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Prostate cancer disease is one of the common types that cause men’s prostate damage all over the world. Prostate-specific
membrane antigen (PSMA) expressed by type-II is an extremely attractive style for imaging-based diagnosis of prostate cancer.
Clinically, photodynamic therapy (PDT) is used as noninvasive therapy in treatment of several cancers and some other diseases.
*is paper aims to segment or cluster and analyze pixels of histological and near-infrared (NIR) prostate cancer images acquired
by PSMA-targeting PDT low weight molecular agents. Such agents can provide image guidance to resection of the prostate tumors
and permit for the subsequent PDT in order to remove remaining or noneradicable cancer cells. *e color prostate image
segmentation is accomplished using an optimized image segmentation approach.*e optimized approach combines the k-means
clustering algorithm with elbow method that can give better clustering of pixels through automatically determining the best
number of clusters. Clusters’ statistics and ratio results of pixels in the segmented images show the applicability of the proposed
approach for giving the optimum number of clusters for prostate cancer analysis and diagnosis.

1. Introduction

As per the American Cancer Society [1], in 2020, the United
States is relied upon to have 191,930 new instances of
prostate disease, and the number of deaths due to prostate
malignancy will reach 33,330 [2]. Prostate malignant growth
has outperformed cellular breakdown in the lungs by ending
up being the most widely recognized because of the broad
increment of separating 2016 [3]. *e number of prostate
cancer patients who have been treated is increasing signif-
icantly [4]. In 2014, the report issued by Data of Saudi
Cancer Registry has exposed that the rank of prostate cancer
was the fifth and creates 6.1% of overall cancers in men in the
Saudi Arabia [5]. Also, in Saudi Arabia for years between
2001 and 2008, there are 7.7 per 100,000 men, and 5.1 per
100,000 men were estimated as prostate cancer of the age-
standardized incidence rate (ASIR) and the age-standard-
ized mortality rate (ASMR), respectively, by the Interna-
tional Agency for Research on Cancer (IARC) [6].

During the last years, physicists are still working to
improve imaging techniques, and they continue updating
them in a multidimensional space field to aid radiologists in
recognition and analysis of cancer cells. Lately, Neuman
et al. [7] have exposed improving the prostate cancer surgical
treatment and reducing the margins of positive surgical rate
by the near-infrared (NIR) fluorescence probe YC-27 in real
time laparoscopic extirpative surgery.

One noninvasive therapy is photodynamic therapy
(PDT), which is clinically used in cancer treatment and the
other diseases [8, 9]. PDT utilizes photosensitizers that
become active when they were visible to light in the
presence of oxygen. *e reactive oxygen species like singlet
oxygen that are formed by the active drug kill nearby cells.
Many agents that include phthalocyanines and porphyrins
have been assessed as photosensitizers [10, 11]. In an effort
to improve the accuracy of prostate cancer identification,
an optimized light source-based near-infrared (NIR)
fluorescence imaging system is used for reducing the
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positive surgical margins (PSM) of cancer cells [7]. *e
main PDT treatment challenge is the accumulation of off-
target tissue and photosensitizer activation, killing cells in
normal tissue [12]. Minimizing the side effects and gen-
erating better outcomes therapeutically required the op-
timal method of a particularly selective delivery for
photosensitizers.

PSMA is an exclusive membrane bound glycoprotein,
initially exposed in the androgen-dependent prostate ade-
nocarcinoma of the human cell by means of a monoclonal
[13]. *erefore, the PSMA is considered as an overexpressed
on analysis of prostate cancer.*ere is a correlation between
PSMA expression in cancer tissues and the disease stage and
score of Gleason [14]. In cells of prostate cancer taken from
hormone-refractory patients, the PSMA expression is also
higher [14] and increased to be shown as an independent
marker for the disease recurrence [9]. Moreover, the PSMA
can be also stated in neovasculature for various solid tumors
[15]. Unsupervised approach based on Hopfield neural
network classifier is used in [16] for NIR prostate image
segmentation.

Precise prostate image segmentation and volume as-
sessment assume a fundamental part in the conclusion and
therapy of prostate-related illnesses, particularly the orga-
nizing evaluation of prostate malignant growth. As of now,
attractive reverberation imaging (MRI) has turned into the
principle imaging strategy for helping prostate finding be-
cause of its high-goal and delicate tissue contrast [17].

Nevertheless, the assessment of the prostate images
depends on the visual investigation accomplished by the
radiologist, which is very tedious, time-consuming, sub-
jective, and complicated. *us, in the previous decade,
different prostate segmentation techniques have been pro-
posed. For example, Shi et al. [18] took advantage of the
coupled element feature and spatial-constrained to assess the
3D prostate probability map and utilize the multimap fusion
approach to produce the last segmentation results.

A deformable segmentation technique for prostate im-
ages was proposed by Guo et al. [19] to combine the sparse
patch matching technique and deep feature learning method
for prostate image segmentation. *ese strategies have really
shown a promising result in the prostate cancer diagnosis
throughout the automatic segmentation of prostate images.
However, because of the heterogeneity of the prostate gland,
the low difference between the gland and neighboring tis-
sues, and the absence of clear boundaries and strong edges
[20], the segmentation of prostate images is still remaining as
a part of current research studies and a challenging task
[21, 22].

Ushinsky et al. [23] introduced a prostate organ seg-
mentation approach using a hybrid U-Net convolutional
neural network (CNN). *e approach is used for automatic
localization and segmentation of prostates from multi-
parametricMRIs (mpMRIs).*e author trained the CNN on
7774 MRI of 287 patients to achieve 0.974 for the Pearson
correlation coefficient metric and 0.898 for the mean Dice
score. However, further works should be conducted to
develop some pattern recognition methods for lesion
quantification and localization.

Pan et al. [24] proposed a prostate segmentation model
on the 3D magnetic resonance images (MRIs). *e model
contains two stages: variable input-based uncertainty
measures and an uncertainty-guided postprocessing
method. *e author validated the robustness of the model
and showed that the label smoothness has been improved
significantly by applying the uncertainty-guided post-
processing method.

In this study, an optimized approach for NIR prostate
image segmentation is proposed using the k-means clus-
tering algorithm with the elbow method. *e optimized
approach can give better clustering of pixels by determining
automatically the best number of clusters.*eNIR images of
prostate are acquired throughout PSMA-1-PC413, two
PSMA-1-based PDT conjugates, and PSMA-1-IR700. In
clinical trials, currently, the Pc413 is a second generation
analogue of phthalocyanine PDT drug Pc4 [25], and com-
mercially, the IR700 is available near-infrared dye that has
presented to take PDT events [26].

*e core contributions of this research work can be given
as follows:

(i) An optimized approach is proposed for prostate
image segmentation using the k-means clustering
algorithm with elbow method. *e approach is able
to find the best number of clusters to k-means for
better prostate images segmentation and supporting
the radiologist to give accurate diagnosis regarding
to the visual inspection of prostate malignant
growth.

(ii) *e proposed approach is implemented by com-
bining the k-means clustering algorithm with elbow
method and evaluating it on two datasets by ana-
lyzing the clusters’ statistics and ratio results of pixels
in the segmented images.

*e reminder of the paper is outlined as follows. Section
2 describes the datasets and research methods used in this
study work. Section 3 presents the experimental results and
discussion in more detail. Section 4 concludes the research
work highlighting the future direction of the study.

2. Materials and Methods

2.1. Datasets. Two datasets are used to validate the appli-
cability and effectiveness of our proposed clustering method.
*ey are collected from two different sources for generating
dataset 1 and dataset 2. *e dataset 1 is acquired from our
previous work [16]. It contains four samples of NIR color
images getting PSMA-1-IR700 and PSMA-1-PC413 with
and without the light irradiation. Figure 1 shows the data
sample images of dataset 1.

Additionally, dataset 2 consists of four prostate histo-
logical color images obtained from pathology dataset images
collected by the Pathology Laboratory of the Johns Hopkins
University and available in its website link (https://
pathology.jhu.edu/prostatecancer/). Figure 2 presents the
data sample images of dataset 2. Gleason pattern 5 (GP5) is
the type of selected images in this dataset. *e Gleason
system is a useful indicator used to as a predictive outcome
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(a) (b)

(c) (d)

Figure 1: NIR images of dataset 1: (a) 0.5mg/kg PSMA-1-Pc413 with no light irradiation, (b) 0.5mg/kg PSMA-1-Pc413 with 150 J/cm2 light
irradiation, (c) 0.5mg/kg PSMA-1-IR700 with no light irradiation, and (d) 0.5mg/kg PSMA-1-IR700 with 50 J/cm2 light irradiation.

(a) (b)

Figure 2: Continued.
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value for clinical diagnosis of prostate cancer patients. It has
a grade of 1 for the cancerous prostate tissue that looks as a
normal tissue and a grade of 5 for the abnormal prostate
tissue due to cancer cells and their growth patterns.

2.2. Research Methods. In this subsection, we explain the
research methods adopted to propose the research work
approach. *e approach aims to develop an optimized
clustering method for analyzing the distribution of pixels in
the histological and near-infrared (NIR) prostate cancer
images. It is built based on the traditional k-means clustering
algorithm and elbow criterion technique described in the
following subsections.

2.2.1. K-Means Clustering Algorithm. Clustering methods
are algorithms used for grouping the objects or regions into
clusters based on their attributes. Each cluster can be
defined as a group of instances which are similar between
them and dissimilar to the instances, which are in other
clusters. In machine learning field, clustering-based
methods belong to unsupervised learning concept. *e
unsupervised learning concept can train from the features
of available unlabeled data. In other words, clustering can
be defined as a static-classification of similar entities or
objects into several different groups or more subsets.
Consequently, the member objects in the same group have
similar attributes, which is commonly contained in the
coordinate system with shorter spatial distance. In prostate
cancer image segmentation and analysis, similar pixels are
grouped together to form clusters or segments according
the similarity condition, which are well-defined between
pixels [17]. K-means is one of more common and effective
unsupervised algorithms, used for clustering task. It has a
good clustering effect and simple to implement. *ere are
some variants of the k-means algorithm. *e simple notion
behind the k-means algorithm is explained by the following
lines. Suppose that a given dataset of data points
(x1, x2, x3, . . . , xn) is divided into K number of clusters
(C1, C2, C3, . . . , Ck) regarding the distance value between

the data points in this dataset. *en, the goal is minimizing
the sum of squared errors within cluster(SSEWC), which
can be computed as follows:

SSEWC � argmin
C
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where |Ci| represents the size of cluster i, varCi is the
variance of cluster i, and μi is the mean of data points in Ci.
*is is similar to minimizing the data points pairwise
squared deviations of the same cluster as follows:
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C



k

i�1

1
2 Ci





x,y∈Ci

x − y
2
. (2)

Also, we deduce the difference between data points from
their mean using identity as follows:
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T μi − y( . (3)

By equivalence and because the total variance is normally
constant, minimizing the sum of squared errors within
cluster (SSEWC) is equal to maximizing the sum of squared
error between clusters (SSEBC) or between data points of
different clusters, computed as follows:

SSEBC � argmax
C



k

i�1
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μ − μ2i , (4)

where μ is the mean of clusters, μi is the mean of data points
in Ci, and |Ci| is the size of cluster i.

Hence, the k-means algorithm aims to make the distance
between the clusters of the dataset as large as possible and
make the distance between the data points of the same
cluster as small as possible.

*e main steps of the k-means clustering algorithm can
be summarized as follows:

(i) K centroids are created; then, each point is assigned
to the nearest centroid.

(c) (d)

Figure 2: Histological color images of dataset 2: (a) sheets of cancer with rosette formation, (b) small nests and cords of tumor with scattered
clear vacuoles, (c) nests and cords of cells with only vague attempt at Lumina formation, and (d) solid nests of cancer.

4 Computational Intelligence and Neuroscience



(ii) *e centroid is recalculated. *is process is repeated
several times until the result of cluster allocation of
data points no longer changes.

*e main advantages of k-means include a number of
points: first, it belongs to unsupervised learning; no training
set is required; second, the principle of k-means is very
simple, and it is easier to implement; and finally, the result of
k-means is better interpretable. In contrast, one disadvan-
tage of k-means comes in the difficulty of choosing an in-
appropriate value of K that might lead to poor clustering
results. *is is why it is necessary to perform feature checks
to determine the number of clusters in the dataset, and this
depends on the application domain. Other disadvantages of
the k-means algorithm represented in it might converge to a
problem of local minimum; it has a slower convergence on
large-scale of data sets; and it is more sensitive to outliers.

2.2.2. Proposed Method. *e proposed method aims to
segment or cluster and analyze pixels of histological and
near-infrared (NIR) prostate cancer images by improving
and optimizing the traditional k-means algorithm by
finding the number of clusters through elbow criterion
technique. Elbow criterion technique is a heuristic method
applied to determine the number of clusters of the data
points in a dataset. Elbow technique is used to obtain the
optimal number of clusters for a set of data points because
it is an empirical method, simple and easy to implement. By
applying the k-means clustering algorithm, the elbow
technique plots the explained variations through the
number of clusters and picks the curve of elbow to get the
number of clusters. It depends on computing the sum of
squared errors within-cluster (SSEWC) given in Equation
(1) of all data points to represent the quality of aggregation
between data point in the same cluster and separation
between clusters. *e core idea of the elbow technique is
explained as follows:

(i) As the number of clusters K increases, the model
separation is more distinguished, and the amount of
aggregation for each cluster will gradually be in-
creased; therefore, the SSEWC will gradually and
obviously become smaller.

(ii) When K is less than the true number of clusters,
increasing the value of K significantly increases the
amount of aggregation for each cluster. SSEWC will
be decreased, and once K will reach the true number
of clusters, the amount of aggregation achieved using
K will be increased. *erefore, the return will be
decreased quickly, and the SSEWC will be decreased
sharply. Consequently, it will be flattened out when
the K value remains increasing. *is means that the
relationship between SSEWC and K can be repre-
sented in the elbow shape corresponding to the K

value, which is the number of true clusters for the
example points. For instance, in Figure 3, it obvious
that the highest curvature of elbow is at K value of 4.
Hence, the best number of clusters will be 4.

3. Experimental Results and Discussion

*is section gives and discusses the results of the experi-
ments conducted by the proposed image clustering method
on the prostate dataset images described in subsection 2.1. At
first, we present the curve plots of elbow criterion technique
for prostate images in dataset 1 as displayed in Figure 4. It
shows the highest curvature of elbow in all plots atK� 4, and
after this value, the curvature seems to be stable and does not
have much changes. *erefore, the best number of clusters
for the images of dataset 1 is 4.

Similarly, Figure 5 gives the plot curves of elbow
criterion technique for the images in dataset 2. From
Figure 5, we can see that value 4 is the best number of
clusters in which the changes of elbow curvature are not
higher than the other number of clusters in all plots, and
after this value, the curvature seems to be stable and does
not much change.

To show the effect of number of clusters selected by
elbow criterion technique, Figures 6(a) and 7(a) show an
original image from dataset 1 and an original image from
dataset 2 with their segmented images at K� 3 and K� 4 in
Figures 6(b), 7(b), 6(c), and 7(c), respectively. We notice
from the red bounding box in Figure 6(b) and Figure 6(c)
that the value 4 for the number of clusters is suitable to
cluster image pixels into appropriate regions with a good
separation and without overlapping between these regions.

Furthermore, Figures 8 and 9 visualize clusters’ regions
with their labels, for example, images taken from dataset 1
and dataset 2, respectively. It is clear to see that the method is
able to cluster properly images’ pixels in their appropriate
regions. Figures 10 and 11 display the original images of
dataset 1 and dataset 2 with their clustered images.*e visual
vision evaluation of segmented images shows that clustering
method is beneficial for segmentation, screening, and an-
alyzing prostate cancer disease from NIR and histological
color images.

For more analyzing, Tables 1 and 2 give the distribution
of clusters’ pixels for segmented images of dataset 1 and
dataset 2.

Figures 10 and 11 illustrate the resulted images of
segmentation for dataset 1 and dataset 2 original images
displayed in Figures 1 and 2 with a value of 4 as the
predefined number of clusters, and from Tables 1 and 2
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Figure 3: An example of how elbow criterion technique works.
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Figure 4:*e curve plots of elbow criterion technique for prostate images in dataset 1: (a) curve plot of image 1, (b) curve plot of image 2, (c)
curve plot of image 2, and (a) curve plot of image 4.
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Figure 5: Continued.
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that list the number and the ratio of clusters’ pixels for
each segmented image, we can see that the ratios of pixels
for cluster 1, cluster 2, cluster 3, and cluster 4 of image 1 in
dataset 1 are 15.53%, 19.89%, 31.02%, and 33.56%. It is
clear to notice that the distribution pixel ratio of cluster 1
and cluster 2 is almost near to each other and the dis-
tribution pixels ratio of cluster 3 and cluster 4 is also near
to each other. Moreover, we can see that the cluster 4 that
has the largest ratio is the denominator cluster. Also, we
can see that the ratios of pixels for cluster 1, cluster 2,

cluster 3, and cluster 4 of image 1 in dataset 2 are 22.19%,
32.48%, 25.80%, and 19.52%. *e denominator cluster is
cluster 2. Subsequently, we notice that there are no big
differences between ratios regarding the density of clus-
ters’ distributions. Over this discussion, we compare the
visual representation of segmentation results between the
method developed in this work and the method proposed
in previous work [16]. Figure 12 compares the segmented
images of the two methods on the same original image
taken from dataset 1.

(a) (b)

(c)

Figure 6: An original image from dataset 1 with their segmented images: (a) the original image, (b) its segmented image with K� 3, and (c)
its segmented image with K� 4.
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Figure 5:*e curve plots of elbow criterion technique for prostate images in dataset 2: (a) curve plot of image 1, (b) curve plot of image 2, (c)
curve plot of image 2, and (a) curve plot of image 4.
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As shown in Figure 12(b), it is clear that the regions of
the segmented image are distinguished accurately like the
regions of the original image. In Figure 12(c), the seg-
mentation method generates some artifacts and noises re-
gions. Accordingly, Figure 12 shows that the segmentation
results of the optimized k-means-based segmentation
method are interested and more appropriate for analysis
than those of the previous method in terms of visual

measurement. Although we obtained a high quality result,
the issues of uncertain nonlinear imaging systems and
unknown parameters [27, 28] may affect the segmentation
results. Besides, the change in illumination and contrast of
the prostate images as well as the outliers presented in the
acquired input images might make it not work well.
*erefore, in next work, we will apply the fuzzy c-means
algorithm with elbow technique to solve such issues.

(a) (b)

(c)

Figure 7: An original image from dataset 2 with their segmented images: (a) the original image, (b) its segmented image with K� 3, and (c)
its segmented image with K� 4.

Cluster 1: Light Color

Cluster 2: Near to Light ColorCluster 3: Near to Dark Color

Cluster 4: Dark 

Figure 8: Visualization of clusters’ regions with their labels for a part of an image taken from dataset 1.
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Cluster 1: Light Color

Cluster 2: Near to Light Color

Cluster 3: Near to Dark Color 

Cluster 4: Dark Color

Figure 9: Visualization of clusters’ regions with their labels for a part of an image taken from dataset 2.

(a) (b)

(c) (d)

(e) (f )

Figure 10: Continued.
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(g) (h)

Figure 10: *e original images of dataset 1 with their segmented images using the proposed approach: (a–d) the original images and (e–h)
their segmented images.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 11: *e original images of dataset 2 with their segmented images using the proposed approach: (a–d) the original images and (e–h)
their segmented images.
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Table 1: *e distribution of pixels in segmented images of dataset 1.

Image name Cluster label Number of pixels Pixels ratio (%)

Image 1(a)

Cluster 1 75570 15.53
Cluster 2 96800 19.89
Cluster 3 150938 31.02
Cluster 4 163313 33.56

Image 2(b)

Cluster 1 105475 21.22
Cluster 2 164569 33.10
Cluster 3 148752 29.92
Cluster 4 78354 15.76

Image 3(c)

Cluster 1 101934 20.51
Cluster 2 107939 21.72
Cluster 3 134534 27.07
Cluster 4 152537 30.70

Image 4(d)

Cluster 1 92620 29.02
Cluster 2 106532 33.38
Cluster 3 71996 22.56
Cluster 4 48004 15.04

Table 2: *e distribution of pixels in segmented images of dataset 2.

Image name Cluster label Number of pixels Pixels ratio (%)

Image 1(a)

Cluster 1 38503 22.19
Cluster 2 56362 32.48
Cluster 3 44772 25.80
Cluster 4 33877 19.52

Image 2(b)

Cluster 1 29566 16.95
Cluster 2 76779 44.00
Cluster 3 37948 21.75
Cluster 4 30191 17.30

Image 3(c)

Cluster 1 56772 32.47
Cluster 2 72832 41.66
Cluster 3 22898 13.10
Cluster 4 22344 12.78

Image 4(d)

Cluster 1 32548 18.73
Cluster 2 75774 43.61
Cluster 3 53014 30.51
Cluster 4 12424 7.15

(a) (b) (c)

Figure 12: Comparison of the proposed method against the previous prostate image segmentation method: (a) part of original image 2 of
dataset 1, (b) segmented image of the proposed segmentation method, and (c) segmented image of the previous segmentation method [16].
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4. Conclusions

Reliable segmentation of prostate images is important for
radiologists to analyze and detect disease. For improving
visual inspection in prostate cancer diagnosis, this paper
presents an optimized approach for prostate image seg-
mentation using the k-means clustering algorithm with
elbow method. *e presented approach is able to solve the
limitation of current methods in determining the best
number of clusters for prostate image segmentation. It can
segment or cluster and analyze pixels of histological and near-
infrared (NIR) prostate cancer images acquired by PSMA-
targeting PDT low weight molecular agents. Such agents can
provide image guidance to resection of the prostate tumor and
allow for the subsequent PDT to remove remaining or not
eradicable cancer cells. *e experimental results on two
datasets of color prostate images are obtained using the
optimized image segmentation approach. *e analysis of
segmented images with more attraction to clusters with small
regions can help to attain more perfect diagnosis. Clusters’
statistics and ratio results of pixels in the segmented images
show the applicability of proposed approach for giving the
optimum number of clusters for prostate cancer analysis and
diagnosis. *e proposed approach has a number of advan-
tages such as its simplicity and its ability to solve the am-
biguity that arises in the k-means algorithm to select the k
value for prostate image segmentation. Even though there are
advantages, there are some disadvantages related to the
change in illumination and contrast to the prostate images as
well as the outliers presented in the acquired input images. In
future work, we plan to extend the proposed approach to deal
with uncertainty and changes in the input prostate images,
and we will combine this proposed approach with the ma-
chine learning algorithm for prostate cancer diagnosis.
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