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With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in
order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on
the M/M/s/∞/∞ multiservice desk model and Multi-Echelon Technique for Recoverable Item Control (METRIC) theory, this
paper proposes a spare parts supply strategy based on the spare parts pool network and establishes a location selection model for
spare parts central warehouse. (e particle swarm optimization (PSO) algorithm is used to iteratively optimize the location for
spare parts central warehouse and adjust the location area of the central warehouse combining transportation facilities and
geographical environment factors. Finally, the paper compares the operating results for multiple airlines in pooling and off-
pooling states and verifies the effectiveness of the spare parts supply model and the advantages of cost control for airlines.

1. Introduction

(e airlines spare parts are the key resources to ensure the
normal operation of the airframes, on-board equipment, and
ground support equipment [1]. According to the survey, the
total spare parts inventory value for supporting the opera-
tions of all airlines in the global aviation market reaches
US$50 billion, accounting for 75% of airline inventory funds
and 25% of working capital. However, most of the airlines
spare parts are redundant in fact, and only 25% of the
airlines spare parts are turnover in the industry [2, 3]. With
the repeated COVID-19 epidemic and the fierce competition
in the aviationmarket, cost control has become a top priority
for airlines. (erefore, how to promote the spare parts
pooling among airlines to achieve a win-win situation and to
reduce inventory redundancy while meeting the require-
ments of spare parts guarantee rate are the key to the current
airlines spare parts configuration management.

Airlines spare parts configuration management is an
important way to realize the reasonable airlines spare parts
inventory allocation, avoid shortage or waste of airlines
spare parts, improve utilization rate of airlines spare parts,
ensure reliability of dispatch, and reduce operating costs
[4–6]. (e development of this topic originates from the

Multi-Echelon Technique for Recoverable Item Control
(METRIC) theory developed by the US RAND Corporation
for the US Air Force.(eMETRIC theory is developed based
on the establishment of a two-level (central warehouse level
and maintenance base level) maintenance support system
and optimization model. Assume that the repair capacity of
repair shops is unlimited (the number of repaired equipment
is unlimited), and the failure rate of parts is independent of
the number of working parts [7]. Due to the long aging
scrapping time of the turnover equipment in the real en-
vironment and the replacement problem of turnover parts is
usually caused by the sudden failure and damage, so it is
reasonable to ignore the impact of aging life [8]. (is theory
is widely used in the spare parts configuration management
for complex equipment such as the OPUS software used by
the European and American navies and air forces [9]. With
the continuous development of METRIC theory, many
scholars have carried out research on it from different
perspectives. Aiming at the multilevel inventory problem of
airlines spare parts, researchers start from the optimization
problem of airlines spare parts guarantee supply inventory
on the basis of the static Palm theorem and establish the
METRIC model with the largest use efficiency of spare parts
under the constraint of total costs [10]. On this basis,
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reference [11] introduces the concept of virtual inventory
and improves theMETRICmodel with the goal of the lowest
overall cost of the spare parts inventory network. Reference
[12] analyzes system with METRIC theory and introduces
Lagrange factors to establish a multiconstraint dynamic
configuration model of aviation materials and spare parts.
Subsequently, depending upon the improved model of
METRIC, dynamic METRIC (DYNA-METRIC), variant of
METRIC (VARI-METRIC), and a mathematical model for
METRIC (MOD-METRIC) are proposed. Among them,
reference [13] proposes a DYNA-METRIC model that uses
an unsteady composite Poisson distribution to simulate the
dynamic characteristics of the spare parts supply environ-
ment with fewer restrictions on its application. Indeed,
reference [14] conducted a study to show that an expo-
nentially distributed interarrival time becomes apparent
when the number of items in a system is more than ten.
(en, it can solve a series of practical engineering problems.
Reference [15] employs MOD-METRIC model to optimize
the total cost constraint in the weapon equipment systems
and obtains the number of spare parts at each level. Ref-
erence [16] analyzes the error of the expected shortage based
on the negative binomial distribution and proposes the
VARI-METRIC model. Subsequently, reference [17] pro-
poses a METRIC-based model for the optimal allocation of
spare stocking problems considering uncertain demand rate
and limited repair capacity at the same time. (e problem of
supplying spare parts for a single fleet has been studied in
references [18, 19]; however, inventory allocation issue with
multiairlines has not been effectively analyzed. In the context
of METRIC theory, the location of the central warehouse in
the system cannot be ignored. In recent years, there have
been many studies on the location selection [20–23]. Ref-
erence [24] develops a decision-made analysis of spare parts
logistics in emergency, determines the distribution center of
disaster relief goods, and deploys vehicles for relief distri-
bution. On the basis of economic factors, reference [25]
establishes optimization model of preventive maintenance
and spare parts inventory to optimize maintenance decision
and inventory level. References [26, 27] establish a location
strategy considering factors such as economic benefits, in-
frastructure conditions, natural environment traffic location
conditions, policies, and regulations. References [28–31]
further discuss the location problem based on special factors.
(ese factors are divided into the following six aspects:
dynamic location based on uncertain demands, location
based on supply chain competition perspective, multilevel
logistics center planning and location selection study, service
level-based location research, location selection combining
logistics demand forecasting and distribution, and location
selection considering the scale of logistics center con-
struction. A lot of studies have also carried out on the se-
lection of optimization algorithms for airlines spare parts
configuration management. References [32, 33] use genetic
algorithms to optimize the delay cost caused by unexpected
failures and the overall cost of airlines spare parts occu-
pation, furthermore, analyzing the effectiveness of the
method through numerical examples. Reference [34] uses
particle swarm optimization (PSO) algorithm to solve the

optimization problem of spare parts configuration which
maximizes the airlines spare parts guarantee rate. Reference
[35] builds a multiobjective optimization model and uses
multiobjective ant-lion algorithm to achieve the Pareto
dominance solution of airlines spare parts configuration
optimization.

Although there are plenty of studies on airlines spare
parts configuration management, the pooling of airlines
spare parts among multiple airlines topic needs to be further
focused on. (e main contributions of the paper can be
summarized as follows:

(1) Based on METRIC theory, an airline spare parts
supply strategy with the participation of multiple
airlines is proposed from the airlines spare parts
pooling perspective.

(2) A model for the location selection of a spare parts
central warehouse based on queuing theory is in-
novatively established to reduce the total operating
cost for the multiple airlines.

(3) A new PSO algorithm is developed to optimize the
model along with good adaptability in terms of
computational efficiency and high-dimensional
model processing ability.

(e rest of this paper is organized as follows. Section 2
describes the practical problems occurred in establishing a
central warehouse for airlines spares parts, and model as-
sumptions are placed. Section 3 proposes a location selection
model for the central warehouse of airlines spare parts.
Section 4 presents a PSO algorithmmodel based on dynamic
decreasing inertia weight. Section 5 conducts simulations to
verify the proposed model and algorithm in the previous
sections. Finally, the conclusions are drawn in Section 6.

2. Problem Description

A number of airlines participate in coordinated deploy-
ment to realize the airlines spare parts pooling and establish
an airlines spare parts central warehouse. (erefore, it is
necessary to form an airlines spare parts demand network
to meet all participating airlines demands. (e airlines
spare parts are uniformly dispatched and transported by
the central warehouse, and the spare inventory of each
maintenance base is reasonably allocated. If a maintenance
base over the network has insufficient inventory, and
Aircraft on Ground (AOG) occurred, emergency hori-
zontal transfer among maintenance bases is carried out to
minimize losses. In the end, with the goal of minimizing the
total cost of airlines spare parts transportation, AOG loss,
and spare parts storage cost, the location of the airlines
spare parts central warehouse needs to be reasonably se-
lected. To achieve a new pattern of alliance-based devel-
opment of the airlines spare parts transfer network, the
paper considers reducing ineffective competition among
airlines, increasing airlines spare parts guaranteeing rate;
reducing the inventory redundancy, thus reduces airline
operating costs. (e following assumptions are for the
application consideration:
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Assumption 1: the aging life of airlines spare parts is not
considered in this paper for the time being due to the
long aging scrapping time of the turnover airline spare
parts in the real environment.
Assumption 2: the needs of airline spare parts always
exist in each maintenance base, and the replacement
demand obeys Poisson distribution. (e total number
of operating spare parts in the airlines spare parts
pooling network is large enough; the exponential
distribution can be used to approximate the interval
arrival time distribution for failed items.
Assumption 3: the supply capacity of the spare parts for
central warehouse is sufficient and there is no delay in
dispatching. (e rate of supply support obeys the
negative exponential distribution.
Assumption 4: the transport rate and the unit cost are
the constants for the same type of turnover parts.
Assumption 5: in case of emergency horizontal transfer,
the AOG time is equal to the transit time between two
maintenance bases, and no other incidents occur
during the transit period.

3. Location Selection Modeling for
Central Warehouse

3.1. Analysis of METRIC-Based Airlines Spare Parts Supply
Strategy. (e replacement of spare parts at each maintenance
base is subject to the first come first service (FCFS) rule, and
the spare parts are replenished by a combination of direct
transfer from the central warehouse and emergency hori-
zontal transfer. As shown in Figure 1, the model of airlines
spare parts replacement operation and transfer for mainte-
nance base i, i� 1, 2, . . ., n, (hereafter abbreviated as base i).

In Figure 1, the dotted box represents the spare parts
replacement demand waiting queue and spare parts in-
ventory capacity of base i. For the spare parts replacement
demand waiting queue, the priority of the replacement
operations is given according to the FCFS rule. (en, re-
plenish the spare parts inventory from the central warehouse
c to base i by direct transfer. Within the direct transfer time
ti, if the queue length k≤ s (k is the total number of spare
parts inventory) for base i, it is considered that the demand
can be satisfied by the inventory of base i itself, and no
emergency horizontal transfer is needed. If k> swithin ti, the
demand of base i is not able to be satisfied by its own in-
ventory, and the emergency horizontal transfer among bases
is needed to support base i at this time.

(e optimal order quantity formula, economic order
quantity (EOQ), is used to determine the direct transfer
strategy from central warehouse c to base i [36].

Q �

�������
2Ωimi

Storagec



, (1)

where Q is the optimal order quantity of airlines spare parts;
Ωi is the annual demand for a certain type of repairable
airlines spare parts for base i; mi is the unit transportation
cost for direct transfer of spare parts from central warehouse

c to base i; Storagec is the annual storage cost per unit of spare
parts. (e (s − 1, s) inventory strategy proposed in [37] is
used because of the high storage cost and the low demand of
the spare parts. Obviously, the optimal order quantity, Q,
closes to 1. Subsequently, λi, the daily rate of spare parts
replacement demand for base i as shown in equation (2), can
be derived according to the average annual demand of re-
pairable airlines spare parts model [38].

λi �
TFHi · K · N

365 · TMTBUR
, (2)

where TFHi is the annual flight hours of a certain type of
aircraft for base i; K is the average number of certain spare
parts installed on the aircrafts; N is the fleet size of the
aircraft; TMTBUR is the mean time among unscheduled re-
movals for the repairable spare parts. (e rate of spare parts
supply, µi, from the central warehouse c to base i in direct
transfer is shown in the following equation:

μi �
v

dic

, (3)

where dic is the distance from the central warehouse c to base i;
v is the average transportation rate of this repairable spare
parts. When the spare parts replacement demand of base i can
be met by its own inventory, the spare parts inventory system
at base i obeys the M/M/s/∞/∞ multiservice desk model. In
this model, μi1 � μi2 � · · · � μik � μi. When there is a spare
parts replacement demand of queue length k for base i, the
overall spare parts supply rate of the system is
kμi, k � 0, 1, 2, . . . , s. (e supply intensity of one transfer
from central warehouse c to base i is ρi � λi/μi.(emaximum
supply intensity that the central warehouse c can provide to
base i is ρis � λi/sμi. To ensure the length of the queue for
replacement parts not growing longer and longer, it should
satisfy ρis < 1. (us, when the demand at base i can be met by
its own inventory, the cumulative replacement rate Ci (k) is

Ci(k) �
λi/μi( 

k

k!
, k � 0, 1, 2, . . . , s. (4)

(erefore, Pi(k) is the probability of the spare parts to be
replaced at base i with queue length k.

Pi(k) � Ci(k) · Pi(0) �
ρk

i

k!
Pi(0), k � 0, 1, 2, . . . , s, (5)

where

Pi(0) � 
s− 1

k�0

ρk
i

k!
+

ρs
i

s! 1 − ρis( 
⎡⎣ ⎤⎦

− 1

. (6)

In order to meet the airline’s fill rate requirements and to
avoid AOG in the event of spare parts replacement oper-
ations, the following equation should be met:

Pi(k≤ s − 1) � 
s− 1

k�0
Pi(k)≥ 98%. (7)

When spare parts replacement demand cannot be met by
its own inventory at base i, i.e., the queue length k≥ s, AOG
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will occur, and the exceeding portion is referred as the
waiting queue. (us, Wi (s, ρi), the probability that there
exists a waiting queue in base i, obeys the Erlang waiting
formula:

Wi s, ρi(  � 
∞

k�s

Pi(k) �
ρs

i

s! 1 − ρis( 
Pi(0). (8)

Since the input flow of spare parts demand in the system
is Poisson flow, the waiting time for replacement of spare
parts at base i, T, is a continuous random variable. It satisfies
the nonnegative condition and obeys negative exponential
distribution on ti, so T has the Markov property. (e
probability of spare parts to be replaced at base iwith T≤ ti is

Pi T≤ ti(  � Wi s, ρi(  · 1 − e
− sμi − λi( )ti , ti ≥ 0. (9)

(en, the cumulative replacement rate, Ci (k), in the
waiting queue for base i is

Ci(k) �
λi/μi( 

s

s!
·

λi

sμi

 

k− s

�
λi/μi( 

k

s!s
k− s

, k≥ s. (10)

Pi(k) is the probability that there are k replacement
demands for spare parts at base i which is shown below as
well:

Pi(k) � Ci(k) · Pi(0) �
ρk

i

s!s
k− s

Pi(0), k≥ s. (11)

(erefore, the average waiting queue length Liq is

Liq �
Wi s, ρi(  · ρis

1 − ρis

� 
∞

k�s+1
(k − s)Pi(k) �

ρs
i · Pi(0)

s!


∞

k�s+1
(k − s)ρk− s

is .

(12)

Emergency horizontal transfer also needs to be con-
sidered when there is a waiting queue at base i. (e transit
node j for emergency horizontal transfer depends on the
transit time Tij:

Tij �
dij

v
, (13)

where dij is the distance from base i to base j; v is the average
transport rate. In addition, the transportation cost of spare
parts is

Eij � a · dij, (14)

where a is the transportation cost of spare parts per unit
distance. In case of emergency horizontal transfer, the rate of
spare parts supply from base j to base i is shown in the
following equation:

μij �
1

Tij

. (15)

Subsequently, the spare parts supply strategy for base i is
determined by the transit time Tij, as shown in Figure 2.

When there is a shortage of spare parts at base i to apply
for emergency horizontal transfer, the node j corresponding
to min (Tij) is selected as the supply base in preference. If
base j is also out of stock, it is deferred to the next minimum
value, etc. Since the central warehouse c has unlimited
supply capacity, once Tij≥Tic, spare parts are supplied from
central warehouse c to base i by default, and other bases are
not considered. According to Figure 2, it is assumed that the
blue node represents the central warehouse c and the
remaining four maintenance bases are identified as 1, 2, 3,
and 4. (e transit time from bases 2, 3, and 4 and central
warehouse c to base 1 was ranked as T12＜T13＜T1c＜T14.
Bases 2–4 are divided into two different states according to
the transit time, where the green node represents the
emergency horizontal transfer node of base 1, and the red
node means that the node cannot be used as the emergency
horizontal transfer node of base 1. (erefore, if there is a
shortage of spare parts at base 1, base 2 will make emergency
horizontal transfer to base 1, and central warehouse c will
make direct transfer to base 2 to replenish the inventory.
Base 3 will provide horizontal transfer to base 1 only if base 1

k 12

Queue

Spare parts1

Spare parts2

Spare parts s

Spare parts m

Spare parts n

Direct transfer (High Priority)

Emergency horizontal transfer
(Low Priority)

FCFS Service Rules

Figure 1: Model of airlines spare parts replacement operation and transfer for base i.
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generates an emergency horizontal transfer requirement and
base 2 does not have inventory. Accordingly, the central
warehouse c makes direct transfer to base 3 to replenish
inventory. If bases 2 and 3 have no additional stocks si-
multaneously, the central warehouse c makes a direct
transfer to base 1 to replenish the inventory. Since T1c＜T14,
base 4 does not need to provide emergency horizontal
transfer to base 1. (erefore, bases 2 and 3 are called
emergency horizontal transfer nodes for base 1. (e priority
ranking of the emergency horizontal transfer nodes for each
base is shown in Table 1 according to the transfer time.

Further, the source of the actual airlines spare parts
replacement demand for base 1 is shown in Figure 3, where
the green node represents base 1 as an emergency horizontal
transfer node for bases 2, 3, and 4.

Since λi, i� 1, 2, . . ., n, is independent of each other and
obeys Poisson distribution,

X ∼ P(λ),

Y ∼ P(μ).
(16)

(en, there is

P X � x{ } �
λx

x!
e

− λ
,

P Y � y  �
μy

y!
e

− μ
,

P Z � z{ } � P X + Y � z{ } � 
z

x�0
P X � x{ } · P Y � z − x{ }

� 

z

x�0
e

− λλ
x

x!
· e

− μ μz− x

(z − x)!
 

�
e

− (λ+μ)

z!
(λ + μ)

z
.

(17)

Any combination of variables that are independent of
each other and obey the Poisson distribution still obey the
Poisson distribution, that is, Z ∼ P(λ + μ). (erefore, the
modified combination variables are also applicable to this

queuing theory model. After the formation of the airlines
spare parts pooling network, the actual spare parts re-
placement demand rate λr1 is deduced in the following
equation:

Central warehouse c

Base 2

Base 3

Base 1

Base 4

Direct Transfer
Horizontal Transfer
No connection

Figure 2: Spare parts supply strategy.
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λr1 � λ1 + P2(k≤ s − 1) · λ2 + P3(k≤ s − 1) · λ3 + 1 − P3(k≤ s − 1)  · P4(k≤ s − 1) · λ4. (18)

(erefore, the actual spare parts replacement demand
rate λri for base i is

λri � λi + 
θ∈ I{ }

Pθ(k≤ s − 1) · λθ · 
ε∈ H{ }

1 − Pε(k≤ s − 1) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(19)

where θ is the node index which regards base i as an
emergency horizontal transfer node; {I} is the set of

emergency horizontal transfer nodes for θ; ε is the node with
higher priority than base i among all the emergency hori-
zontal transfer nodes for θ; {H} is the set of ε. As shown in
Figure 4, the actual spare parts supply rate µr1 for base 1 is a
combination of µ1 and the horizontal supply rate from the
emergency horizontal transfer nodes (bases 2 and 3) of base 1.

(erefore, the actual expectation of supply rate of spare
parts, μri, for base i is

μri � Pi(k≤ s − 1)μi + 1 − Pi(k≤ s − 1)  · 
τ∈ V{ }


σ∈ Z{ }

1 − Pσ(k≤ s − 1) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Pτ(k≤ s − 1)μiτ , (20)

where τ is the emergency horizontal transfer node of base i;
V{ } is the set of τ; σ is the base node with higher priority than
τ among all the emergency horizontal transfer nodes of base
i; {Z} is the set of σ; µiτ denotes the supply rate of base τ to
base i for airlines spare parts.

3.2. :e Expected Cost of Pooling Strategy on Airlines Spare
Parts. (e expected cost of pooling strategy on airlines
spare parts consists of the expected cost of spare parts

transfer, the expected cost of AOG loss, and the cost of
airlines spare parts storage.

3.2.1. :e Expected Cost of Spare Parts Transfer. (e cost of
spare parts transfer is composed of the direct transfer cost if
the replacement demand can be met by its own inventory
and the emergency horizontal transfer cost if maintenance
base cannot be met by its own inventory. (e expectation

Table 1: (e priority ranking of the emergency horizontal transfer nodes for each base.

Base number
Priority

Level 1 Level 2 Level 3 Level 4
1 2 3 c —
2 1 3 c —
3 1 2 4 c
4 3 1 2 c

Central warehouse c

Base 2

Base 3

Base 1

Base 4

Direct Transfer
Horizontal Transfer

Figure 3: An example of the actual source of spare parts replacement demands for base 1.
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cost function of spare parts transfer is shown in the following
equation:

Et � 
n

i�1


s

k�1
adicPi(k) + 

τ∈ V{ }

adiτPi(k) 1 − Pi(k≤ s − 1) Pτ(k≤ s − 1) 
σ∈ Z{ }

1 − Pσ(k≤ s − 1) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (21)

where dic is the distance from base i to base c; diτ is the
distance from base i to base τ.

3.2.2. :e Expected Cost of AOG Loss. (e expected cost of
AOG loss is shown in the following equation:.

EA � 
n

i�1


j∈ J{ }

dij

v
(k − s)Pi(k) 1 − Pi(k≤ s − 1) Pj(k≤ s − 1) 

Ω∈ N{ }

1 − PΩ(k≤ s − 1) , (22)

where k≥ s, {J} is the set of horizontal transfer nodes of base
i; {N} is the set of base nodes with higher priority than base j
among all emergency horizontal transfer nodes of base i.

3.2.3. :e Storage Cost of Airlines Spare Parts. (e storage
cost of airlines spare parts consists of the storage cost of each
node on the spare parts pooling network. (e inventory
capacity on each maintenance base will meet the spare parts
fill rate higher than 98%.(erefore, the storage cost function
of spare parts pooling is shown in the following equation:

Es � 
n

i�1
b · si, (23)

where b is the unit storage cost of the spare parts; si is the
inventory of spare parts at base i.

(erefore, the total expected cost, E, of the airlines spare
parts pooling network is shown in the following equation:

E � Et + EA(  · D + Es, (24)

where Et is the transfer cost of airlines spare parts per unit
time consisting of both horizontal transfer costs and direct
transfer costs; EA is the AOG loss cost per unit time; D is the
total time; Es is the storage cost of airlines spare parts.

4. A New PSO Algorithm Model Based on
Dynamic Decreasing Inertia Weights

4.1. Particle Swarm Optimization Algorithm. In the location
selection model for central warehouse of the airlines spare
parts pooling network, the feasible domain of the original
problem is the range where mainland China is located, and
the feasible solution is expressed by the latitude and lon-
gitude coordinates of the range. (e paper assumes that a
group of “particles” in three-dimensional space is composed
of longitude, latitude, and pooling expected cost in the
feasible domain, and the particle is divided into its own
experienced optimal position (p best) and global historical

Central warehouse c

Base 2

Base 3

Base 1

Base 4

Direct Transfer
Horizontal Transfer
No connection

Figure 4: An example of the actual source of spare parts supply for base 1.
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optimal position (g best) according to the expected cost.
During the (iter + 1)-th iteration, the velocity and position of
the particles are updated by the following equations until the
optimal solution is obtained:

v
iter+ 1
i � w · v

iter
i + c1r1 p

iter
i − x

iter
i  + c2r2 p

iter
g − x

iter
i ,

x
iter+1
i � x

iter
i + v

iter+1
i ,

(25)

where viteri is the velocity of particle i for the iter-th iteration;
Piter

i is the p best of particle i for the iter-th iteration; Piter
g is

the gbest for the iter-th iteration; xiter
i is the current position

of particle i for the iter-th iteration;w is the inertia weight; c1,
c2 are learning factors; r1, r2 are two mutually independent
and uniformly distributed random numbers between (0, 1).
In this paper, the formula for the inertia weight w dynamics
model is shown as follows:

w
iter+ 1

� ws −
ws − we

(maxgen)
2iter

2
, (26)

where themaximum value of the inertia weightws is taken as
0.9. (e minimum value of the inertia weight we is taken as
0.4. max gen is the total number of iterations. (e inertia
weight w takes values between (0.4, 0.9). (e variation of w

along with iter is plotted, as shown in Figure 5.
In the location selection model for central warehouse,

the range of feasible domains is large, and it can be seen from
Figure 5 that a larger w value and a smaller slope at the
beginning of the iteration are beneficial for the particle to
perform an adequate global search, while the w value be-
comes smaller and the slope becomes larger with the in-
crease of the number of iterations, which is beneficial for the
particle to converge quickly to the global optimum.

4.2. Flow of the Algorithm

Step 1: preset the scale of the particle swarm pop, the
range of particle velocity, the feasible domain range of
the particle, max gen, ws we, c1, and c2.
Step 2: initialize particle swarm distribution, X� {x1,
x2,. . ., xpop}; set the iter as 1.
Step 3: substitute the parameters λri andμriinto equa-
tions (7)–(10); update p best andg best.
Step 4: update w according to the number of iterations;
update the velocity v and position x of each particle
according to the velocity and position update formula.
Step 5: determine whether the number of iterations
reaches max gen; if so, skip to Step 6; otherwise, let
iter� iter + 1 and skip to Step 3.
Step 6: the output g best is the optimal location for the
central warehouse, then end.

5. Simulation Analysis

(e paper implements a repairable airlines spare parts
pooling strategy of the A320 series fleet ofA, B,C,D, E, and F
airlines in order to carrying out the location selection for a

central warehouse of spare parts pooling network.(is paper
uses linear regression to fit the relationship between the
flight sortie, FS, and the flight hours, FH, of airlines’ A320
series fleet. (en, the paper derives the parameter, TFH,
based on the annual number of FS of the A320 series fleet of
all bases for an airline. (e fitted relationship is shown in
Figure 6.

From the fitting results, it can be concluded that the R-
square is 0.9557 and the Adj R-square is 0.9459. (erefore,
there is a good second-order linear fitting relationship be-
tween FS and FH, which is shown in the following equation:

FH � − 79.13 · FS2 + 3120 · FS + 7.688 × 104. (27)

(e historical database of airline A∼ F’s A320 series
aircraft fleet at each maintenance base is summarized in the
VariFlight website [39] and “Statistical Data on Civil Avi-
ation of China 2019” [40]. (e airline A∼ F’s FS at each base
in China are screened, as shown in Table 2.

In airlines spare parts pooling network, λi for all
maintenance bases of airlines A∼ F on the network is cal-
culated according to equation (2), as shown in Table 3.

Further, µi and µij are obtained according to equations
(3), (13), and (15), which are substituted into equations (19)
and (20) to calculate the value of λri andμri. Finally, the
expectation costs are obtained by equations (21)–(24). (e
pooling expectation cost with the change of central ware-
house location is plotted, as shown in Figure 7.

As seen in Figure 7, the lighter colors represent the
higher pooling expectation cost when the location of the
central warehouse c is chosen in that region. With the
deepening of the color, the pooling expectation cost becomes
lower.(erefore, it can be concluded that the existence of the
optimal location within the feasible domain makes the
lowest pooling expectation cost, and the more the spatial
distance from the optimal location, the higher the corre-
sponding pooling expectation cost. In turn, the pooling
expectation cost model is iteratively searched for optimality
according to the PSO algorithm process in Section 4.2, and
the iterative results are shown in Figure 8.

Figure 8 shows that the algorithm has good convergence,
and after 19 iterations of the algorithm, it can be found the
lowest pooling expectation cost is with 131.4 million RMB.
(e final optimal location is shown with a star in Figure 9.
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Table 2: (e FS of A320 series aircraft fleet at each base in China.

No. City FS
Airline A flight schedule
1 Beijing 17924
2 Chengdu 28639
3 Dalian 17836
4 Fuzhou 1999
5 Guangzhou 18577
6 Guiyang 2191
7 Harbin 6085
8 Haikou 7236
9 Hangzhou 2417
10 Hefei 492
11 Kunming 13429
12 Lhasa 2959
13 Lijiang 309
14 Mianyang 4359
15 Nanchang 3129
16 Nanjing 11177
17 Ningbo 4153
18 Qingdao 2519
19 Sanya 4078
20 Shanghai 12484
21 Shenzhen 6325
22 Shenyang 9478
23 Wuxi 388
24 Wuhan 1926
25 Xi’an 2882
26 Xishuangbanna 629
27 Yinchuan 2275
28 Changchun 1753
29 Changsha 3762
30 Zhengzhou 305
31 Chongqing 16656
Airline B flight schedule
1 Beihai 833
2 Chengdu 2415
3 Dalian 1982
4 Guangzhou 7132
5 Guiyang 1917
6 Guilin 1061
7 Harbin 4426
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Table 2: Continued.

No. City FS
8 Hangzhou 3759
9 Hohhot 1353
10 Kunming 8356
11 Mianyang 12351
12 Nanning 3366
13 Sanya 4078
14 Shanghai 82152
15 Shenzhen 6325
16 Shenyang 6770
17 Shijiazhuang 21656
18 Urumchi 7014
19 Xi’an 4034
20 Xishuangbanna 839
21 Yinchuan 1365
22 Changchun 2103
23 Changsha 1075
24 Chongqing 4201
Airline C flight schedule
1 Beihai 648
2 Beijing 50358
3 Chengdu 22773
4 Dalian 10503
5 Erdos 4711
6 Fuzhou 5998
7 Guangzhou 23553
8 Guiyang 5751
9 Guilin 909
10 Harbin 16596
11 Haikou 3515
12 Hangzhou 15305
13 Hefei 15244
14 Hohhot 2029
15 Jinan 9608
16 Kashi 343
17 Kunming 41181
18 Lhasa 1883
19 Lijiang 4332
20 Nanchang 21902
21 Nanjing 48283
22 Ningbo 14239
23 Qingdao 11336
24 Sanya 4078
25 Shanghai 117590
26 Shenzhen 22999
27 Shenyang 6319
28 Wenzhou 9870
29 Urumchi 7014
30 Wuxi 18473
31 Wuhan 2696
32 Xi’an 60516
33 Xishuangbanna 2937
34 Yinchuan 12056
35 Yulin 3265
36 Zhangjiajie 1067
37 Changchun 2454
38 Changsha 13168
39 Zhengzhou 5032
40 Chongqing 18606
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Table 2: Continued.

No. City FS
Airline D flight schedule
1 Beijing 40542
2 Chengdu 42786
3 Dalian 1387
4 Guangzhou 6469
5 Guiyang 7668
6 Guilin 1515
7 Harbin 6454
8 Haikou 2894
9 Hangzhou 21213
10 Kunming 6267
11 Lhasa 6994
12 Lijiang 1238
13 Mianyang 9445
14 Nanjing 3129
15 Qingdao 8817
16 Shanghai 15303
17 Shenzhen 12074
18 Shenyang 6319
19 Tianjin 2300
20 Wenzhou 8636
21 Wuxi 904
22 Wuhan 16177
23 Xi’an 11988
24 Yinchuan 5346
25 Yulin 155
26 Zhangjiajie 457
27 Changchun 1840
28 Changsha 1881
29 Zhengzhou 7928
30 Chongqing 5252
Airline E flight schedule
1 Beihai 1945
2 Beijing 64014
3 Chengdu 9661
4 Dalian 28141
5 Fuzhou 2570
6 Guangzhou 74806
7 Guiyang 3834
8 Harbin 23788
9 Haikou 11577
10 Hangzhou 23361
11 Hohhot 2536
12 Jinan 8647
13 Korla 2055
14 Kunming 19099
15 Lhasa 1255
16 Lijiang 3197
17 Mianyang 5086
18 Nanchang 5811
19 Nanjing 20118
20 Nanning 3366
21 Ningbo 9493
22 Qingdao 17634
23 Sanya 12234
24 Shanghai 62017
25 Shenzhen 29324
26 Shenyang 20311
27 Tianjin 16101
28 Wenzhou 8636
29 Urumchi 4008
30 Wuxi 5038
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(e red dot in Figure 9 indicates the location of the
maintenance base, and the location of the red star is the
optimal location of the airlines spare parts central warehouse
with the lowest pooling expectation cost, whose coordinates
are 113° 71′ 15.98″ E and 27° 82′ 72.61″N.Whenmaking the
plan for the location selection of the spare parts central
warehouse, the lowest total cost of multiple airlines pooling
should be considered but also it should be ensured that the
spare parts can be quickly and efficiently transferred from
the central warehouse to each base node. (erefore, on the
basis of the cost optimization, locating the central warehouse

on the nearby hub airport can meet the timeliness and
convenience requirements of spare parts transport.
According to Figure 7, the closer the spatial distance from
the cost-optimal location, the lower the pooling expectation
cost, so the three hub airports with the closest spatial dis-
tance to the cost-optimal location are selected, as shown in
Table 4.

When considering transport facilities and geograph-
ical environment factors, all three locations can meet the
logistic requirements and transportation convenience for
the supply of airlines spare parts. (e sum of the annual

Table 2: Continued.

No. City FS
31 Wuhan 7190
32 Xi’an 31814
33 Xishuangbanna 839
34 Yinchuan 7962
35 Yulin 3421
36 Zhangjiajie 7471
37 Changchun 15336
38 Changsha 40311
39 Zhengzhou 3202
40 Chongqing 25959
Airline F flight schedule
1 Beijing 29873
2 Chengdu 28639
3 Dalian 2774
4 Fuzhou 857
5 Guangzhou 34169
6 Harbin 9036
7 Haikou 2274
8 Hangzhou 14500
9 Hefei 3442
10 Hohhot 507
11 Kunming 4178
12 Lhasa 4573
13 Lijiang 1856
14 Mianyang 10172
15 Nanchang 12515
16 Nanjing 9388
17 Nanning 3366
18 Sanya 8156
19 Shanghai 15303
20 Shenzhen 32198
21 Shenyang 25275
22 Wenzhou 8636
23 Wuxi 2713
24 Wuhan 3210
25 Xi’an 20057
26 Yinchuan 5004
27 Yulin 155
28 Changchun 2103
29 Changsha 1881
30 Zhengzhou 8081
31 Chongqing 3001

Table 3: λi of some bases in pooling mode.

Base i Beijing Chengdu Dalian Fuzhou Guangzhou . . . Zhengzhou
λi 2.361664 1.571812 0.729600 0.133096 1.918887 . . . 0.285990
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operating costs for each of the six airlines operating
without a pooling strategy (i.e., off-pooling strategy) for
these repairable spare parts is $267.4 million RMB.
Figure 10(a) shows that the cost savings are significantly
higher with the pooling strategy mentioned in the paper
than that with the off-pooling strategy. Figure 10(b) shows
the distance between the cost-optimal location and the
three hub airport locations with iterations. It can be seen
that as the location of the spare parts central warehouse
tends to be closer to cost-optimal location, the adoption of
the pooling strategy optimizes the total operating cost by
about 136.25 million RMB compared to the off-pooling
strategy in Figure 10(a). From Figure 10(b), it can be seen
that the steady state is reached after 19 iterations, while

the distance between the cost-optimal location and
Changsha Huanghua International Airport is the shortest.
(erefore, from the transport facilities and geographical
environment factors perspective, the central warehouse of
these repairable spare parts is selected to be located in the
area near Changsha Huanghua International Airport,
whose coordinates are 113° 23′ 82.45″ E and 28° 15′ 3.16″
N and will cost approximately 131.68 million RMB. Al-
though the total cost rose by about 540,000 RMB asso-
ciated with cost-optimal location, in fact, the convenience
of spare parts transport can reduce the transport process
and the transport risk and then improve the economic
efficiency of the spare parts pooling alliance.

Clearly, the win-win effect of adopting multiple airlines
to implement the airlines spare parts pooling strategy is
significant. Finally, Figure 11 demonstrates comparison of
the operational status of each indicator between the pooling
and off-pooling strategies for airlines spare parts while
ensuring other conditions are consistent.

It can be seen that, with the guarantee of 98% filling
rate, the total inventory of spare parts required by all
maintenance bases is significantly less than the off-pooling
strategy when the pooling strategy is adopted, which
relatively reduces the size of spare parts by 64.46% and
optimizes the operation cost by 50.76%. However, the
daily AOG time is higher in the pooling strategy than that
in off-pooling strategy. It is because under the off-pooling
strategy, the maintenance bases are supplied directly from
each airline’s headquarters inventory, which is generally
located in the more central location of all flight routes with
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Table 4: (ree hub airports information with the closest spatial distance to the cost-optimal location.

Airports Coordinates Cost
Changsha Huanghua International Airport (113°23′82.45″ E, 28°15′3.16″ N) 131.68 million RMB
Nanchang Changbei International Airport (115°90′29.42″ E, 28°84′68.78″ N) 143.51 million RMB
Wuhan Tianhe International Airport (114°25′93.49″ E, 30°81′76.41″ N) 144.98 million RMB
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a shorter average direct transfer cycle. Moreover, each
airline will stock large amount of inventory at each
maintenance base in order to ensure the 98% fill rate.
However, this approach will cause redundancy of spare
parts and generate unnecessary costs. If the scale of air-
lines spare parts arranged in the off-pooling strategy is
deployed by using the pooling strategy, it can ensure a
higher fill rate of spare parts in the global environment
and develop a greater scale effect. (erefore, it is mean-
ingful to adopt pooling strategy for the overall layout of
airlines spare parts.

6. Conclusions

(is paper proposes a multiairline spare parts pooling supply
strategy based on METRIC theory and establishes a central
warehouse location selection model for the spare parts pooling
network based on M/M/s/∞/∞ multiservice desk model and
considers three cost factors including spare parts transfer cost,
AOG loss cost, and spare parts storage cost. Subsequently, the
PSO algorithm is combined with the example for model val-
idation and simulation analysis, and the result of location
selected is adjusted according to the transportation facilities
and geographical environment factors around the location site.
Finally, the paper compares the results of airlines operating
under pooling and off-pooling strategies to verify the validity of
the strategy and model. (e method developed in this paper
will be able to provide a theoretical basis for making effective
decisions on airlines pooling and the location selection of
airlines spare parts central warehouse.
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