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In this paper, we mainly use random forest and broad learning system (BLS) to predict rectal cancer. A total of 246 participants
with computed tomography (CT) image records were enrolled. ,e total model in the training set (combined with imaging and
clinical indicators) has the best prediction result, with the area under the curve (AUC) of 0.999 (95% confidence internal (CI):
0.996–1.000) and the accuracy of 0.990 (95%CI: 0.976–1.000). Model 3, the general model in the test set, has the best prediction
result, with the AUC of 0.962 (95%CI: 0.915–1.000) and the accuracy of 0.920 (95%CI: 0.845–0.995).,e results of the model using
random forest prediction are compared with those using BLS prediction. It can be found that there is no statistical difference
between the two results. Our prediction model combined with image features has a good prediction result, and this image feature
is the most important among all features. Consequently, we can successfully predict rectal cancer through a combination of the
clinical indicators and the comprehensive indicators of CT image characteristics in four different periods (plain scan, vein, artery,
and excretion).

1. Introduction

,e incidence of rectal cancer is one of the most malignant
tumors in the world [1–3]. Accurate clinical staging is the key
to treatment decision, especially for rectal cancer [2, 3]. In the
past century, medical imaging technology has experienced
various hardships and achievedmany new achievements in its
continuous development [3–5]. In recent years, high reso-
lution magnetic resonance imaging (MRI) and computed
tomography (CT), along with the applications of endoscopic
ultrasonography, enabled clinicians to more accurately
choose corresponding treatment before surgery for rectal
cancer staging, according to tumor location, infiltration
depth, lymph node, and distant metastasis [1–10].

,e current treatment of rectal cancer has entered into a
multidisciplinary comprehensive treatment pattern [11, 12].
Among them, new adjuvant chemoradiotherapy followed by

selective radical resection of rectal cancer is one of the
generally recognized methods for the treatment of advanced
rectal cancer [13–15]. Until now, a series of novel adjuvant
chemoradiotherapy have been recommended for patients
with TNM stage rectal cancer [16]. Until now, medical
imaging technology is still one of the most commonly used
methods to obtain noninvasive information of human tis-
sues and organs and assist disease diagnosis, which requires
to accurately predict rectal cancer with medical images and
clinical features of the patients in different periods [17, 18].

,e purpose of this study was to predict whether patients
had rectal cancer by analyzing the CT images and clinical
features over four periods. ,e manuscript was organized as
follows.,e proposed models are introduced in Section 2. In
Section 3, experimental results of these models are given,
and finally, the results are compared and discussed with a
principle to choose the most suitable prediction model.
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2. Proposed Models

2.1. Data Collection and Treatment. ,e data were collected
from Tianjin Fourth Central Hospital from 2016 to 2021,
which involve 246 individuals with CT information. All
statistical tests were conducted by bilateral test [19]. During
the significance test, the parameter α� 0.05 is employed to
define whether the differences were statistically significant
[20]. ,e measurement data were tested by Kolmogor-
ov–Smirnov [21], where the continuous variables of normal
distribution were expressed by mean standard deviation
(mean± SD). ,e comparison between data groups was
tested by t-test analysis [22–24]. ,e measurement data of
nonnormal distribution are enhanced by median and
interquartile distance [25]. ,e rank sum test was used for
comparisons among the data groups [26–28]. Classification
variables will describe the number and percentage of cases of
each category in χ2 test [29]. All missing values were filled by
random interpolation [30]. ,e gap-filling result is reliable
since there is no difference before and after filling, as shown
in Table 1.

As seen in Figure 1, each patient has four CT images,
which represent four different periods, including the plain
scan period (no contrast medium was pushed), the arterial
period (inject contrast agent into artery for visualization to
observe whether the blood supply of diseased artery is
abundant), the venous period (contrast agent enters venous
blood vessels and observe the blood supply of diseased
veins), and the excretion period (during which the contrast
medium is excreted).,e features of CT in four periods were
extracted by pyradiomics and then combined with CT in
four periods of a sample. ,e rectal part of each CT is
extracted as the ROI (region of interest) [31].

Random number 2021 is used to randomly split the data
into 8 : 2, 80% of the data is used as the training set to build
the model, and the remaining 20% of the data is used as the
verification set to verify the model. In the training set, Lasso
regression (α� 0.01) was used to screen the clinical data and
imaging features [9, 10]. ,e final clinical data screened out
four characteristics: gender, diabetes history, family cancer
history, and fecal occult blood. A total of 15 image features
were screened out.

2.2. Construction of Prediction Model. We mainly use ran-
dom forest and broad learning system (BLS) to predict rectal
cancer. Broad learning maps input data and constructs the
mapping features and then activates the mapping features to
enhancement layers and outputs the two parts features
together. In this paper, broad learning system is used to learn
the variables in the model to obtain the output variables.

Output value of mapping nodes:
Zi � ∅(XWei

+ βei
), i � 1, . . . , n

Enhanced nodes output value:
Hj � ξ(ZnWhj

+ βhj
), j � 1, . . . , m

Output nodes value: Y � [Z1, . . . , Zn|ξ(Zn

Whj
+ βhj

)]Wm � [Z1, . . . , Zn|H1, . . . , Hm]Wm,
� [Zm|Hm]Wm

So, the pseudoinverse matrix: Wm � [Zm|Hm]+

Y � (Am)+Y

A+ � lim
λ⟶0

(λI + AAT)− 1AT

,ere are n groups of Zwith k nodes in each group andm
groups of H with P nodes in each group.

,en, we need to screen out new features by using the loss
function of the 1-norm in Lasso regression and incorporate the
new features into the random forest,
J(w, b) � 1/2m argmin

w,b


m
i�1 (yi − yi)

2 + α
n
i�1 ‖wi‖. And,

random forest is a combination of decision trees. Each decision
tree is trained by randomly generating new data sets from the
original data set. ,e decision result of random forest is the
decision result of most decision trees. Single model classifi-
cation method often has not high precision, prone to over-
fitting problem, so many scholars often through the
combination of multiple single models to improve prediction
accuracy, and these methods are called classifier combination
method. Random forest is an algorithm that proposed to solve
the overfitting problem of single decision tree model.

,e random forest uses the Bootstrap resampling method
to extract multiple samples from the original samples and
then conducts decision tree modeling for each Bootstrap
sample and then synthesizes multiple decision tree for pre-
diction and obtains the final prediction result through voting.
,e core idea of Bootstrap resampling is to sample n original
sample data with the sample size of N, and the probability of
each observation object being selected is equal, that is, 1/N.
,e sample is regarded as the whole, and the subsamples
sampled are regarded as samples from the sample. ,e
resulting subsample is called the bootstrap sample.

(1) Each decision tree is generated by training sample X
with sample size K and random vector θk

(2) Random vector sequence θk, 1, . . . , K  is indepen-
dently and identically distributed

(3) Random forest is the set of all decision trees
h(X, θk), k � 1, 2, . . . , K 

Each decision tree model h(X, θk) has one vote to select
the classification result of input variable X:

H(x) � max
Y



k

i�1
I hi(x) � Y( , (1)

where H(x) represents random forest classification result,
hi(x) represents the classification result of a single decision
tree, Y represents the classification target, I(·) represents an
indicative function, and the random forest classification
model uses simple voting strategy to complete the final
classification.

Fourmodels are constructed, as shown in Figure 2. Inmodel
1, only four clinical features are used to build a predictionmodel
with random forest. Model 2 is a prediction model based on 15
image features and random forest, whose prediction probability
is also used in model 3 as a new index, combining with four
clinical characteristics, using a predictionmodel built by random
forest. Model 4 is a prediction model based on BLS training
using the data of model 3.
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Table 1: Sensitivity analysis before/after gap-filling

Variables Missing value After (n� 246) Before (n� 246) Statistics P

Total cholesterol 11 (4.47%) 4.52± 1.28 4.51± 1.30 t� 0.03 0.978
Triglyceride 11 (4.47%) 1.30 (0.98, 1.76) 1.30 (0.97, 1.76) Z� −0.062 0.950
Lipoprotein cholesterol (LD) 12 (4.88%) 2.91 (2.30, 3.56) 2.91 (2.25, 3.60) Z� −0.046 0.963
Lipoprotein cholesterol (HD) 12 (4.88%) 1.04 (0.86, 1.26) 1.04 (0.83, 1.26) Z� −0.187 0.852
Carcinoembryonic antigen 3 (1.22%) 2.66 (1.81, 5.29) 2.65 (1.74, 5.17) Z� −0.100 0.921
Alpha fetoprotein 6 (2.43%) 2.53 (1.88, 3.68) 2.50 (1.87, 3.66) Z� −0.243 0.808
Sugar antigen 199 13 (5.28%) 9.88 (2.78, 22.28) 9.73 (2.51, 22.28) Z� −0.227 0.820
LD� low density, HD� high density.
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Figure 1: Data preprocessing process.
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Figure 2: Flow chart of the prediction model development and validation.
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,e area under the curve (AUC) and accuracy were used
to evaluate predictive performance of the models. Delong
test was used to compare the evaluation indexes of the
models. With P< 0.05, the difference was statistically sig-
nificant. In this study, R (version 4.0.3) is used for clinical
data preprocessing, SAS (version 9.4) is used for comparison
among data groups, and Python (version 3.7.4) is used for
data screening and model building.

3. Results and Discussion

3.1. Characteristics between the Training and Testing Sets.
After splitting the data into the training set and the test set,
the balance test is carried out, and the final P values of all
variables are >0.05, indicating that the balance of the two
groups of data is comparable. See, for details, Table 2.

3.2. Characteristics between Rectal Cancer and Non-Rectal
Cancer Groups. Table 3 shows the characteristics of the

participants between rectal cancer and non-rectal cancer
groups. We can find that there are significant differences
between rectal cancer and non-rectal cancer in gender, past
diabetes history, family cancer history, drinking history,
fecal occult blood test, carcinoembryonic antigen, and
carbohydrate antigen [11, 12].

3.3. Comparison for the Predictive Performance ofModels (1, 2,
and 3). After Delong test, it is finally found that the total
model in the training set, namely, model 3, has the best
prediction efficacy, with the AUC of 0.999 (95%CI:
0.996–1.000) and the accuracy of 0.990 (95%CI:
0.976–1.000). See, for details, Table 4.

After Delong test, the total model in the testing set, that
is, model 3, has the best prediction efficacy, with the AUC of
0.962 (95%CI: 0.915–1.000) and the accuracy of 0.920 (95%
CI: 0.845–0.995). See, for details, Table 5. ,e ROC curves of
these models (1, 2, and 3) are shown in Figure 3.

Table 2: Comparison for the characteristics between the training and testing sets.

Variables Total (n� 246) Training set (n� 196) Testing set (n� 50) Statistics P

Gender, n (%) χ2 �1.597 0.206
Male 143 (58.13) 110 (56.12) 33 (66.00)
Female 103 (41.87) 86 (43.88) 17 (34.00)

Past history of hypertension, n (%) χ2 � 0.194 0.659
No 126 (51.22) 99 (50.51) 27 (54.00)
Yes 120 (48.78) 97 (49.49) 23 (46.00)

Past history of diabetes, n (%) χ2 � 0.049 0.825
No 174 (70.73) 138 (70.41) 36 (72.00)
Yes 72 (29.27) 58 (29.59) 14 (28.00)

Family cancer history, n (%) Fisher 0.208
No 229 (93.09) 180 (91.84) 49 (98.00)
Yes 17 (6.91) 16 (8.16) 1 (2.00)

History of intestinal inflammatory diseases, n (%) Fisher 1.000
No 244 (99.19) 194 (98.98) 50 (100.00)
Yes 2 (0.81) 2 (1.02) 0 (0.00)

Smoking history, n (%) χ2 � 5.059 0.080
Never smoking 145 (58.94) 121 (61.73) 24 (48.00)
Smoking 80 (32.52) 62 (31.63) 18 (36.00)
Quit smoking 21 (8.54) 13 (6.63) 8 (16.00)

Drinking history, n (%) χ2 � 2.351 0.309
Never drinking 188 (76.42) 154 (78.57) 34 (68.00)
Drinking 51 (20.73) 37 (18.88) 14 (28.00)
Quit drinking 7 (2.85) 5 (2.55) 2 (4.00)

Hemoglobin, Mean± SD 126.62± 28.66 125.71± 28.25 130.20± 30.24 t� 0.99 0.324
Total cholesterol, mean± SD 4.52± 1.28 4.50± 1.27 4.59± 1.34 t� 0.47 0.637
Triglycerides, M (Q1, Q3) 1.30 (0.98, 1.76) 1.29 (0.97, 1.70) 1.38 (1.01, 1.94) Z� 0.952 0.341
Low density lipoprotein, M (Q1, Q3) 2.91 (2.30, 3.56) 2.89 (2.32, 3.56) 2.99 (2.09, 3.79) Z� 0.092 0.926
High density lipoprotein, M (Q1, Q3) 1.04 (0.86, 1.26) 1.04 (0.86, 1.26) 1.03 (0.87, 1.27) Z� -0.049 0.961
Fecal occult blood test, n (%) χ2 � 0.454 0.501
No 148 (60.16) 120 (61.22) 28 (56.00)
Yes 98 (39.84) 76 (38.78) 22 (44.00)

Carcinoembryonic antigen, M (Q1, Q3) 2.66 (1.81, 5.29) 2.66 (1.88, 5.17) 2.65 (1.55, 7.01) Z� -0.483 0.629
Alpha-fetoprotein, M (Q1, Q3) 2.53 (1.88, 3.68) 2.51 (1.88, 3.70) 2.57 (1.88, 3.32) Z� -0.354 0.723
Saccharide antigen 199, M (Q1, Q3) 9.88 (2.78, 22.28) 11.28 (2.81, 23.14) 7.34 (2.51, 20.89) Z� -1.204 0.229
Rectal cancer, n (%) χ2 � 0.058 0.809
No 161 (65.45) 129 (65.82) 32 (64.00)
Yes 85 (34.55) 67 (34.18) 18 (36.00)

4 Computational Intelligence and Neuroscience



3.4.Comparison for thePredictivePerformancebetweenModel
3 andBLSModel. ,e results of the model using the random
forest analysis are compared with those using BLS predic-
tion. It is found that there is no statistical difference between
the two results, see Tables 6 and 7. ,e ROC curves of model
3 and BLS model are shown in Figure 4.

3.5. Discussion on the Importance of Variables. Because the
prediction model established by using random forest is more

interpretable, we finally choose random forest model. Fi-
nally, the importance of the characteristics of the stochastic
forest model shows that our comprehensive image index
score is the most important [13, 14], followed by fecal occult
blood, family cancer history, gender, and diabetes. See de-
tails in Figure 5.

According to relevant studies, the early symptoms of
rectal cancer are not obvious, and most patients have already
developed to the stage of local progression when they visit

Table 3: Comparison for the characteristics between rectal cancer and non-rectal cancer groups.

Variables Total (n� 196) Non-rectal cancer
(n� 129)

Rectal cancer
(n� 67) Statistics P

Gender, n (%) χ2 � 9.957 0.002
Male 110 (56.12) 62 (48.06) 48 (71.64)
Female 86 (43.88) 67 (51.94) 19 (28.36)

Past history of hypertension, n (%) χ2 � 0.905 0.341
No 99 (50.51) 62 (48.06) 37 (55.22)
Yes 97 (49.49) 67 (51.94) 30 (44.78)

Past history of diabetes, n (%) χ2 � 6.667 0.010
No 138 (70.41) 83 (64.34) 55 (82.09)
Yes 58 (29.59) 46 (35.66) 12 (17.91)

Family cancer history, n (%) χ2 � 27.476 <0.001
No 180 (91.84) 128 (99.22) 52 (77.61)
Yes 16 (8.16) 1 (0.78) 15 (22.39)

History of intestinal inflammatory diseases, n
(%) Fisher 0.548

No 194 (98.98) 127 (98.45) 67 (100.00)
Yes 2 (1.02) 2 (1.55) 0 (0.00)

Smoking history, n (%) χ2 �1.384 0.501
Never smoking 121 (61.73) 81 (62.79) 40 (59.70)
Smoking 62 (31.63) 38 (29.46) 24 (35.82)
Quit smoking 13 (6.63) 10 (7.75) 3 (4.48)

Drinking history, n (%) Fisher 0.044
Never drinking 154 (78.57) 107 (82.95) 47 (70.15)
Drinking 37 (18.88) 18 (13.95) 19 (28.36)
Quit drinking 5 (2.55) 4 (3.10) 1 (1.49)

Hemoglobin, mean± SD 125.71± 28.25 124.85± 29.84 127.36± 25.05 t� −0.59 0.557
Total cholesterol, mean± SD 4.50± 1.27 4.54± 1.34 4.42± 1.12 t� 0.63 0.530
Triglycerides, M (Q1, Q3) 1.29 (0.97, 1.70) 1.35 (0.96, 1.86) 1.21 (1.00, 1.56) Z� −1.424 0.154
Low density lipoprotein, M (Q1, Q3) 2.89 (2.32, 3.56) 2.90 (2.26, 3.52) 2.88 (2.38, 3.56) Z� 0.451 0.652
High density lipoprotein, M (Q1, Q3) 1.04 (0.86, 1.26) 1.02 (0.81, 1.22) 1.10 (0.91, 1.26) Z� 1.499 0.134
Fecal occult blood test, n (%) χ2 �117.152 <0.001
No 120 (61.22) 114 (88.37) 6 (8.96)
Yes 76 (38.78) 15 (11.63) 61 (91.04)

Carcinoembryonic antigen, M (Q1, Q3) 2.66 (1.88, 5.17) 2.45 (1.71, 3.93) 4.71 (2.54, 20.24) Z� 5.515 <0.001
Alpha-fetoprotein, M (Q1, Q3) 2.51 (1.88, 3.70) 2.44 (1.77, 3.68) 2.73 (2.04, 3.74) Z� 1.006 0.314
Saccharide antigen 199, M (Q1, Q3) 11.28 (2.81, 23.14) 9.30 (0.97, 17.38) 19.85 (6.57, 58.40) Z� 4.294 <0.001

Table 4: ,e predictive performance of the prediction models using the training set.

Variables Clinical demographics Radiomic Total model
Cut off 0.426 0.265 0.557
Sensitivity (95% CI) 0.910 (0.842–0.979) 0.970 (0.929–1.000) 0.970 (0.929–1.000)
Specificity (95% CI) 0.884 (0.828–0.939)∗ 0.907 (0.857–0.957)∗ 1.000 (1.000–1.000)
PPV (95% CI) 0.803 (0.713–0.892)∗ 0.844 (0.763–0.925)∗ 1.000 (1.000–1.000)
NPV (95% CI) 0.950 (0.911–0.989) 0.983 (0.960–1.000) 0.985 (0.964–1.000)
AUC (95% CI) 0.938 (0.903–0.972)∗ 0.980 (0.966–0.994) 0.999 (0.996–1.000)
Accuracy (95% CI) 0.893 (0.850–0.936)∗ 0.929 (0.893–0.965)∗ 0.990 (0.976–1.000)
∗Compared with the total model, the difference is statistically significant. CI: confidence interval; PPV: positive predictive value; NPV: negative predictive
value; AUC: area under the curve.
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the doctor. ,e ideal treatment effect cannot be achieved
solely by relying on surgical treatment, and the postoperative
5-year survival rate is only about 50% [19, 20]. Result and
analysis become very important to the diagnosis of rectal

cancer, and foreign-related research [21] have shown that
using the method of gas injection and waterflooding in
rectum CT scan can find early lesions, can improve the
diagnostic accuracy rate to 86%–90%, can stage judgment
accuracy up to 84%, and for staging the identification of
main basis insufflate the surrounding fat clearance is clear.
Whether the gap between bowel and surrounding organs
disappears, this will also cause a certain error. In this study,
four models were mainly used for comparative analysis and
intergroup comparison of relevant factors. Finally, it was
found that the prediction correlation of model 3 was the best,
that is, the prediction model using random forest and model
2 combined with four clinical features had the best effect.
,e prediction is 99 percent accurate. ,is paper also ex-
plored the use of random forest for model prediction after
adopting the BLS learning feature. It can be found that the
prediction effect of the training set is much better than that

Table 5: ,e predictive performance of the prediction models using the testing set.

Variables Clinical demographics Radiomic Total model
Cut off 0.426 0.265 0.557
Sensitivity (95% CI) 0.944 (0.839–1.000)∗ 0.778 (0.586–0.970) 0.778 (0.586–0.970)
Specificity (95% CI) 0.844 (0.718–0.970)∗ 0.844 (0.718–0.970) 1.000 (1.000–1.000)
PPV (95% CI) 0.773 (0.598–0.948)∗ 0.737 (0.539–0.935)∗ 1.000 (1.000–1.000)
NPV (95% CI) 0.964 (0.896–1.000)∗ 0.871 (0.753–0.989) 0.889 (0.786–0.992)
AUC (95% CI) 0.911 (0.834–0.989) 0.903 (0.821–0.985) 0.962 (0.915–1.000)
Accuracy (95% CI) 0.880 (0.790–0.970) 0.820 (0.714–0.926) 0.920 (0.845–0.995)
CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve.
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Figure 3: ROC curves of the prediction models.

Table 6: ,e predictive performance of the prediction models using the training set.

Variables Total model BLS model
Cutoff 0.557 0.461
Sensitivity (95% CI) 0.970 (0.929–1.000) 0.985 (0.956–1.000)
Specificity (95% CI) 1.000 (1.000–1.000) 0.977 (0.951–1.000)
PPV (95% CI) 1.000 (1.000–1.000) 0.957 (0.908–1.000)
NPV (95% CI) 0.985 (0.964–1.000) 0.992 (0.977–1.000)
AUC (95% CI) 0.999 (0.996–1.000) 0.999 (0.997–1.000)
Accuracy (95% CI) 0.990 (0.976–1.000) 0.980 (0.960–0.999)
CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve.

Table 7: ,e predictive performance of the prediction models
using the testing set.

Variables Total model BLS model
Sensitivity (95% CI) 0.778 (0.586–0.970) 0.889 (0.744–1.000)
Specificity (95% CI) 1.000 (1.000–1.000) 0.906 (0.805–1.000)
PPV (95% CI) 1.000 (1.000–1.000) 0.842 (0.678–1.000)
NPV (95% CI) 0.889 (0.786–0.992) 0.935 (0.849–1.000)
AUC (95% CI) 0.962 (0.915–1.000) 0.965 (0.924–1.000)
Accuracy (95% CI) 0.920 (0.845–0.995) 0.900 (0.817–0.983)
CI: confidence interval; PPV: positive predictive value; NPV: negative
predictive value; AUC: area under the curve.
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of model 3, but the test effect is still not as good as that of
model 3. In summary, clinical indicators were combined
with a comprehensive index of CT image features at four
different periods (plain, venous, arterial, and excretory) to
predict rectal cancer.

4. Conclusion

In this paper, after dividing the data set, we perform a
balance test and can get detailed values, which can be found

in Table 2. At the same time, through intergroup compar-
ison, we can clearly find differences and their statistical
significance in several aspects such as gender, previous
history of diabetes, and family cancer history. Herein, four
models were developed to predict the risk of rectal cancer.
Our findings showed that the prediction model (model 3)
which included clinical characteristics and CT images had
good predictive performance for rectal cancer. It is beneficial
for clinicians to identify rectal cancer cases and to improve
the prognosis by early treatment.
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