T

· ϕ(x) + b � 0, (4)

where w is vector containing the weight coefficients of SVM,
which are related to the properties of the hyperplane; ϕ(·) is
the kernel function for different kinds of nonlinear cases;
and b is the bias.

With the demand for multiclass classification tasks, the
traditional SVM was extended to process multiple types of
patterns using strategies like “one-to-one” and “one-to-
many.” Specifically, some mature toolboxes, e.g., LIBSVM
[41], were developed to flexibly use SVM for different kinds
of problems including pattern recognition and regression. In
the field of SAR target recognition, SVM was widely used
and the performance was validated. However, it also should
be noted that the nonlinear processing capability of SVM is
limited, and the robustness to nuisance situations like noises
and occlusions is not good enough.

3.2. KSRC. SRC was developed based on compressive
sensing theory and applied linear representation to data
processing. At first, a global dictionary, i.e.,
A � [A1, A2, . . . , AC] ∈ Rd×N, is established, where
Ai ∈ Rd×Ni , i � 1, 2, . . . , C includes the training samples
from the ith class. (en, for the test sample y, the sparse
representation is described as follows:

􏽢α � argmin ‖α‖0s.t.‖y − Aα‖
2
2 ≤ ε, (5)

where α contains the coefficients to be solved and ε is the
threshold for reconstruction error.

(e ℓ0 norm in equation (5) makes the optimization
tasks a nonconvex one, which is difficult to be solved. As a
remedy, the ℓ1 norm was employed to replace ℓ0 norm as an
approximation so the problem can be solved smoothly. In
addition, other algorithms like orthogonal matching pursuit
algorithm (OMP) and Bayesian compressive sensing (BCS)
can also be employed to handle the problem to find the
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approaching solutions. With the estimated sparse coeffi-
cients, the decision by SRC is made as follows:

r(i) � y − Ai􏽢αi

����
����
2
2, i � 1, 2, . . . , C,

identity(y) � argmin
i

(r(i)),
(6)

where 􏽢αi denotes the coefficients related to the ith training
class, which are extracted from 􏽢α; r(i), i � 1, 2, . . . , C is the
calculated reconstruction error.

Similar to the idea of KPCA, KSRC introduces the
corresponding kernel function in the sparse representation
process, thereby improving the nonlinear processing ability
of the classifier. (e specific process can be found in liter-
ature [36]. By using KSRC, the nonlinear processing ca-
pability in the classification stage can be improved.
(erefore, it can cooperate with the extracted features to
enhance the final classification performance.

3.3. Target Recognition. In order to fully combine the ad-
vantages of linear and nonlinear features and classifiers, this
paper adopts the idea of weighted fusion to make the final
decision. For the reconstruction error results output by
KSRC, this paper first transforms them with the following
equation:

s(i) �
1/(i)

􏽐
C
j�1 1/r(i)

, i � 1, 2, . . . , C, (7)

where r(i), i � 1, 2, . . . , C represents the reconstruction
error of each category and s(i) represents the similarity
between the test sample and each category. (e smaller the
reconstruction error of a certain category, the higher the
similarity between the test sample and its category. At this
time, the output result of KSRC has the same properties as
SVM and can be used for subsequent weighted fusion.

Denoting the similarity vectors corresponding to SVM
and KSRC as s1(i) and s2(i), respectively, the final similarity
is obtained by linear weighting fusion as follows:

fs(i) � w1s1(i) + w2s2(i). (8)

In equation (8), w1 and w2 represent the weight and
fs(i) is the similarity after fusion. Under the condition of
very limited prior information, this paper sets
w1 � w2 � 0.5, assuming that both have the same
importance.

Based on the above analysis, the basic process of the SAR
target recognition method proposed in this paper can be
summarized into the following steps.

Step 1. PCA and KPCA are used to extract features of all
training samples and test samples

Step 2. SVM is used to classify KPCA feature vector and
KSRC is used to classify PCA feature vector

Step 3. Based on linear weighted fusion, the similarities
from SVM and KSRC output are fused

Step 4. (e target label of the test sample is determined
according to the fusion similarity result

4. Experiments and Analysis

4.1. MSTAR Dataset. (e MSTAR dataset is currently the
most authoritative dataset for validating SAR target rec-
ognition methods. It collects SAR images of ten types of
ground vehicle targets, which provides effective data re-
sources for multiclass recognition tasks. Both the optical and
SAR images of the targets are observed in Figure 1. (e
MSTAR dataset can provide a variety of experimental set-
tings for comprehensive testing of SAR target recognition
methods including the standard operating condition (SOC)
and extended operating conditions (EOC). In order to
quantitatively evaluate the proposedmethod, several types of
comparisonmethods are set up in the experiment, as follows.
Comparison Method 1 uses SVM as the classifier and PCA
for feature extraction. Comparison Method 2 uses SRC as
the classifier and KPCA for feature extraction. Comparison
Method 3 uses KSRC as the classifier and PCA for feature
extraction. It can be seen that the ComparisonMethod 1 and
the Comparison Method 3 are part of the developed method
in this paper.

4.2. Results and Analysis

4.2.1. SOC. SOC is first considered as a basic situation with
the experimental setup shown in Table 1. Ten targets are
involved, among which the training and test samples of
BMP2 and T72 have some configuration variances. Figure 2
shows the confusion matrix of the proposed method on ten
types of targets. Among them, the horizontal and vertical
coordinates correspond to the actual target category and the
target category predicted by the proposed method, respec-
tively. (erefore, the elements on the diagonal are the
correct recognition rates of various targets. It can be seen
that all ten types of targets can be correctly classified with a
probability of more than 98%, and the final average rec-
ognition rate reaches 99.02%.(e comparison of the average
recognition rate of various methods to ten types of targets is
shown in Table 2.(e method in this paper is better than the
three types of comparison methods, which proves its ef-
fectiveness. Compared with Comparison Method 2 and
Comparison Method 3, the method in this paper effectively
improves the final recognition performance through the
linear weighting method on their fusion results and verifies
the advantages of the proposed method in combining linear
and nonlinear features.

4.2.2. Configuration Variance. (e same type of target may
include different configurations (such as BMP2 and T72 in
Table 1). In addition, as can be seen from the confusion
matrix in Figure 1, the configuration variance also leads to a
relatively low recognition rate for BMP2 and T72 targets.
(erefore, it is a challenging problem to handle the con-
figuration variance in SAR target recognition. (is experi-
ment uses the training and test sets shown in Table 3, in
which the training and test sets of the BMP2 and T72 targets
have completely different configurations. (e average rec-
ognition rates of various methods under the condition of
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configuration variance are shown in Table 4. (e method in
this paper has achieved an average recognition rate of
96.24%, which is higher than those of the other methods.(e
results verify its strongest robustness to configuration var-
iance. In this situation, the configuration differences be-
tween the training and test samples can be approached in the
nonlinear space. By combining the linear and nonlinear
features and classifiers, the overall robustness to configu-
ration variance can be improved.

4.2.3. Depression Angle Variance. (e change of the de-
pression angle will cause the SAR image of the same target to
appear with more significant difference. In order to test the
performance of the proposed method under the condition of
changing depression angles, this experiment sets up the
training and test sets shown in Table 5. Among them, the
training set is 2S1, BDRM2, and ZSU23/4 three types of SAR
images at an elevation angle of 17°, and the test set is from an
elevation angle of 30° and 45°, respectively. (e average

(6) BTR60 (7) ZSU23/4 (8) D7 (9) ZIL131 (10) 2S1

(1) BMP2 (2) BTR70 (3) T72 (4) T62 (5) BRDM2

Figure 1: Images of targets to be classified: (a) BMP2; (b) BTR70; (c) T72; (d) T62; (e) BRDM2; (f ) BTR60; (g) ZSU23/4; (h) D7; (i) ZIL131;
(j) 2S1.

Table 1: Training and test samples under SOC [6].

Class Training set Test set

BMP2 233 (Sn_9563)
195 (Sn_9563)
196 (Sn_9566)
196 (Sn_c21)

BTR70 233 (Sn_c71) 196 (Sn_c71)

T72 232 (Sn_132)
196 (Sn_132)
195 (Sn_812)
191 (Sn_s7)

T62 299 273
BRDM2 298 274
BTR60 256 195
ZSU23/4 299 274
D7 299 274
ZIL131 299 274
2S1 299 274
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recognition rates of different methods at two depression
angles are shown and compared in Table 6. It can be seen
that the method in this paper is significantly better than the
comparison method at the two depression angles, fully
verifying its robustness to depression angle variance. Under
depression angle variance, there are some nonlinear changes
or divergences between the training and test samples. (e
proposed method fully considers the possible nonlinear
characteristics during feature extraction and classification so
the capability to handle depression angle variance can be
improved.

4.2.4. Noise Corruption. SAR images measured in real en-
vironments are often affected by noise, resulting in low
signal-to-noise ratio (SNR). At this time, the problem of SAR
target recognition under noise interference is more chal-
lenging. On the basis of the original MSTAR dataset, this
paper simulates the generation of noise samples according to
the ideas in [17, 42].(e basic process is described as follows.
First, the noise energy is decided based on the pixel energy of
the original SAR image and the SNR of the expected noisy
sample.(en, the noise data are generated based on the form
of additive white Gaussian noise. Finally, the noise data are

Table 3: Training and test samples under different configurations.

Class Training set Test set

BMP2 233 (Sn_9563) 196 (Sn_9566)
196 (Sn_c21)

BTR70 233 (Sn_c71) 196 (Sn_c71)

T72 232 (Sn_132) 195 (Sn_812)
191 (Sn_s7)

Table 4: Classification results under configuration differences.

Method type Average recognition rate (%)
Proposed 97.64
Comparison Method 1 94.82
Comparison Method 2 95.26
Comparison Method 3 96.04
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Figure 2: Confusion matrix achieved by the proposed method [22].

Table 2: Average recognition rates under SOC.

Method type Average recognition rate (%)
Proposed 99.02
Comparison Method 1 97.12
Comparison Method 2 97.53
Comparison Method 3 97.64
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added to the original image, so the noisy image corre-
sponding to the preset SNR is obtained. For the constructed
noise test sample set, this paper conducts tests on various
methods and obtains the results shown in Figure 3. It can be
seen that the noise level has a great influence on the rec-
ognition performance of various methods. In comparison,
the downward trend of the proposed method’s recognition
rate curve is the slowest, showing its stronger noise
robustness.

5. Conclusion

(is paper designs a SAR target recognition method by
combining linear and nonlinear features and classifiers. PCA
and KPCA are used to extract the linear and nonlinear
features of the original SAR image. SVM and KSRC are used
to classify the features extracted by KPCA and PCA, re-
spectively. Finally, the linear weighting strategy is used to
effectively fuse the results of SVM and KSRC to improve the

robustness of decision-making. Based on the MSTAR
dataset, experiments are carried out under four typical
conditions of SOC, configuration variance, depression angle
variance, and noise corruption. (e results show the ef-
fectiveness of the proposed method.
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