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Correspondence should be addressed to José M. Cañas; josemaria.plaza@urjc.es
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Real-time vehicle monitoring in highways, roads, and streets may provide useful data both for infrastructure planning and for
traffic management in general. Even though it is a classic research area in computer vision, advances in neural networks for object
detection and classification, especially in the last years, made this area even more appealing due to the effectiveness of these
methods. )is study presents TrafficSensor, a system that employs deep learning techniques for automatic vehicle tracking and
classification on highways using a calibrated and fixed camera. A new traffic image dataset was created to train the models, which
includes real traffic images in poor lightning or weather conditions and low-resolution images. )e proposed system consists
mainly of two modules, first one responsible of vehicle detection and classification and a second one for vehicle tracking. For the
first module, several neural models were tested and objectively compared, and finally, the YOLOv3 and YOLOv4-based network
trained on the new traffic dataset were selected. )e second module combines a simple spatial association algorithm with a more
sophisticated KLT (Kanade–Lucas–Tomasi) tracker to follow the vehicles on the road. Several experiments have been conducted
on challenging traffic videos in order to validate the system with real data. Experimental results show that the proposed system is
able to successfully detect, track, and classify vehicles traveling on a highway on real time.

1. Introduction

Number of vehicles on earth is increasing rapidly. According
to data provided by International Organization of Motor
Vehicle Manufacturers (OICA, https://www.oica.net/), the
number of vehicles produced in the last years is way more
than 70 million vehicles per year. )is number is increasing
very quickly, equally the number of travel kilometers in-
creases even more quickly. )is explosion in the number of
moving vehicles raises several challenges of different types:
environmental, economical, and infrastructure manage-
ment. At this moment, it is clear that managing such large
number of vehicles is one of the biggest problems that
countries worldwide have to deal with. Classic vehicle
monitoring techniques cannot deal with such huge amount
of data nor make an intelligent use of it. It is clear that new
sophisticated paradigms are needed to deal with this chal-
lenging task.

)e main goal of intelligent transportation systems
(ITSs) is to monitor the different vehicle transport networks

in a smart way. For this, they make use of the different
available technologies such as dedicated sensors and ad-
vanced video cameras. )e objective of this monitoring is to
extract useful information that can be used to coordinate the
vehicle traffic networks. Eventually, by means of these
systems, we want to minimize congestion and to enhance
mobility.

Video cameras are the most used sensors on ITSs sys-
tems. )eir simple installation and maintenance combined
with their rich nature of the information make them one of
the best solutions when it comes to surveillance and
monitoring. Depending on the conditions of the ITSs sys-
tem, it will be necessary to use moving cameras or fixed
cameras. In addition to the cameras, ITSs systems tradi-
tionally made use of other sensors such as radars for speed
enforcement or inductive loops and laser and infrared
sensors for vehicle classification [1–6]. Systems based on
these sensors try to classify the vehicles by extracting certain
information such as the vehicle’s length and number or
distance between axles. Although they may provide a better
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accuracy in general, they require an intrusive installation
and not all of them provide the possibility of multilane
monitoring. Another drawback is their initial high instal-
lation cost, which is an important factor to take into account
when comparing ITS systems. In fact, when evaluating this
kind of systems, not only the initial price but also the whole
system life cycle must be taken into consideration. Finally,
the information provided by these traditional systems is
basic and cannot be used to extract high level traffic data
such as vehicle orientation, position, or other parameters
that can be used for traffic law enforcement.

Usage of video cameras in traffic surveillance [7–9]
typically was limited to passive monitoring tasks or very
basic automated processing. )e advances in image pro-
cessing algorithms in the last decade specially in the deep
neural networks area have opened the door to more so-
phisticated systems based on computer vision. Nowadays,
with these advances, we can create systems not only able to
detect vehicles in normal situations but with capacity to
recognize and classify vehicles in very challenging situations.
)is may be the base to perform high level tasks such as
automated traffic management, automatic incident detec-
tion, law enforcement, fog, and other weather conditions
and many other incidents.

)e study presents a vision-based traffic monitoring
system, named TrafficSensor, that includes a robust vehicle
detection and classification algorithm and a new technique
for dealing with occlusions [10–12]. It is the evolution of a
previous system [13] towards a higher reliability and good
performance even in challenging lightning or weather
conditions, and poor camera resolution while keeping real-
time operation. TrafficSensor is based on the use of a fixed
camera to detect and monitor vehicles. Section 2 (Related
Works) reviews relevant studies on vehicle classification
[14–18]. )e system core functionality is described in the
Section 3 (TrafficSensor: A Deep Learning-Based Traffic
Monitoring Tool), where the details for the vehicle tracking
and deep learning-based detection algorithms are presented.
Section 4 (Experimental Validation) presents several tests
performed to validate the system functionality and the
quantitative obtained results. Finally, Section 5 (Conclusion)
summarizes the main lessons extracted from this work.

2. Related Works

)e literature provides many publications dealing with
vehicle monitoring [19–21], even recognizing the vehicle
model [22]. To perform such monitoring, it is necessary to
detect the vehicles and then to follow them up. A technique
widely used for vehicle detection is background subtraction
[23–27]. )e background subtraction technique is a tech-
nique widely used to detect objects such as the difference
between a current pixel and a reference pixel, called back-
ground. Huang [28] used the Gaussian mixture to detect the
background and subsequently subtract it. )is guarantees
that the background we extract corresponds to the lighting
of that moment [29]. )e mixture of Gaussian (MOG)
proposes to model the intensity of the pixels with a mixture
of k Gaussian distributions. MOG is a technique that first

applied to the problem of background subtraction. Traf-
ficMonitor [13] makes use of an improved version of the
proposed MOG by Zivkovic [30]. )e advantage of this
method is that for each pixel, the number of Gaussian to be
used can be adapted. Another technique very similar to
background subtraction is the absolute difference (sum of
absolute differences (SAD)) between two sequences. Sam-
hitha et al. [31] presented a technique based on the absolute
difference (SAD) between two consecutive frames. Guer-
rero-Gomez-Olmedo et al. [32] used the histogram of ori-
ented gradients (HOG) to detect vehicles. HOG is a type of
feature descriptor. It converts the local information of the
gradients for each pixel into a representation of the image
that captures the global shape of the object into a feature
vector.

For vehicle tracking [33–38], many solutions rely on the
features. To follow-up, Wang et al. [39] employed a tech-
nique based on features called scale-invariant feature
transform (SIFT) [34] and optical flow. SIFT is an algorithm
used to extract characteristics from images. Optical flow is
the pattern of movement of the image objects between two
consecutive frames caused by the movement of the object.
Mu et al. [35] also used SIFT to track vehicles. Huang and
Barth [40] proposed an algorithm to carry out vehicle
tracking and resolution of occlusions. In this algorithm, they
use a color model based on mean-shift to identify which
vehicle each 3× 3 pixel patch belongs to when there is an
occlusion. In other cases, 2D or 3D [41] models are used to
do the tracking. Leotta and Mundy [42] employed this
technique to detect vehicles using a deformable template that
adjusts to identify different forms of vehicles. Huang [28]
and Baker and Sullivan [43] used Kalman filters and
Guerrero-Gómez-Olmedo et al. [32] employed extended
Kalman filters (EKF) [44]. )e Kalman filter is an algorithm
to update, observation by observation, the linear projection
of a system of variables on the set of available information, as
new information becomes available. )e extended Kalman
filter consists of a variation of the Kalman filter to trackle the
state estimation problem when the model is possibly
nonlinear.

Regarding image classifiers, Vedaldi et al. [45] proposed
a novel three-stage classifier, which combines linear, qua-
silinear, and nonlinear kernel SVMs. )ey showed that
increasing the nonlinearity of the kernels increases their
discriminative power, at the cost of an increased compu-
tational complexity. )eir aim was to learn an SVM classifier
[46], where rather than using a prespecified kernel, the
kernel is learnt to be a linear combination of given base
kernels.

One of the most heavily studied paradigms for object
detection [47, 48] and classification is deep learning. )e
convolutional neural network (CNN) is a feed-forward type
of the machine learning algorithm that have shown im-
pressive results and robustness in visual object detection.
)ey have been widely explored in the context of vehicle
monitoring too. In Migel et al.’s work [49], the vehicle
identification and classification are performed for each
extracted portion of the input image, simultaneously using
the designed CNN. )at is, a softmax layer is used as the
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classifier to perform vehicle classification. Caffe [50]
framework was used to benchmark the performance of the
vehicle detection system. Sensa et al. [51] presented an in-
telligent traffic congestion detection method using the CNN.
)e dataset used in this experiment is the road traffic
condition images from CCTV camera in Jakarta during 29
April–5May 2017 that can be obtained from lewatmana.com
http://lewatmana.com.

Yang et al. [52] proposed a detection method using a
single image to generate the 3D space coordinate infor-
mation of the object using monocular vision for autono-
mous driving. )eir method is built by modifying the fast
R-CNN using multitask learning, and thus is named mul-
titask faster R-CNN (MT faster RCNN). For the experi-
ments, the KITTI dataset was used.

Luo et al. [53] presented a model based on the faster
RCNN with NAS optimization and feature enrichment to
perform the effective detection of multiscale vehicle targets
in traffic scenes. Luo et al. proposed a Retinex-based image
adaptive correction algorithm (RIAC) (to reduce the in-
fluence of shadows and illumination), conducted neural
architecture search (NAS) on the backbone network used
for feature extraction of the faster RCNN (to generate the
optimal cross-layer connection to extract multilayer fea-
tures more effectively), and used the object feature en-
richment that combines the multilayer feature information
and the context information of the last layer after cross-
layer connection (to enrich the information of vehicle
targets and improve the robustness of the model for
challenging targets such as small scale and severe occlu-
sion). )eir model has been trained and tested on the UN-
DETRAC dataset.

Redmon et al. [54] presented YOLO, a new approach to
object detection. YOLO reframes object detection as a single
regression problem, straight from image pixels to bounding
box coordinates and class probabilities. Use You Only Look
Once (YOLO) at an image to predict what objects are present
and where they are. Jean-Francois Rajotte et al. [55] did
automatic annotations that were performed with the YOLO
detector. Kwan et al. [56] used YOLOv1 to detect vehicle in
real time.

Mahto et al. [57] used the object detection algorithm
YOLOv4 and optimized it for vehicle detection. To improve
YOLOv4, they proposed optimize the anchor box using
k-means clustering (ABK), the nonmaximum suppression
with distance-IoU (DIoU-NMS), the spatial attention
module (Sam), and the self-adversarial training (SAT). )e
UA-DETRAC Benchmark dataset was used to train and test
the method.

Zhang et al. [58] proposed an improved RetinaNet.)eir
algorithm uses octave convolution instead of the traditional
convolution layer and a weighted feature pyramid network
(WFPN) structure to limit the propagation of gradients
between different levels. To evaluate the result, the DETRAC
dataset was used.

Szegedy et al. [59] presented a network that is based on
the convolutional DNN defined by [60]. It consists of total 7
layers, the first 5 of which being convolutional and the last 2
fully connected. Each layer uses a rectified linear unit as a

nonlinear transformation. )ree of the convolutional layers
have in addition max pooling.

3. TrafficSensor: ADeepLearning-BasedTraffic
Monitoring Tool

TrafficSensor tool is able to monitor traffic in real time and
classify the vehicles into 7 categories: motorcycles, cars, vans,
buses, trucks, small trucks, and tank trucks. It consists of
three main blocks: vehicles detection, vehicles classification,
and vehicles tracking, as shown in Figure 1. )ey are
implemented in two separate modules, as detections and
their classification are carried out jointly because deep
learning is used. )e tracking focuses on spatial proximity,
and if it fails, KLT is used. All detected blobs will be tracked
over time.

)ere is a single image area where detection, classifi-
cation, and tracking are carried out. )is area, that is called
evaluation area, is marked in the image by the user to
identify where on the road we want to focus the detections,
as shown in Figure 2. TrafficSensor is designed to monitor
outgoing traffic flow, although it can be extrapolated to
incoming traffic flow.

3.1. Deep Learning-Based Detection and Classification.
)e system takes input images acquired from the video being
monitored. )ese images pass as input to the neural net-
work, where various vehicles are detected and classified. All
information is stored at each moment, so that it can be
tracked based on the information recorded from the pre-
vious moment. TrafficSensor supports trained neural net-
works with different neural frameworks (TensorFlow,
Darknet, and Keras) in order to detect and classify the
different vehicles that appear in the image.

In the detection and classification block, the system
implements these criteria:

(i) Inside the evaluation area, there are two zones
(Figure 3). )e zone 1 matches with the half of the
evaluation area where the vehicles enter. In this
zone, it is easier to detect and classify the vehicles
because they are bigger than that in other areas of
the image. )e zone 2 refers to the half through
which vehicles leave the evaluation zone. )is zone
is more complex, since the vehicles have smaller size
than in the zone 1.

(ii) Vehicles always enter in the evaluation area through
zone 1. )ey can never appear suddenly. For this
reason, no new vehicle can appear in the middle of
the road. A new vehicle can never be detected in
zone 2.

(iii) If a vehicle is not detected in zone 1 during five-
frame sequence, it will be a false positive. It will be
discarded.

(iv) Any vehicle that is in zone 2 will be considered a
correct vehicle. If the vehicle is not detected with
deep learning, KLT will be used to locate it.
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)ree different frameworks (TensorFlow, Keras, and
Darknet) and four neural network models have been tested
in order to evaluate which one is better for the final Traf-
ficSensor application. Specifically, the SSD MobileNetV2
network with TensorFlow, the SSD VGG-16 network with
Keras, and YOLOv3 and YOLOv4 with Darknet.

3.1.1. SSD MobileNetV2 Network. )e SSD MobileNetV2
network (Figure 4) used was trained with the COCO dataset.
To use this network, we utilized the configuration file ssd
mobilenet v2 coco.config.

)is network is formed by a SSD and a MobileNet V2.
MobileNet V2 gets the maps of features to perform the
classification and detection in the subsequent layers. )e
SSD approach is based on a convolutional feed-forward
network that produces a set of bounding boxes fixed in size
and punctuates the presence of object class instances in those
bounding boxes. After this, it carries out nonmaximum
suppression to produce the final detections.

3.1.2. SSD VGG-16 Network. Another SSD network has
been used with VGG-16 as its base network, pretrained with
ImageNet. Figure 5 shows this network model. VGG-16
consists of 16 layers, of which 13 are convolutional layers, 2
fully connected layers, and a softmax layer that is used to
classify. Figure 6 shows how the architecture of the VGG-16
network is.

3.1.3. YOLOv3. You Only Look Once (YOLO) imposes
strong spatial constraints on bounding box predictions,
since each cell in the grid only predictsN bounding boxes (N
being a fixed parameter) and can only have one class. )is
spatial restriction limits the number of nearby objects that
our model can predict.

)e YOLOv3 [61] network (Figure 7) is made up of a
total of 107 layers, which can be grouped into two groups,
one in charge of extracting features and another in charge of
detecting objects:

(i) Feature extraction (from layers 1 to 75): it is the
Darknet-53 network trained with ImageNet, which
is composed of 53 convolutional layers (Figure 8).
)is network has 416× 416× 3 images as input and
features as output 3D 13×13×1024 and incorpo-
rates 23 residual layers. When a neural network
increases in depth its precision when it comes to
propagating the characteristics, it tends to degrade,
leading to a greater error in training. )e residual
layers are used to solve this problem.

Detection and Classification

Deep Learning

Tracking

Outputs

Statistical

+

Vehicle association
(spatial proximity)

Problematic
vehicles (KLT)

Figure 1: Block diagram of the TrafficSensor system.

Figure 2: Evaluation area.

Figure 3: Evaluation zones.
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(ii) Objects detection (from layers 76 to 107): it takes the
3D features (13×13×1024) as input and with that
performs object detection. )e uniqueness of this
network lies in its ability to detect objects on three

different scales, making it a very powerful network
before the change of scale. To do this, it extracts
characteristics on three different scales (13×13× 39,
26× 26× 39, and 52× 52× 39). )ese characteristics
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pass to the final YOLO layer, which classifies the
object label with class logistic regressions and locates
objects with bounding boxes regressors.

3.1.4. YOLOv4. YOLOv4 [62] is the fourth iteration of the
famous YOLO architecture that continues improving the
previous versions with the latest advances introduced in the
literature. It consists of 3 main components: backbone, neck,
and head (Figure 9). For the backbone, it uses CSPDarknet53
[63], for the neck, SSP [64] and PAN [65], and YOLOv3 [61]
for the head.

)is network allows real-time object detection on a
conventional GPU, thanks to its improvements on speed
comparing it to other approaches and even its previous
versions.

3.2. Vehicle Tracking. )e execution flow of the tracking
module is shown in Figure 10, which shows the steps when a
new blob is detected inside the image, and in Figure 11,
which illustrates the procedure that is carried out on already
registered vehicles. )e tracking focuses on associating the
current detections with the vehicles stored at the previous
instant. Several points are considered:

(i) If a vehicle arrives at the end of the evaluation area,
it will be removed from tracking

(ii) )e vehicles stored of the instant (t− 1) are ex-
amined in order to pair them with the vehicles
detected at the instant (t). )is pairing will be
carried out between the vehicles in (t) and (t− 1),
which have the least Euclidean distance between
their centers.

(iii) If the vehicle t associated with the vehicle (t− 1) is
not within the circular or elliptical area around the
center of the vehicle (t− 1), it will not be matched to
it

(iv) If through space proximity we are not able to pair a
(t− 1) vehicle, we will use KLT

Spatial proximity and KLTalgorithm are used to perform
the vehicle tracking. Spatial proximity works fine for sep-
arate vehicles, but in real videos, it is very likely that we have
occlusions and vehicles that are quite complex to detect,
especially when they are small in the image because they are
far from the camera. )e feature-based tracking algorithm
KLT is used then, and it is a good complement to the deep
learning robustness.

3.2.1. Spatial Proximity Tracking. Typically, the difference of
pixels in the image between the position of a vehicle in (t− 1)
and in (t) is very small.)erefore, a vehicle in (t) will be in an
area very close to that same vehicle in (t− 1). When we
search for a vehicle in (t), we should find it in a small circular
radius around the position of that same vehicle in (t− 1).
Spatial proximity tracking in TrafficSensor is based on [13].
It estimates the area where you should locate a vehicle based

on its position in (t− 1). As the vehicles move forward, this
area will be updated.

At first, the area is taken as a circle because the system
does not have enough data about its orientation. But as the
vehicle advances, the system has enough information to
know its orientation, and so, it takes the area as an ellipse
whose center corresponds to the center of the vehicle in
(t− 1). It is considered that we have enough information to
estimate its orientation when we have the position of the
vehicle in 6 frames. Linear regression is used to calculate the
orientation of the vehicle based on the position the vehicle
will take as it progresses. Once we have information about
the orientation, we will define the search area as an ellipse
whose center is the same as the vehicle in t− 1 and direction
calculated with the following equation.
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where ax and ay are the components of the orientation
vector. Figure 13 shows the tracking between two consec-
utive vehicles.

Figure 14 shows an example of TrafficSensor where the
tracking of two vehicles by space proximity is shown. )e
vehicle identified as 2 in the image of the instant (t− 1) is
associated with the closest vehicle to its position in the
current image (t).

A detection must be within a certain area around the
blob detected in (t− 1) to be identified as the same vehicle.
It could happen in the case that two vehicles will fall into
that area. )erefore, it is necessary to take into account the
Euclidean distance between the center of the blob of the
instant (t − 1) and the center of the blob in (t). )e blob of
the instant (t) that is at a smaller distance from the blob of
the instant (t − 1) and of course within the area around blob
(t − 1) will be considered the same vehicle than that of
(t − 1).)at is to say, if this is true, the blobs of (t − 1) and (t)
correspond to the same vehicle but in consecutive
moments.
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3.2.2. KLT Tracking. )e follow-up is mainly based on
spatial proximity, but KLTwill be used in problematic cases,
thus making our system more robust. KLTwill be calculated
in all sequences to update the feature points. If a vehicle is
not detected either because there is an occlusion or it is very
far away, KLTwill be used, as it has proven to work well even
in occlusions during a small number of consecutive frames.

To use KLT, we need to know the center of mass of the
vehicles and their visual features. Depending on the feature

points of the vehicle in (t− 1), KLT calculates the matching
for each feature point and as a result generates a new set of
feature points corresponding to the vehicle in question. In
order to achieve a correct match, the system is based on votes
of the feature points that an object has associated. Figure 15
shows an example.

KLT is a feature tracking algorithm [? ? ]. KLT is a
differential and local method in which the neighborhood of
each pixel is analyzed. )e algorithm assumes that the

Two-Stage Detector
One-Stage Detector

Neck Dense Prediction Sparse PredictionBackboneInput

Figure 9: YOLOv4 object detector.

Detection and
Classification (Deep

Learning)

Detected
Blob

Can we estimate its
position?

Use circle (spatial
proximity)

Use ellipse
(spatial proximity)

Is the
blob associated

with spatial
proximity?

Associate vehicle
with blob

New Vehicle False Detection
(false positive)

Is the blob in
zone 1?

No

No

Still no

Yes

Yes

Yes

Figure 10: Execution flowchart of detected blobs.
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Associated with
a blob detected by spatial

proximity?

Associate the
blob with that

vehicle

It is discarded
(false positive)

Does it carry 5
sequences without being

detected?

Its blob is
generated with klt

Near to the exit of the
evaluation area?

Is the
vehicle in
zone 1?

No

No

No

No

Yes

Yes

Yes

Registred Vehicles

End of Tracking

Yes

Figure 11: Flowchart of registered vehicles.

Figure 12: Vehicle-associated 2D ellipse.

Vehicle Bounding Box at
t-1

Vehicle Ellipse
at t-1 Vehicle at t

Vehicle Center Displacement
between two consecutive frames

t-1 t

Figure 13: Proximity tracking ellipse.
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optical flow is constant in a neighborhood. )e equation of
the optical flow is solved for all the pixels in this neigh-
borhood by the method of least squares. For the calculation
of the velocity vectors, the following formula is used:

u

v
􏼢 􏼣 �

􏽘
i

I2xi 􏽘
i

IxiIyi

􏽘
i

IxiIyi 􏽘
i

I2yi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
− 􏽘

i

IxiIti

− 􏽘
i

IyiIti

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

)e vector (u, v) is the displacement vector of the optical
flow. Ix is the mean of gradient in x between two consecutive
images, that is, if I(t) is the image of the instant current and
I(t + 1) is the image at the next instant, Ix of these frames is

Ix �
Ix(t) + Ix(t + 1)

2
, (5)

where Ix(t) is the gradient in the x axis of the image I(t) and
Ix(t + 1) is the gradient in x of the image I(t + 1). Iy is the
mean of the gradients in y of the image I(t) and I(t + 1):

Iy �
Iy(t) + Iy(t + 1)

2
. (6)

It is the difference between I(t) smoothed and I(t + 1)

smoothed:

It � I′(t + 1) − I′(t). (7)

KLT is applied in the form of kernels of size ω×ω
throughout from image. )e size of the kernels must be
defined according to the amount of movement that the
image has. A small kernel would be ideal for evaluating small
displacements of a point. Using a large kernel increases the
risk of getting an error, but there are cases where the dis-
placement of a point is very big and this is necessary.

TrafficSensor uses the pyramidal implementation [66],
which Jean-Yves Bouguet introduced. On it, the KLT al-
gorithm is applied recursively over an image pyramid, as
shown in Figure 16.

4. Experimental Validation

)eproposed system has been validated with a dataset of real
traffic images, which has been divided into training and test
subsets. In addition, the 4 studied neural networks for the
detection and classification module of TrafficSensor have

t-1 t

Figure 14: Tracking with spatial proximity TrafficSensor.

Figure 15: Tracking with KLT in TrafficSensor.
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been quantitatively compared using an open source tool,
named DetectionMetrics, so the best one could be selected
for the final system. )is measuring tool is publicly available
and was created as a part of this work, but it is generic and
usable in any other visual detection application. In addition,
the final system was tested and validated both with good
lightning images and, in particular, with poor images or
images in bad weather conditions, which are typically
present in real deployments.

4.1. Dataset. To train and evaluate the networks, a new
dataset was created. )is dataset includes images in good
weather conditions, images in bad weather conditions (with
fog and rain), and poor quality images. )is dataset consists
of the following:

(i) )e database built by Redouane Kachach in his
doctoral thesis [13]. )at database consists of 3460
good quality images.

(ii) )e GRAM Road-Traffic Monitoring (GRAM-
RTM) database created by Guerrero-Gomez-
Olmedo et al. [32]. )is database is made up of
images extracted from three videos. )e first video,
called M-30 (7520 frames), was recorded on a sunny
day. )e second, called M-30-HD (9390 frames),
was recorded in a similar location but during a
cloudy day. )e third, called Urban1 (23435
frames), was recorded at a busy intersection. From
this large database, 3646 images of the M-30-HD
video and 1348 of the M-30 video were used.

(iii) Images were collected from open online cameras.
615 were about rain situations and 705 of poor
quality images.

In total, the dataset for TrafficSensor consists of 9774
images. All of them have been manually tagged with the
labelImg tool https://github.com/tzutalin/labelImg, using 7
possible classes: car, motorcycle, van, bus, truck, small truck,
and tank truck. In these 9774 images, we have a total of
48914 samples distributed, as given in Table 1.

Table 2 provides the number of images that exist for each
type of image (good conditions, bad weather, and poor quality),
and Figure 17 shows some illustrative images of our database.

Of these 9774 images, one part was used in training and
another in the test. Table 3 provides the distribution of
images according to training and test.

For the training of the involved neural networks, the
training database was divided itself into train and validation
subsets. Out of the 9246 images, 7401 were used as train and
1845 as validation. Table 4 provides the number of images
that has been used in training depending on its type (good
quality, poor quality, and bad weather).

4.2. DetectionMetrics Tool. DetectionMetrics (https://
jderobot.github.io/DetectionMetrics/) is an opensource re-
search software application that has been created and used to
quantitatively evaluate the performance of pretrained neural
networks and our visual traffic surveillance application.

It provides a toolbox of utilities oriented to simplify
the development and testing of solutions based on visual
object detection. )e application comes with a GUI
(based on Qt) and can also be used through command
line. It is designed to generate experiment results from
running a set of neural networks models over many
datasets. Currently, it comes with the following utilities:
viewer, detector, evaluator, deployer, labelling, and
converter.

Coarse-to-fine optical flow estimation

Gaussian pyramid of image It-1

image It-1 image I

Gaussian pyramid of image I

run iterative L-K

run iterative L-K

…

warp and upsample

Figure 16: Pyramidal KLT.

Table 1: Database samples.

Class Sample
Car 38976
Motorcycle 1886
Van 5631
Bus 401
Truck 963
Small truck 938
Tank truck 119

Table 2: Database images.

N of images
Good conditions 8406
Bad weather 663
Poor quality 705
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Figure 17: TrafficSensor dataset samples.

Table 3: Dataset distribution.

Type Training images Test images
Good conditions 6717 389
Bad weather 1892 71
Poor quality 637 68
Total 9246 528

Table 4: Training dataset.

Type Training images Validation images Total
Good conditions 5323 1394 6717
Bad weather 1568 324 1892
Poor quality 510 127 637
Total 7401 1845 9246
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It comprises a generic infrastructure to evaluate object
detection algorithms against a dataset and calculate common
statistics:

(i) IntersectionOverUnion (IoU) measures the accu-
racy of a detection in a particular dataset and follows
the following formula:

IoU �
AreaofOverlap
AreaofUnion

. (8)

Here, AreaofOverlap is the area that belongs to the
intersection between prediction and ground truth,
while AreaofUnion is the sum area (without repe-
tition of the overlap) of the prediction and ground
truth as shown in Figure 18.

(ii) Precision is the total correct detections among the
number of detections obtained. )e precision of
DetectionMetrics is the average (mean average
precision (mAP)) for those predictions that have an
IoU greater than a threshold (0.5).

Precision �
TP

TP + FP
. (9)

(iii) Recall is the number of correct detections among
the number of actual detections, that is, ground
truth detections. Like precision, averaging (mean
average recall (mAR)) of detections having a higher
IoU is obtained to 0.5.

)is tool is compatible with Linux, Windows, and
MacOS because it is provided as a Docker image in addition
to the common source code installation. It allows to evaluate
models trained in TensorFlow, PyTorch, Keras, Caffe, and
Darknet, and it supports the most common dataset formats
in object detection (YOLO, COCO, ImageNet, and Pascal
VOC) and can use different image input sources (videos and
webcam).

)e main workflow used for the experiments is called
headless evaluation. )is workflow involves mainly two of
the tools included in DetectionMetrics: detector and eval-
uator. In this mode, a researcher determines a set of ex-
periments that will run independently and unattended,
retrieving a final report with the previous described objective
metrics. DetectionMetrics receives a batch of datasets and
deep learning pretrained models, predicts the objects on the
images using each model over each dataset, and outputs the
report with metrics of the performance for each scenario.

4.2.1. Detector. Detector generates a new annotated dataset
with the predicted labels given a pretrained neural network
model and a dataset.)is new generated dataset contains the
images from the datasets along with the detected objects,
their position, and the level of confidence for the predictions.
It supports the most common deep learning frameworks:
TensorFlow, Keras, Darknet, Caffe, and PyTorch.

During the detection process, DetectionMetrics shows
the predictions using viewer, showing the ground truth and
predictions on the image while running. )is is very

convenient as qualitative feedback about the network
performance.

4.2.2. Evaluator. Evaluator receives two datasets with the
same format as input, one considered to be the ground truth
and the other the generated detections dataset, and retrieves
an evaluation report with metrics for every experiment,
showing how each network was performed over each
dataset. It supports both mAP and mAR metrics.

4.3. Comparison of Neural Networks. )e four trained net-
works with 3 different neural frameworks were tested (SSD
MobilenetV2, SSD VGG-16, and YOLOv3 and YOLOv4)
with the images of good conditions. YOLOv3 and YOLOv4
have also been tested with the weights prior to training with
our database. )is experiment was performed on a GeForce
RTX 3070 graphics card, whose main features are given in
Table 5.

)e quantitative results obtained in the experiment
are given in Table 6. )ose of the YOLO networks are
better than those of SSD MobilenetV2 and SSD VGG-16.
Looking at the detection times, it can be seen that all the
trained networks show similar speeds. With the pre-
trained weights, the detection times are bigger because
these weights have obtained training with more classes.
)e achieved quality results (mAP and mAR) with the
pretrained weights are worse than with the trained
weights as expected. )is makes clear the need to retrain
the network with an adequate database that adjusts the
network model to the data we want to detect.

As given, YOLOv4 further improves both the detection
quality and speed over YOLOv3. YOLOv4 uses data aug-
mentation. It interprets the same information from different
points of view. YOLOv4 is based on pixel-by-pixel modi-
fications in the training images (color changes, texture, black
or white patches, cuts, and other modifications) that help the
algorithm to increase its precision and flexibility, but
without affecting its performance in terms of speed. In the
performance achieved in the tests, the speed of YOLOv4
versus YOLOv3 has increased by 13%. )e result is prac-
tically equal to that indicated by the authors of YOLOv4
[62], who reported a speed increase of 12%.

Area of Overlap

Area of Union
IoU =

Figure 18: IoU formula.
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4.4. Experimental Validation in Good Lightning Conditions.
For the final TrafficSensor application, YOLOv3 and YOLOv4
were the selected networks, as they obtained the best results. To
validate these final networks, the quality of the whole system has
been measured with DetectionMetrics and the created testing
dataset. For the sake of comparison, the quality of the initial
base-line system, named TrafficMonitor [13] and without deep
learning layers, has also been evaluated with the same dataset
and measuring tool. In addition, TrafficSensor has also been
compared to Deep SORT (Simple, Online and Realtime
Tracking with a Deep Association Metric) [67], which is an
algorithm commonly used in object tracking. It is an extension
to SORT (Simple, Online and Realtime Tracker) [68] that in-
corporates appearance information through a pretrained as-
sociationmetric. All systems were evaluated with the same good
condition videos and images.

)e results obtained are given in Table 7. YOLOv4 and
YOLOv3 have similar results although YOLOv4 is slightly
better. )is result was expected as the authors of YOLOv4
[62] indicated that the quality of the detections was superior
to that of YOLOv3.

)e results of TrafficSensor outperform those of Traffic-
Monitor. In the successive tests with TrafficMonitor, we have
appreciated that it does not work well with distant vehicles (in
many cases cars are classified how motorcycles), and it has
difficulty to differentiate between car and van. )e small vans
are confused with cars. )is is because the classification is done
using 3D models; for this reason, a small 3D van model can be
closer to the 3D model of a car than to that of a large van.

In Deep SORT, the YOLOv3 Darknet network trained
with our dataset has been used, and the results obtained
by TrafficSensor and Deep SORT are very similar. Traf-
ficSensor performs slightly better because it predicts the
position of vehicles when they are not detected. Deep
SORT uses the Kalman filter to predict and track, but
predictions are used to improve detections, not to predict
if there is no detection.

4.5. Experimental Validation in Poor Conditions. )e final
TrafficSensor system was also evaluated with bad weather
conditions and poor quality videos, as shown in Figure 19.
Tables 8 and 9 provide the obtained experimental results.

Despite being in rainy conditions, the system is able to
work successfully and with very good results. In this test, it
can be seen that TrafficMonitor is not so robust because it is
not able to function correctly with rain. In the case of Deep
SORT, again the results are similar to TrafficSensor.

With all the experimental results gathered, it can be said
that TrafficSensor is robust against poor quality images and
bad weather conditions. In addition, it is able to continue
tracking vehicles when they are far away from the camera.
Obviously, it works better with nearby vehicles, as there they
are easier to detect, but it is still able to detect and track the
distant ones with great quality.

Comparing the experimental results in the videos, the
performance with poor quality videos and unfavorable
weather conditions is slightly better than for good quality
videos. )is can be explained since the minimum re-
quirements we set for good quality images are higher than
those for bad weather conditions and poor-quality videos.
We do not expect the system to be able to detect distant
vehicles in bad weather conditions and poor quality videos.
It is not even easy for humans to classify such vehicles. )e
images in the dataset have been labelled following this
approach.

When evaluating the results obtained by Deep SORT,
they are similar to those of TrafficSensor. TrafficSensor has

Table 5: GeForce RTX 3070 specs.
GPU engine specs

NVIDIA CUDA cores 5888
Base clock (GHz) 1.5
Boost clock (GHz) 1.73
Memory specs
Memory speed 14Gbps
Standard memory config 8GB GDDR56
Memory interface width 256 bit
Memory bandwidth (GB/sec) 448

Table 6: Results of trained networks.

Neural networks Framework mAP mAR Mean inference time (ms)
ssd300adam.h5 Keras 0.7478 0.7831 13
ssd_mobilenet.pb TensorFlow 0.5484 0.61361 10
yolov3voc.weights Darknet 0.8926 0.9009 15
yolov3voc_pre_trained.weights Darknet 0.4577 0.5843 34
yolov4.weights Darknet 0.9056 0.9670 13
yolov4_pre_trained.weights Darknet 0.4799 0.5879 24

Table 7: Results of good conditions video.

System mAP mAR
TrafficSensor YOLOv3 0.8926 0.9009
TrafficSensor YOLOv4 0.9056 0.9670
TrafficMonitor 0.4374 0.5940
Deep SORT 0.8164 0.8689
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greater precision since in cases where the neural network is
not capable of detecting, it predicts such detection using the
tracking algorithm.

4.6. Processing times. In the TrafficSensor system, three
main processes can be identified: image processing
(obtaining images, displaying images, and obtaining data
from the delimited road), detection, and tracking. )eir
computing time performance, both with YOLOv3 and
YOLOv4, has been monitored and evaluated. Table 10
provides the obtained results.

5. Conclusion

TrafficSensor system is a solution for vehicle surveillance
using deep learning. It is based on a previous nondeep
learning solution, named TrafficMonitor [13]. )e old

solution was based on volumetric 3D patterns, SVM for
vehicle classification and background subtraction. )is
system was able to distinguish between 5 possible classes
(motorcycles, cars, vans, buses, and trucks). All these
steps were replaced by a neural network for detection and
classification. Four state-of-the-art network models have
been experimentally tested, even coming from different
neural frameworks (Keras, TensorFlow, and Darknet)
and with different types of images. )e proposed deep
learning system classifies the vehicles based on 7 classes:
motorcycles, cars, vans, buses, small trucks, trucks, and
tank trucks.

A new dataset was created to train and evaluate the new
system, including a variety of images such as poor quality
images or adverse weather conditions besides the typical
good lightning images. TrafficSensor has proven to be robust
to bad weather conditions, blurred or low resolution traffic
images. )is improvement was achieved, thanks to training
with the new extensive dataset and the combination of
spatial correspondence tracking and KLT tracking on the
deep learning-based detections.

Both the YOLOv3 and YOLOv4 networks have been
selected for TrafficSensor for their great results. Although,
YOLOv4 obtains better results in terms of quality and speed
than YOLOv3.

In addition, a new opensource tool has been created to
quantitatively and automatically measure the quality of
several neural networks for the visual detection task using
large datasets. It supports the most widely used neural
frameworks (PyTorch, TensorFlow, Keras, and Darknet) and
the most common dataset formats in object detection
(YOLO, COCO, ImageNet, and Pascal VOC). It measures
some useful detection statistics such as IntersectionOver-
Union, precision, recall, and inference times. It is publicly
available.

As future lines, we intend to test more new state-of-
the-art network models for visual object detection, to
extend the custom dataset with more images of bad
quality or bad lightning conditions, of incoming traffic
flow, and to explore the use of attention-based models. In
addition, we plan to use DetectionMetrics tool in the
medical images domain.

(a) (b)

Figure 19: TrafficSensor with poor resolution (a) and bad weather (b) videos.

Table 8: Results of bad weather video.

System mAP mAR
TrafficSensor YOLOv3 0.9899 0.9926
TrafficSensor YOLOv4 0.9904 0.9949
TrafficMonitor 0.2407 0.3162
Deep SORT 0.9801 0.9824

Table 9: Results of poor quality video.

System mAP mAR
TrafficSensor YOLOv3 0.9439 0.9444
TrafficSensor YOLOv4 0.9902 0.9911
TrafficMonitor 0.4479 0.6303
Deep SORT 0.8852 0.8910

Table 10: Processing time.

Function With YOLOv3
(ms/call)

With YOLOv4
(ms/call)

Image processing 10 10
Detection algorithm 15 13
Tracking algorithm 18 18
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Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request. Part
of them, the GRAM Road-Traffic Monitoring database,
comes from a third party source which has been properly
cited [32]. In addition, the source code of the Detection-
Metrics tool, which has been used for experiments, is
publicly available at https://github.com/JdeRobot/
DetectionMetrics.
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