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In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when
conducting surveys.+e properties of the corresponding point estimator for populationmean have been examined in terms of bias
and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has
been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. +e results
have been summarized, and discussion regarding real-life applications of the estimator follows.

1. Introduction

+e impracticality of measuring the entire population for
any realistic project due to budgetary, time, or other con-
straints makes sampling indispensible for any field of study
[1–12]. +e widespread applications of acceptance sampling
in various industries for manufacturing and other processes
have been noted for a considerable period of time. Sampling
can also be applied to obtain vital information on the chief
characteristics of items ranging from electrical appliances to
machine parts such as screws and bolts, automobiles, and
computer parts such as chip. In addition, many environ-
mental problems involve physical, geographical, economi-
cal, and other characteristics which need to be estimated
prior to data analysis, model formulation, and predictions.
Studies related to the amount of rainfall received annually in
a flood-prone area, the quality of drinking water near an
industrial zone, the soil quality of an agricultural land, etc.
are some instances where estimation of mean, median,
variance, and other statistics is essential. Such information
can be collected via sample surveys [4, 6, 7, 9, 13].

Missing data is a universal occurrence in sample surveys,
leading to a decline in data quality and complications in
making inferences. It is pivotal for survey statisticians to
factor in the stochastic nature of incomplete data. +is
brings forth the question of what assumptions have to be
made or which techniques have to be employed to handle the
problem of ignorability of completeness mechanism. +e
mechanisms of missing data have been studied in detail in
[9, 13], among others. +ree missing data mechanisms are
mostly of interest in the survey literature, namely, missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). MCAR is said to occur
when data is missing randomly or by chance, MAR occurs
when the missingness does not depend on the variable under
study (which may be unobserved), but on some other
variables (which is fully observed), and MNAR occurs when
missingness depends on the variable under study.

Numerous statistical methods have been devised over
the years to overcome the problem of missing data. Sub-
sampling of nonrespondents in surveys via mail question-
naire was pioneered in [8]. Another commonly used method
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is imputation, in which the missing values are filled in by a
suitable function of the available values, to ensure the
structural completeness of the sample before analysis begins.
Popular imputation techniques include mean imputation,
regression imputation, hot deck imputation, cold deck
imputation, and nearest neighbor method. Imputation
techniques in the survey literature are from [3, 5, 14–21],
among others. Some recent works in the area of imputation
and estimation of population mean have been done in
[22–29] and others.

Information from an auxiliary variable can be utilized to
provide an improved estimate for population characteristics.
Such information may be readily available as secondary data
from previous surveys or census or may be collected during
the survey procedure at little to no additional cost. Some
examples of such auxiliary information include the lifetime
of a previous batch of bulbs when studying the life of a
current lot of bulbs, the speed of cars when studying the
mileage of cars, etc.

In this manuscript, a new exponential-cum-sine-type
hybrid imputation technique and corresponding point
estimator have been proposed for estimation of population
mean. Motivation for this estimator, its properties, and its
uses have been discussed in the subsequent sections. +e
manuscript is henceforth divided into the following sec-
tions: Section 2 introduces the sample structure and no-
tations used in the manuscript. Section 3 discusses some
conventional estimators of population mean. Section 4
discusses the proposed estimator, including its existence,
consistency, properties, and implementation in R. +e
simulation study has been presented in Section 5, the re-
sults and discussion in Section 6, and the conclusions in
Section 7.

2. Sample Structure and Notations Used

Let the character of interest be denoted by Y. We consider
the scenario in which complete information on a correlated
auxiliary variableX is available to the survey statisticians and
its population mean is known.

+e sample structure and the notations used henceforth
have been introduced in Table 1.

3. Some Conventional Estimators

Before the proposed estimator is introduced, it is important
to examine some existing estimators for population mean
and study their strengths and limitations. A few such esti-
mators have been discussed in this section.

+emean estimator is a simple and traditional estimator,
which makes use of the average of the responses to provide
an estimate of the population mean.+e ratio estimator tries
to make an improvement over the mean estimator by in-
corporating auxiliary information into a correlated variable.
Various other estimators that make innovative use of
auxiliary information have been proposed, for instance, the
estimator proposed in [30], regression-type estimators
proposed in [10], and exponential type estimators in [31],
among others.

+e structures of some of these estimators have been
given in Table 2, while the expressions for their respective
variances (V) or mean square errors (MSEs) have been given
in Table 3.

It is to be noted that most conventional estimators make
use of simple functional forms, such as linear combinations,
exponential functions, and chains. Combination of multiple
mathematical functions is rarely seen. +is can be attributed
to computational limitations associated with such functions.
However, with the advent of supercomputers and im-
provement in computational powers, such obstructions have
been eliminated. It is worth exploring whether combinations
of mathematical functions produce better estimates than
traditional estimators. +is has been the motivation behind
the construction of the proposed estimator.

Two such functions have been used, namely, the ex-
ponential and sine functions. Such particular functions were
selected based on their use in real-life situations. +e ex-
ponential function is usually used to model growth and
decay observed in nature, such as growth and decay of
microorganisms like bacteria, human population, spread of
pandemics, and compound interests. Sine function is
commonly utilized for the purpose of modeling natural
phenomena which are periodic in nature, such as sound
waves, light waves, tides, sunlight intensity, and average
temperature variations through the year, as well as ballistic
trajectories, electrical currents, and GPS locations.

4. Formulation of the Proposed Estimator

Let yi and xi be the values of Y and X, respectively, for the ith

unit in the population. +e following imputation method
may be suggested to deal with the problem of missing data:

y·i �

yi, if i ∈ R,

n

n − r
xi exp

sin xn( 􏼁 − sin xr( 􏼁

1 + sin xn( 􏼁 + sin xr( 􏼁
􏼢 􏼣 −

r

n − r
yr, if i ∈ R

c
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

+e point estimator under an imputation method is
given in

T �
1
n

􏽘
i∈S

y·i �
1
n

􏽘
i∈R

y·i + 􏽘
i∈Rc

y·i
⎡⎣ ⎤⎦. (2)

Using equation (2), under the imputation outlined in
equation (1), the expression for the point estimator of Y is
obtained as

T � yr exp
sin xn( 􏼁 − sin xr( 􏼁

1 + sin xn( 􏼁 + sin xr( 􏼁
􏼢 􏼣. (3)

4.1. Existence and Consistency of the Estimator. It is im-
portant to specify the domain of values for which an esti-
mator exists, so that survey statisticians or those working in
the field can determine whether an estimator can be rea-
sonably used in a practical scenario.
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+e given estimator consists of two major functions: the
trigonometrical function sin and the exponential function
exp. Both sin(x) and exp(x) exist in ∀x ∈ R, so y·i andT

exist in ∀x ∈ R.
Hence, the proposed estimator can be used for all real

values of the characters under study. For real-world sce-
narios, most, if not all, characters of interest take only real
values. For example, measurements such as length, breadth,
height, weight, diameter, currencies, and number of an item
do not take nonreal values. Hence, the proposed estimator
can be used in all practical scenarios.

It is to be noted that the structure of the estimator is
consistent for large sample approximations. As n⟶∞,
yr⟶ Y, xr⟶ X, xn⟶ X, and exp(0) � 1. Hence,
T⟶ Y.

4.2. Properties of the Proposed Estimator. +e “goodness” of
an estimator can be measured in terms of various properties.
Two such properties, namely, bias and mean squared error
(MSE), have been explored here.+e bias gives an idea about
the expected deviation from the true value of a parameter,

Table 1: Sample structure and notations.

Structure Size
Population N
Sample N
Respondents R
Nonrespondents N − r
Characteristic Notation
+e population mean of Y Y

+e population mean of X X

+e sample mean of Y based on the responding part of the sample yr

+e sample mean of X based on the responding part of the sample xr

+e sample means of X, respectively, based on the entire sample xn

+e correlation coefficient between X and Y ρ
+e population mean square of X S2X
+e population mean square of Y S2Y
+e coefficient of variation of X CX

+e coefficient of variation Y CY

Table 2: Structures of some well-known estimators.

Estimator Notation used Structure
Mean estimator ym yr

Ratio estimator yRAT yr(xn/xr)

Kadilar and Cingi [10] estimator A TKCA
(yr + b(X − xn)/xn)X

Kadilar and Cingi [10] estimator B TKCB
(yr + b(X − xr)/xr)X

Kadilar and Cingi [10] estimator C TKCC
(yr + b(xn − xn)/xr)X

Toutenberg and Srivastava [30] estimator TTSS yr + (r/n)(yr/xn)(xn − xr)

Singh et al. [31] TSMKK yr(xn/xr)exp[X − xr/X + xr]

Table 3: MSEs of some well-known estimators.

Estimator Variance (V) or mean square error (MSE)
ym V(ym) � θ1S2Y
yRAT MSE(yRAT) � θ2S2Y + θ3(S2Y + R2

1S
2
X − 2R1ρSYSX)

TKCA
MSE(TKCA

) � ((1/r) − (1/N))S2Y + ((1/n) − (1/N))S2X(R2
1 − B2)

TKCB
MSE(TKCB

) � ((1/r) − (1/N))(S2Y − BSYX + R2S2X)

TKCC
MSE(TKCC

) � ((1/r) − (1/N))S2Y + ((1/r) − (1/N))((R + B)2S2X − 2(R + B)SXY)

TTSS MSE(TTSS) � ((1/r) − (1/N))S2Y + Y
2
((1/r) − (1/n))(r/n)((r/n)C2

X − 2ρCYCX)

TSMKK
M(TSMKK) � Y

2
[((1/r) − (1/N))(C2

Y + (9/4)C2
X − 3ρCYCX) + 2((1/n) − (1/N))(ρCYCX − C2

X)]

Where R1 � R � (Y/X), B � SXY/S2X
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while MSE deals with the degree of spread. +e expressions
for the same have been derived under large sample as-
sumptions up to the first order of approximations. Some
transformations involving error terms have been used for
the purpose, indicated as follows:

yr � Y 1 + η0( 􏼁,

xr � X 1 + η1( 􏼁,

xn � X 1 + η2( 􏼁,

θ1 �
1
r

−
1
N

􏼒 􏼓,

θ2 �
1
n

−
1
N

􏼒 􏼓,

θ3 �
1
r

−
1
n

􏼒 􏼓.

(4)

+e error terms have the following expectations:

E η0( 􏼁 � E η1( 􏼁 � E η2( 􏼁 � 0,

E η20􏼐 􏼑 � θ1C
2
Y,

E η21􏼐 􏼑 � θ1C
2
X,

E η22􏼐 􏼑 � θ2C
2
X,

E η0η1( 􏼁 � θ1ρCYCX,

E η1η2( 􏼁 � θ2C
2
X,

E η0η2( 􏼁 � θ2ρCYCX.

(5)

To obtain the expressions for bias and MSE, in the first
step, algebraic expansion of the expression of the estimator
given in equation (3) is done, using the following Taylor’s
series:

(1) sin(x) � x − (x3/3!) + (x5/5!) − (x7/7!) − · · ·

(2) exp(x) � 1 + x + (x2/2!) + (x3/3!) + (x4/4!) + · · ·

(3) (1 + x)− 1 � 1 − x + x2 − x3 + · · ·

+e estimator takes the following form:

T � yr 1 + xn − xr + 2x
2
r − 2xnxr􏽨 􏽩. (6)

In the second step, the transformations in equation (4)
are applied to equation (6) to obtain the following form of
the estimator:

T � Y 1 + X η2 − η1( 􏼁 + η0η2X
2 η1 − η2 + η21 − η1η2 + η0η1 − η0η2􏼐 􏼑 + X η0η2 − η0η1( 􏼁􏼔 􏼕. (7)

Hence, T − Y � Y[X(η2 − η1) + η0η2X
2
(η1 − η2 + η21−

η1η2 +η0η1 − η0η2) + X(η0η2 − η0η1)].
Expectations taken on both sides and use of the expected

values of ηi, i � 0, 1, 2, yield the expectations for bias B(.)

and MSE (M(.)), obtained up to the first order of ap-
proximations of the estimators Ti, i � 1, 2, . . . , 6, as follows:

B(T) � E(T − Y) � Y 2X
2

− X􏼐 􏼑θ3ρCYCX − 2X
2θ2C

2
X􏼔 􏼕,

(8)

M(T) � E(T − Y)
2

� θ1S
2
Y + Y

2θ3 C
2
C
2
X + 2CρCYCX􏽨 􏽩,

(9)

where C � 2X
2

− X.

4.3. Implementation in R. In the current day and age, most
computations are carried out using a suitable software en-
vironment. +e following R [32] code snippet has been
developed to carry out the proposed imputation on a data set

of interest and calculate the value of the corresponding point
estimator:

#Import data of respondents from file
dfresp< − read.table (file.choose())
#Import data of nonrespondents from file
dfnonresp< − read.table (file.choose())
xrbar�mean (dfresp[, 1])
yrbar< − mean (dfresp[, 2])
xbarnonresp�mean (dfnonresp[, 1])
r� nrow (dfresp) #no. of respondents
nonresp� nrow (dfnonresp) #no. of nonrespondents
n� r+nonresp #sample size
xnbar�(r∗ xrbar + nonresp∗ xbarnonresp)/n
num� sin(xnbar) − sin(xrbar)
den� 1 + sin(xnbar)+sin(xrbar)
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#imputation
t< − c()
for (i in 1 : (n − r))
{
t[i]� n/(n − r)∗ x[i]∗ exp(num/den) − r/(n − r)∗ yrbar
}
#point estimation
est� yrbar∗ exp(num/den)

5. Simulation Study

Before an estimator can be used in practical scenarios, its
performance must be examined, in terms of its properties.
To this end, the bias of the estimator is calculated and the
MSE is compared with that of the contemporary estimators
given in Table 2 in terms of percentage relative efficiencies
(PREs).

+e PREs of the estimator with respect to the contem-
porary estimators are defined as follows:

PRE1 �
V ym( 􏼁

M(T)
× 100,

PRE2 �
M yRAT( 􏼁

M(T)
× 100,

PRE3 �
M TTSS( 􏼁

M(T)
× 100,

PRE4 �
M TSMKK( 􏼁

M(T)
× 100,

PRE5 �
M TKC1

􏼐 􏼑

M(T)
× 100,

PRE6 �
M TKC2

􏼐 􏼑

M(T)
× 100,

PRE7 �
M TKC3

􏼐 􏼑

M(T)
× 100,

(10)

where the expression for the MSE of the proposed estimator
T is given in equation (9), while that of the contemporary
estimators is given in Table 3.

Using R [32], an extensive simulation study has been
carried out on sufficiently large fictitious populations to
compute the bias and the PREs defined above. Data is
generated from three different probability distributions,
namely, normal and Gamma distributions (continuous
distributions) and Poisson distribution (discrete distribu-
tion). Some important properties of the distributions have
been summarized in Table 4. Such distributions are chosen
based on their occurrence in real-life situations.

Data from normal distribution is rampant in nature. It
can be used to model heights of individuals, test scores of
students, blood pressure, daily returns of any particular
stock, weights of items produced by a manufacturing

process, etc. Poisson distribution can be used to model the
probability that a given number of events occur in a
specific time interval, for example, the number of in-
surance claims filed per month, the number of network
failures occurring per week, and the number of bulbs
manufactured per minute. It also finds use by medical
statisticians, such as for estimating the number of births
that may be expected on a particular night, the number of
patients with an infectious disease arriving at a clinic
within a given hour, the number of mutations on a given
strand of DNA per time unit, etc. Gamma distribution can
be used for modeling wait time, reliability, service time in
queuing theory, etc. For example, it can be used to model
the amount of rainfall that accumulates in a given res-
ervoir, the flow of items through manufacturing as well as
distribution processes, the size of loan defaults, etc. +us,
these three distributions are chosen based on their im-
portance in practical scenarios.

It is seen through trial and error that the estimator
performs well when X and Y take small values and the
variation in X is greater than that in Y.

+e steps of the simulation are as follows:

(1) +e sizes of the population, the sample, and the
responding part of the sample are defined. For the
purpose of the study, sufficiently large values of
N � 100000, n � 40000, and r � 35000 have been
chosen.

(2) +e parameters of the population are defined.
(3) Simulation is conducted for various values of ρ. For

the purpose of the study, ρ in the range (0.1, 0.9); i.e.,
positively correlated variable X is considered.

+e results of the simulation study related to the PREs
have been presented in Tables 5–11, while the biases have
been presented in Table 12.

6. Results and Discussion

+e simulation study enables us to study the behavior of the
proposed estimator under various scenarios involving var-
ious values of parameters. +e chief conclusions are as
follows:

(1) From the values of PRE1 in Table 5, it is seen that the
proposed estimator is more efficient than ym for all
values of ρ for normal data and for ρ ∈ (0.2, 0.9) for
Gamma and Poisson data for the various values of
response rates.

(2) It is seen that the proposed estimator performs better
than yRAT for all values of ρ for normal and Gamma
data and for ρ ∈ (0.1, 0.8) for Poisson data for the
various values of response rates from the values of
PRE2 in Table 6.

(3) From the values of PRE3 in Table 7, it is seen that the
proposed estimator dominates TTSS for all values of ρ
for normal data and for ρ ∈ (0.1, 0.7) for Gamma
and Poisson data for the various values of response
rates.
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(4) +e values of PRE4 in Table 8 show that the proposed
estimator is more efficient than TSMKK for all values
of ρ for normal data and for ρ ∈ (0.1, 0.7) for Gamma
and Poisson data for the various values of response
rates.

(5) In Table 9, the values of PRE5 show that the proposed
estimator performs better than TKCA

for all values of
ρ and for the various values of response rates for
normal, Gamma, and Poisson data.

Table 4: Some properties of normal, Poisson, and Gamma distributions.

Distribution Normal
Parameters μ, σ2
Pdf f(x) � (1/σ

���
2π

√
)exp[− ((x − μ)2/2σ2)], − ∞<x<∞

Mean E(X) μ
Variance V(X) σ2

Distribution Poisson
Parameter λ> 0
Pmf f(x) � λxe− λ/x!

Mean E(X) λ
Variance V(X) λ
Distribution Gamma
Parameters α, λ

Pdf f(x) �
λαx

α− 1
e

− λx/Γ(x), if x> 0,

0, otherwise
􏼨

Mean E(X) α/λ
Variance V(X) α/λ2

Table 5: Values of PRE1 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for
data generated from normal, Gamma, and Poisson distributions.

ρ
PRE1 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 100.134 4 100.110 6 100.085 5 100.058 7 100.030 3
0.2 101.4571 101.196 9 100.922 4 100.632 3 100.325 4
0.3 102.640 5 102.164 5 101.664 4 101.138 3 100.584 3
0.4 103.563 8 102.916 5 102.238 9 101.528 5 100.7831
0.5 104.411 4 103.604 8 102.762 9 101.883 2 100.963 2
0.6 106.314 4 105.142 8 103.9281 102.667 8 101.359 4
0.7 108.313 4 106.747 4 105.1351 103.474 6 101.763 7
0.8 107.626 8 106.197 5 104.722 5 103.199 5 101.626 2
0.9 109.266 4 107.508 4 105.704 6 103.853 2 101.952 4

When data is generated from Gamma distribution
0.1 99.298 0 99.421 1 99.5521 99.691 6 99.840 6
0.2 99.950 0 99.958 9 99.968 2 99.9781 99.988 7
0.3 100.587 7 100.483 5 100.373 2 100.256 3 100.1321
0.4 101.385 6 101.138 3 100.877 3 100.601 5 100.309 5
0.5 102.4251 101.988 6 101.529 7 101.046 7 100.537 5
0.6 103.616 2 102.959 2 102.271 4 101.550 6 100.794 3
0.7 105.340 6 104.3571 103.333 8 102.268 4 101.1581
0.8 106.962 2 105.664 0 104.321 1 102.931 2 101.491 7
0.9 109.279 9 107.5191 105.712 6 103.858 5 101.955 0

When data is generated from Poisson distribution
0.1 99.9701 99.975 3 99.980 9 99.986 9 99.993 2
0.2 100.248 2 100.204 3 100.157 8 100.108 4 100.055 9
0.3 100.602 0 100.495 2 100.382 2 100.262 5 100.135 3
0.4 100.937 7 100.770 9 100.594 7 100.4081 100.210 2
0.5 101.536 9 101.262 3 100.972 6 100.666 6 100.343 0
0.6 101.946 9 101.597 9 101.230 2 100.842 6 100.4331
0.7 102.653 3 102.174 9 101.672 3 101.143 7 100.5871
0.8 103.225 6 102.641 4 102.028 9 101.3861 100.710 6
0.9 104.123 4 103.371 2 102.585 2 101.7631 100.902 3

Table 6: Values of PRE2 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for
data generated from normal, Gamma, and Poisson distributions.

ρ
PRE2 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 769.433 6 651.167 6 525.7951 392.656 0 251.005 3
0.2 299.679 7 264.020 4 226.399 2 186.649 7 144.586 0
0.3 274.230 3 242.818 2 209.819 3 175.1101 138.554 2
0.4 496.315 6 424.337 8 348.974 3 269.980 6 187.087 8
0.5 365.407 7 316.882 7 266.229 3 213.304 3 157.951 6
0.6 161.467 9 150.062 8 138.238 0 125.969 8 113.233 0
0.7 194.9341 177.050 6 158.639 9 139.678 2 120.140 5
0.8 142.841 8 134.812 9 126.527 2 117.972 2 109.134 6
0.9 157.471 7 146.5681 135.380 7 123.898 2 112.108 8

When data is generated from Gamma distribution
0.1 167.446 9 155.613 4 143.030 6 129.625 0 115.313 2
0.2 163.157 7 152.016 8 140.198 6 127.639 3 114.266 9
0.3 159.970 7 149.336 5 138.081 8 126.150 7 113.480 4
0.4 151.366 5 142.198 7 132.523 9 122.2991 111.475 8
0.5 145.333 2 137.174 2 128.596 2 119.566 4 110.047 9
0.6 137.744 9 130.887 0 123.707 7 116.184 2 108.290 9
0.7 129.0671 123.7141 118.144 9 112.346 0 106.302 9
0.8 113.2161 110.751 8 108.202 6 105.564 2 102.831 7
0.9 100.8421 100.682 3 100.518 4 100.3501 100.177 4

When data is generated from Poisson distribution
0.1 139.707 9 132.702 4 125.271 4 117.3751 108.968 4
0.2 136.595 4 130.124 2 123.267 0 115.988 2 108.247 6
0.3 132.307 4 126.577 8 120.514 3 114.086 8 107.261 4
0.4 129.075 8 123.905 2 118.439 9 112.653 9 106.518 2
0.5 122.248 5 118.272 8 114.079 5 109.650 3 104.964 8
0.6 117.655 7 114.490 2 111.156 5 107.640 7 103.927 6
0.7 109.955 8 108.160 7 106.274 9 104.291 6 102.202 8
0.8 104.3631 103.572 8 102.744 4 101.874 9 100.961 2
0.9 93.266 0 94.494 4 95.778 0 97.120 6 98.526 5
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Table 7: Values of PRE3 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
PRE3 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 470.6541 448.598 9 405.082 4 335.811 6 235.944 6
0.2 205.929 6 200.477 9 188.554 3 168.842 5 139.8731
0.3 188.801 9 184.937 7 175.366 8 158.912 2 134.271 4
0.4 303.819 3 294.193 0 271.676 3 233.719 8 177.522 6
0.5 229.191 9 224.740 8 211.484 9 187.6201 151.176 6
0.6 120.640 2 122.286 4 121.653 5 118.1561 111.164 6
0.7 133.2641 135.276 3 133.806 8 128.0301 117.071 0
0.8 103.726 6 108.071 5 110.493 9 110.391 4 107.121 9
0.9 105.568 7 111.201 2 114.246 5 113.939 4 109.473 9

When data is generated from Gamma distribution
0.1 137.107 3 135.015 2 130.737 8 123.8271 113.774 4
0.2 134.0241 132.235 6 128.394 0 122.072 7 112.7901
0.3 131.435 3 129.955 5 126.514 3 120.695 9 112.033 5
0.4 125.754 8 124.791 5 122.129 5 117.396 2 110.1751
0.5 121.1861 120.746 3 118.779 8 114.9341 108.818 8
0.6 115.3791 115.641 5 114.583 8 111.873 7 107.146 3
0.7 108.611 5 109.731 4 109.758 0 108.3771 105.247 9
0.8 97.570 0 99.957 8 101.676 9 102.455 0 102.000 3
0.9 88.167 8 91.827 8 95.109 0 97.750 4 99.477 3

When data is generated from Poisson distribution
0.1 121.737 3 120.509 3 118.000 0 113.948 4 108.059 8
0.2 119.469 0 118.492 9 116.324 8 112.714 2 107.379 0
0.3 116.3871 115.749 6 114.042 9 111.031 3 106.449 9
0.4 113.897 9 113.5651 112.251 2 109.728 2 105.740 3
0.5 108.9561 109.183 7 108.621 6 107.062 5 104.275 0
0.6 105.457 8 106.119 4 106.113 7 105.242 8 103.286 8
0.7 99.941 6 101.235 9 102.075 0 102.282 5 101.6631
0.8 95.626 7 97.480 5 99.022 0 100.082 7 100.477 0
0.9 87.555 7 90.392 2 93.207 4 95.855 8 98.178 2

Table 8: Values of PRE4 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
PRE4 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 1916.7801 1674.549 3 1417.763 3 1145.069 6 854.942 7
0.2 647.902 5 569.861 9 487.527 8 400.535 9 308.479 5
0.3 582.505 4 509.8201 433.462 7 353.148 0 268.559 9
0.4 1197.061 4 1032.4981 860.1941 679.590 3 490.072 0
0.5 844.349 3 725.848 4 602.149 8 472.9041 337.729 5
0.6 281.945 8 244.044 6 204.748 7 163.979 6 121.653 0
0.7 380.226 8 322.547 7 263.1681 202.011 5 138.996 9
0.8 240.640 9 203.163 7 164.487 8 124.554 8 83.302 3
0.9 288.721 7 238.802 4 187.583 5 135.013 8 81.038 9

When data is generated from Gamma distribution
0.1 284.1391 259.915 0 234.157 0 206.714 6 177.4171
0.2 272.979 2 249.299 4 224.179 9 197.485 3 169.062 6
0.3 265.010 4 241.396 3 216.404 5 189.910 7 161.775 4
0.4 242.326 3 220.621 7 197.717 2 173.510 2 147.886 6
0.5 226.876 8 205.793 4 183.627 6 160.294 0 135.697 8
0.6 207.659 0 187.420 3 166.233 6 144.030 8 120.736 8

Computational Intelligence and Neuroscience 7



(6) From the values of PRE6 in Table 10, it is seen that
the proposed estimator dominates TKCB

for all values
of ρ and for the various values of response rates for
normal, Gamma, and Poisson data.

(7) It is seen that the proposed estimator is more ef-
ficient than TKCC

for all values of ρ and for the
various values of response rates for normal,

Gamma, and Poisson data from the values of PRE7
in Table 11.

(8) From Table 12, it is seen that the estimator is neg-
atively biased. +e bias is negligible, being of the
order 10− 5 and 10− 7 for various values of the pa-
rameter ρ and for various response rates, and hence,
bias correction is not needed.

Table 8: Continued.

ρ
PRE4 when response rate is

75% 80% 85% 90% 95%

0.7 185.522 7 166.100 6 145.893 8 124.853 9 102.9281
0.8 144.503 8 128.566 4 112.080 4 95.017 0 77.345 5
0.9 112.6831 98.642 6 84.237 3 69.452 7 54.273 7

When data is generated from Poisson distribution
0.1 208.198 7 193.633 0 178.182 8 161.765 0 144.286 0
0.2 200.344 9 186.282 4 171.381 0 155.563 5 138.742 6
0.3 189.4851 176.179 2 162.097 7 147.170 8 131.320 0
0.4 181.498 6 168.589 7 154.945 0 140.499 7 125.181 2
0.5 164.227 9 152.5221 140.175 9 127.1351 113.339 6
0.6 152.881 1 141.837 5 130.206 9 117.941 2 104.987 0
0.7 133.280 9 123.7061 113.6481 103.069 4 91.928 3
0.8 119.479 0 110.693 3 101.4831 91.816 9 81.6601
0.9 91.544 9 84.914 0 77.9851 70.737 8 63.149 4

Table 9: Values of PRE5 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
PRE5 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 1361.451 1 1484.757 6 1615.473 2 1754.286 6 1901.974 3
0.2 523.041 9 562.926 2 605.004 8 649.463 8 696.511 2
0.3 504.883 7 541.794 7 580.570 3 621.355 7 664.311 1
0.4 998.053 7 1078.9631 1163.678 3 1252.474 2 1345.653 0
0.5 769.279 0 828.016 2 889.329 7 953.392 7 1020.394 5
0.6 341.143 5 360.152 7 379.861 5 400.309 2 421.5381
0.7 458.557 7 485.768 8 513.782 2 542.633 9 572.3621
0.8 354.110 3 373.251 8 393.005 4 413.401 2 434.470 8
0.9 434.663 4 459.058 3 484.088 3 509.778 4 536.155 3

When data is generated from Gamma distribution
0.1 226.951 0 239.763 0 253.386 3 267.900 4 283.395 8
0.2 227.539 8 240.069 8 253.361 5 267.486 8 282.526 4
0.3 230.863 6 243.383 3 256.633 4 270.679 9 285.596 7
0.4 224.737 5 236.253 2 248.405 5 261.248 9 274.843 9
0.5 226.091 9 237.201 0 248.880 3 261.1751 274.1351
0.6 226.830 4 237.395 3 248.455 0 260.045 2 272.204 9
0.7 227.996 6 237.780 7 247.9601 258.559 3 269.604 7
0.8 213.751 3 221.499 4 229.514 2 237.809 7 246.400 8
0.9 207.722 6 213.871 4 220.180 0 226.654 7 233.3021

When data is generated from Poisson distribution
0.1 177.014 5 184.577 7 192.6001 201.124 8 210.200 7
0.2 176.981 0 184.4231 192.3091 200.679 9 209.581 7
0.3 176.082 6 183.287 9 190.913 3 198.996 4 207.579 9
0.4 176.690 9 183.813 5 191.342 2 199.312 6 207.764 7
0.5 174.141 1 180.768 9 187.759 3 195.142 9 202.953 8
0.6 173.116 4 179.477 2 186.176 0 193.240 6 200.701 8
0.7 167.633 3 173.193 0 179.033 2 185.175 9 191.645 0
0.8 165.091 7 170.188 2 175.530 9 181.138 2 187.0301
0.9 153.8281 157.554 6 161.448 6 165.521 6 169.786 3
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Table 10: Values of PRE6 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
PRE6 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 2062.182 7 2061.693 8 2061.175 5 2060.6251 2060.039 5
0.2 757.255 6 755.313 4 753.264 3 751.099 3 748.808 2
0.3 728.3521 724.973 9 721.425 0 717.692 2 713.760 8
0.4 1494.992 5 1485.649 2 1475.866 3 1465.612 3 1454.8521
0.5 1138.649 9 1129.854 3 1120.672 8 1111.079 6 1101.046 4
0.6 471.6041 466.406 9 461.018 4 455.428 0 449.623 9
0.7 653.137 9 643.694 4 633.972 5 623.959 7 613.642 6
0.8 491.045 6 484.524 4 477.794 5 470.845 9 463.667 7
0.9 615.439 5 605.537 5 595.377 6 584.949 8 574.243 2

When data is generated from Gamma distribution
0.1 297.869 3 298.238 8 298.631 7 299.050 2 299.4971
0.2 298.423 0 298.449 3 298.477 2 298.506 9 298.538 5
0.3 303.239 0 302.924 8 302.592 3 302.239 8 301.865 5
0.4 293.266 4 292.551 0 291.796 2 290.998 4 290.153 9
0.5 294.795 7 293.539 4 292.218 7 290.828 4 289.362 9
0.6 295.282 7 293.410 3 291.450 2 289.396 0 287.241 0
0.7 296.138 8 293.373 9 290.497 3 287.5021 284.380 7
0.8 273.078 6 269.764 2 266.335 7 262.787 2 259.112 2
0.9 262.412 9 258.184 8 253.846 9 249.394 7 244.823 8

When data is generated from Poisson distribution
0.1 219.817 0 219.828 6 219.841 0 219.8541 219.868 0
0.2 219.610 4 219.514 2 219.412 4 219.304 2 219.189 2
0.3 218.016 2 217.784 9 217.540 0 217.280 5 217.004 9
0.4 218.776 0 218.414 6 218.032 6 217.628 2 217.199 3
0.5 214.476 7 213.896 6 213.284 7 212.638 5 211.954 8
0.6 212.655 0 211.926 9 211.160 0 210.351 3 209.497 3
0.7 203.733 4 202.783 9 201.786 5 200.737 4 199.632 6
0.8 199.461 7 198.332 7 197.149 2 195.9071 194.601 9
0.9 181.441 7 180.131 0 178.761 4 177.328 8 175.828 7

Table 11: Values of PRE7 when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
PRE7 when response rate is

75% 80% 85% 90% 95%

When data is generated from normal distribution
0.1 2062.182 7 2061.693 8 2061.175 5 2060.6251 2060.039 5
0.2 757.255 6 755.313 4 753.264 3 751.099 3 748.808 2
0.3 728.3521 724.973 9 721.425 0 717.692 2 713.760 8
0.4 1494.992 5 1485.649 2 1475.866 3 1465.612 3 1454.8521
0.5 1138.649 9 1129.854 3 1120.672 8 1111.079 6 1101.046 4
0.6 471.6041 466.406 9 461.018 4 455.428 0 449.623 9
0.7 653.137 9 643.694 4 633.972 5 623.959 7 613.642 6
0.8 491.045 6 484.524 4 477.794 5 470.845 9 463.667 7
0.9 615.439 5 605.537 5 595.377 6 584.949 8 574.243 2

When data is generated from Gamma distribution
0.1 297.869 3 298.238 8 298.631 7 299.050 2 299.4971
0.2 298.423 0 298.449 3 298.477 2 298.506 9 298.538 5
0.3 303.239 0 302.924 8 302.592 3 302.239 8 301.865 5
0.4 293.266 4 292.551 0 291.796 2 290.998 4 290.153 9
0.5 294.795 7 293.539 4 292.218 7 290.828 4 289.362 9
0.6 295.282 7 293.410 3 291.450 2 289.396 0 287.241 0
0.7 296.138 8 293.373 9 290.497 3 287.5021 284.380 7
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Table 11: Continued.

ρ
PRE7 when response rate is

75% 80% 85% 90% 95%

0.8 273.078 6 269.764 2 266.335 7 262.787 2 259.112 2
0.9 262.412 9 258.184 8 253.846 9 249.394 7 244.823 8

When data is generated from Poisson distribution
0.1 219.817 0 219.828 6 219.841 0 219.8541 219.868 0
0.2 219.610 4 219.514 2 219.412 4 219.304 2 219.189 2
0.3 218.016 2 217.784 9 217.540 0 217.280 5 217.004 9
0.4 218.776 0 218.414 6 218.032 6 217.628 2 217.199 3
0.5 214.476 7 213.896 6 213.284 7 212.638 5 211.954 8
0.6 212.655 0 211.926 9 211.160 0 210.351 3 209.497 3
0.7 203.733 4 202.783 9 201.786 5 200.737 4 199.632 6
0.8 199.461 7 198.332 7 197.149 2 195.9071 194.601 9
0.9 181.441 7 180.131 0 178.761 4 177.328 8 175.828 7

Table 12: Values of bias when ρ ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

ρ
Bias of the proposed estimator when response rate is

75% 80% 85% 90% 95%
When data is generated from normal distribution

0.1 − 0.000 095 000 0 − 0.000 092 000 0 − 0.000 090 000 0 − 0.000 088 000 0 − 0.000 086 000 0
0.2 − 0.000 093 000 0 − 0.000 088 000 0 − 0.000 083 000 0 − 0.000 078 000 0 − 0.000 075 000 0
0.3 − 0.000121 000 0 − 0.000114 000 0 − 0.000108 000 0 − 0.000102 000 0 − 0.000 097 000 0
0.4 − 0.000114 000 0 − 0.000104 000 0 − 0.000 096 000 0 − 0.000 089 000 0 − 0.000 082 000 0
0.5 − 0.000126 000 0 − 0.000113 000 0 − 0.000101 000 0 − 0.000 091 000 0 − 0.000 082 000 0
0.6 − 0.000135 000 0 − 0.000120 000 0 − 0.000106 000 0 − 0.000 094 000 0 − 0.000 083 000 0
0.7 − 0.000143 000 0 − 0.000126 000 0 − 0.000111 000 0 − 0.000 098 000 0 − 0.000 086 000 0
0.8 − 0.000154 000 0 − 0.000133 000 0 − 0.000115 000 0 − 0.000 099 000 0 − 0.000 084 000 0
0.9 − 0.000159 000 0 − 0.000136 000 0 − 0.000115 000 0 − 0.000 097 000 0 − 0.000 081 000 0

When data is generated from Gamma distribution
0.1 − 0.000 030 580 0 − 0.000 030 510 0 − 0.000 030 460 0 − 0.000 030 400 0 − 0.000 030 360 0
0.2 − 0.000 026 300 0 − 0.000 026150 0 − 0.000 026 020 0 − 0.000 025 900 0 − 0.000 025 800 0
0.3 − 0.000 030 400 0 − 0.000 030190 0 − 0.000 030 010 0 − 0.000 029 840 0 − 0.000 029 690 0
0.4 − 0.000 027 760 0 − 0.000 027 420 0 − 0.000 027110 0 − 0.000 026 840 0 − 0.000 026 600 0
0.5 − 0.000 027 550 0 − 0.000 027110 0 − 0.000 026 730 0 − 0.000 026 390 0 − 0.000 026 080 0
0.6 − 0.000 032 820 0 − 0.000 032170 0 − 0.000 031 590 0 − 0.000 031 080 0 − 0.000 030 620 0
0.7 − 0.000 029 350 0 − 0.000 028 530 0 − 0.000 027 810 0 − 0.000 027170 0 − 0.000 026 590 0
0.8 − 0.000 031 190 0 − 0.000 030150 0 − 0.000 029 230 0 − 0.000 028 420 0 − 0.000 027 690 0
0.9 − 0.000 034 810 0 − 0.000 033 330 0 − 0.000 032 030 0 − 0.000 030 880 0 − 0.000 029 850 0

When data is generated from Poisson distribution
0.1 − 0.000 000 403 0 − 0.000 000 395 0 − 0.000 000 387 0 − 0.000 000 381 0 − 0.000 000 375 0
0.2 − 0.000 000 447 0 − 0.000 000 430 0 − 0.000 000 415 0 − 0.000 000 402 0 − 0.000 000 390 0
0.3 − 0.000 000 455 0 − 0.000 000 431 0 − 0.000 000 411 0 − 0.000 000 392 0 − 0.000 000 376 0
0.4 − 0.000 000 510 0 − 0.000 000 473 0 − 0.000 000 440 0 − 0.000 000 411 0 − 0.000 000 385 0
0.5 − 0.000 000 552 0 − 0.000 000 503 0 − 0.000 000 460 0 − 0.000 000 421 0 − 0.000 000 387 0
0.6 − 0.000 000 632 0 − 0.000 000 568 0 − 0.000 000 511 0 − 0.000 000 461 0 − 0.000 000 416 0
0.7 − 0.000 000 703 0 − 0.000 000 620 0 − 0.000 000 547 0 − 0.000 000 483 0 − 0.000 000 425 0
0.8 − 0.000 000 777 0 − 0.000 000 675 0 − 0.000 000 585 0 − 0.000 000 505 0 − 0.000 000 434 0
0.9 − 0.000 000 871 0 − 0.000 000 746 0 − 0.000 000 635 0 − 0.000 000 536 0 − 0.000 000 448 0
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7. Conclusion

+e following trend in the PREs is noticed from the tables:
PRE1 increases with the increase in value of ρ, while
PRE2,PRE3, PRE4, PRE5,PRE6, and PRE7 decrease with the
increase in value of ρ.

+e proposed estimator is seen to be consistent, exists for
all real values of parameters, has negligible bias, and is more
efficient than 7 other contemporary estimators. Hence, the
proposed estimator may be recommended for use in field
work.
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