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In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when
conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias
and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has
been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results

have been summarized, and discussion regarding real-life applications of the estimator follows.

1. Introduction

The impracticality of measuring the entire population for
any realistic project due to budgetary, time, or other con-
straints makes sampling indispensible for any field of study
[1-12]. The widespread applications of acceptance sampling
in various industries for manufacturing and other processes
have been noted for a considerable period of time. Sampling
can also be applied to obtain vital information on the chief
characteristics of items ranging from electrical appliances to
machine parts such as screws and bolts, automobiles, and
computer parts such as chip. In addition, many environ-
mental problems involve physical, geographical, economi-
cal, and other characteristics which need to be estimated
prior to data analysis, model formulation, and predictions.
Studies related to the amount of rainfall received annually in
a flood-prone area, the quality of drinking water near an
industrial zone, the soil quality of an agricultural land, etc.
are some instances where estimation of mean, median,
variance, and other statistics is essential. Such information
can be collected via sample surveys [4, 6, 7, 9, 13].

Missing data is a universal occurrence in sample surveys,
leading to a decline in data quality and complications in
making inferences. It is pivotal for survey statisticians to
factor in the stochastic nature of incomplete data. This
brings forth the question of what assumptions have to be
made or which techniques have to be employed to handle the
problem of ignorability of completeness mechanism. The
mechanisms of missing data have been studied in detail in
[9, 13], among others. Three missing data mechanisms are
mostly of interest in the survey literature, namely, missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). MCAR is said to occur
when data is missing randomly or by chance, MAR occurs
when the missingness does not depend on the variable under
study (which may be unobserved), but on some other
variables (which is fully observed), and MNAR occurs when
missingness depends on the variable under study.

Numerous statistical methods have been devised over
the years to overcome the problem of missing data. Sub-
sampling of nonrespondents in surveys via mail question-
naire was pioneered in [8]. Another commonly used method
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is imputation, in which the missing values are filled in by a
suitable function of the available values, to ensure the
structural completeness of the sample before analysis begins.
Popular imputation techniques include mean imputation,
regression imputation, hot deck imputation, cold deck
imputation, and nearest neighbor method. Imputation
techniques in the survey literature are from [3, 5, 14-21],
among others. Some recent works in the area of imputation
and estimation of population mean have been done in
[22-29] and others.

Information from an auxiliary variable can be utilized to
provide an improved estimate for population characteristics.
Such information may be readily available as secondary data
from previous surveys or census or may be collected during
the survey procedure at little to no additional cost. Some
examples of such auxiliary information include the lifetime
of a previous batch of bulbs when studying the life of a
current lot of bulbs, the speed of cars when studying the
mileage of cars, etc.

In this manuscript, a new exponential-cum-sine-type
hybrid imputation technique and corresponding point
estimator have been proposed for estimation of population
mean. Motivation for this estimator, its properties, and its
uses have been discussed in the subsequent sections. The
manuscript is henceforth divided into the following sec-
tions: Section 2 introduces the sample structure and no-
tations used in the manuscript. Section 3 discusses some
conventional estimators of population mean. Section 4
discusses the proposed estimator, including its existence,
consistency, properties, and implementation in R. The
simulation study has been presented in Section 5, the re-
sults and discussion in Section 6, and the conclusions in
Section 7.

2. Sample Structure and Notations Used

Let the character of interest be denoted by Y. We consider
the scenario in which complete information on a correlated
auxiliary variable X is available to the survey statisticians and
its population mean is known.

The sample structure and the notations used henceforth
have been introduced in Table 1.

3. Some Conventional Estimators

Before the proposed estimator is introduced, it is important
to examine some existing estimators for population mean
and study their strengths and limitations. A few such esti-
mators have been discussed in this section.

The mean estimator is a simple and traditional estimator,
which makes use of the average of the responses to provide
an estimate of the population mean. The ratio estimator tries
to make an improvement over the mean estimator by in-
corporating auxiliary information into a correlated variable.
Various other estimators that make innovative use of
auxiliary information have been proposed, for instance, the
estimator proposed in [30], regression-type estimators
proposed in [10], and exponential type estimators in [31],
among others.
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The structures of some of these estimators have been
given in Table 2, while the expressions for their respective
variances (V) or mean square errors (MSEs) have been given
in Table 3.

It is to be noted that most conventional estimators make
use of simple functional forms, such as linear combinations,
exponential functions, and chains. Combination of multiple
mathematical functions is rarely seen. This can be attributed
to computational limitations associated with such functions.
However, with the advent of supercomputers and im-
provement in computational powers, such obstructions have
been eliminated. It is worth exploring whether combinations
of mathematical functions produce better estimates than
traditional estimators. This has been the motivation behind
the construction of the proposed estimator.

Two such functions have been used, namely, the ex-
ponential and sine functions. Such particular functions were
selected based on their use in real-life situations. The ex-
ponential function is usually used to model growth and
decay observed in nature, such as growth and decay of
microorganisms like bacteria, human population, spread of
pandemics, and compound interests. Sine function is
commonly utilized for the purpose of modeling natural
phenomena which are periodic in nature, such as sound
waves, light waves, tides, sunlight intensity, and average
temperature variations through the year, as well as ballistic
trajectories, electrical currents, and GPS locations.

4. Formulation of the Proposed Estimator

Let y; and x; be the values of Y and X, respectively, for the it
unit in the population. The following imputation method
may be suggested to deal with the problem of missing data:

Yis ifi € R,

Yi= ” [
X; eXp

y,, ifieR.
(1)

The point estimator under an imputation method is
given in

sin(x,,) — sin (%,) }_ r

L+sin(x,) +sin(x,)| n-r

1 1
T=;Z)’-i=;|:zy~i+zy-i]- (2)

ieS ieR ieR¢

Using equation (2), under the imputation outlined in
equation (1), the expression for the point estimator of Y is
obtained as

sin (%,) — sin (%) ] (3)

T=Yy .
Jr exp[l +sin(x,) + sin(X,)

4.1. Existence and Consistency of the Estimator. It is im-
portant to specify the domain of values for which an esti-
mator exists, so that survey statisticians or those working in
the field can determine whether an estimator can be rea-
sonably used in a practical scenario.
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TaBLE 1: Sample structure and notations.

Structure Size
Population N
Sample N
Respondents R
Nonrespondents N-r
Characteristic Notation
The population mean of Y Y
The population mean of X X
The sample mean of Y based on the responding part of the sample ¥,
The sample mean of X based on the responding part of the sample X,
The sample means of X, respectively, based on the entire sample X,
The correlation coefficient between X and Y P
The population mean square of X S%
The population mean square of Y Sy
The coefficient of variation of X Cy
The coefficient of variation Y Cy
TaBLE 2: Structures of some well-known estimators.
Estimator Notation used Structure
Mean estimator Vi Y
Ratio estimator VRAT ¥, (X,/%,)
Kadilar and Cingi [10] estimator A Ty, 7, +b(X -%,)/x,)X
Kadilar and Cingi [10] estimator B KCy (7, +b(X -%x,)/x,)X
Kadilar and Cingi [10] estimator C KCe ¥, +b(x,-%x,)/x,)X

Toutenberg and Srivastava [30] estimator
Singh et al. [31]

Torss ¥y, + (r/n)(¥,/x,) (X, - X,)

Tsmrk ¥, (%,/%,)exp[X - X,/X + X,]

TaBLE 3: MSEs of some well-known estimators.

Estimator Variance (V) or mean square error (MSE)
Ym V(3,,)=0,Sy
VRAT MSE (Jrat) = 60,55 + 05 (S§ + RiS% - 2R, pSyS)
Tkc, MSE(Tgc,) = (1/r) - (1/N))SE + ((1/n) — (1/N))S% (R? — B?)
Tec, MSE(TKC ) = ((1/r) = (1/N)) (S} - BSyx + R*S%)
ke, MSE (Tyc,) = (1) = (1IN)S3, + (1) = (UN) (R + B) s2 ~2(R+B)Syy)
Trgs MSE(TTSS) = ((1/r) - (I/N))S2 +Y2 ((1r) - (1/n))(r/n)((r/n)C2 -2pCyCyx)

M(T ) =
Tk SMKK

[((l/r) - (/N)(C} + (9/4)C2

3pCyCy) + 2((1/n) = (1/N)) (pCyCx — C%)]

Where R, = (Y/Y), B = Syy/S%

The given estimator consists of two major functions: the
trigonometrical function sin and the exponential function
exp. Both sin(x) and exp(x) exist in Vx € R, so y;andT
exist in Vx € R.

Hence, the proposed estimator can be used for all real
values of the characters under study. For real-world sce-
narios, most, if not all, characters of interest take only real
values. For example, measurements such as length, breadth,
height, weight, diameter, currencies, and number of an item
do not take nonreal values. Hence, the proposed estimator
can be used in all practical scenarios.

It is to be noted that the structure of the estimator is
consistent for large sample approximations. As n — oo,
¥, —7Y, X, — X, %, — X, and exp(0) = 1. Hence,
T —Y.

4.2. Properties of the Proposed Estimator. The “goodness” of
an estimator can be measured in terms of various properties.
Two such properties, namely, bias and mean squared error
(MSE), have been explored here. The bias gives an idea about
the expected deviation from the true value of a parameter,



while MSE deals with the degree of spread. The expressions
for the same have been derived under large sample as-
sumptions up to the first order of approximations. Some
transformations involving error terms have been used for
the purpose, indicated as follows:

yr = Y(l + 7/0)’

Er = 7(1 + ’71)’

xn = X(l + ’72)’

0 =(;-%) (4)
r N
1 1

%=(,v)

The error terms have the following expectations:
E(ny) = E(m) = E(n,) =0,
E(r?) = 6,C2,

E(n) = 6,C%,

E(r2) = 6,C2 (5)
E(nom,) = 6,pCyCy,
E(mn,) = 92C§(’
E(1,) = 0,pCyCyx.
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To obtain the expressions for bias and MSE, in the first
step, algebraic expansion of the expression of the estimator
given in equation (3) is done, using the following Taylor’s
series:

(1) sin(x) = x — (x3/3!) + (x°/5!) = (x7/7)) — -+

(2) exp(x) =1 +x+ (x*/21) + (x3/3) + (x*/4!) +---

B) 1+x) ' =1l-x+x2-x>+---

The estimator takes the following form:

T=7,[1+%,-X, +2% - 2%,%,]|. (6)

In the second step, the transformations in equation (4)
are applied to equation (6) to obtain the following form of
the estimator:

— J— _2 J—
T=Y|1+X(n, =) +1mX (1 =1+ 15 =tz + 1oy = Moz) + X (672 = 1oy |. (7)

Hence, T-Y =Y[X(n,~m)+ngm,X (i, — 1y + 1=

Mty +oty = Motla) + X (Mot = Moty)]-
Expectations taken on both sides and use of the expected

values of #;,i =0, 1,2, yield the expectations for bias B(.)
and MSE (M (.)), obtained up to the first order of ap-
proximations of the estimators T},i = 1,2,...,6, as follows:

B(T) = E(T-Y) = ?[(272 ~X)0,pCy C - zizezc&],
(8)

M(T) = E(T -Y)* = 6,8}, + Y 6;[C°C¥ +2CpCyCy ],
9)
where C = 2X° - X.

4.3. Implementation in R. In the current day and age, most
computations are carried out using a suitable software en-
vironment. The following R [32] code snippet has been
developed to carry out the proposed imputation on a data set

of interest and calculate the value of the corresponding point
estimator:

#Import data of respondents from file
dfresp < —read.table (file.choose())

#Import data of nonrespondents from file
dfnonresp < —read.table (file.choose())

xrbar =mean (dfresp[, 1])

yrbar < —mean (dfrespl, 2])

xbarnonresp =mean (dfnonresp|, 1])
r=nrow (dfresp) #no. of respondents
nonresp = nrow (dfnonresp) #no. of nonrespondents
n=r+nonresp #sample size

xnbar=(r = xrbar + nonresp * xbarnonresp)/n
num = sin(xnbar) — sin(xrbar)

den =1 + sin(xnbar)+sin(xrbar)
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#imputation

t<—c()

for (iin1:(n-r))

{

t[i] = n/(n —r) = x[i] * exp(num/den) — r/(n—r) * yrbar
}

#point estimation

est = yrbar * exp(num/den)

5. Simulation Study

Before an estimator can be used in practical scenarios, its
performance must be examined, in terms of its properties.
To this end, the bias of the estimator is calculated and the
MSE is compared with that of the contemporary estimators
given in Table 2 in terms of percentage relative efficiencies
(PREs).

The PREs of the estimator with respect to the contem-
porary estimators are defined as follows:

PRE, = ‘1/\4({;)) x 100,

PRE, = % x 100,

PRE, = % x 100,

PRE, = % x 100, (10)
PRE; = Ni\(f(l;c)) x 100,

PRE, = % x 100,

PRE, = % x 100,

where the expression for the MSE of the proposed estimator
T is given in equation (9), while that of the contemporary
estimators is given in Table 3.

Using R [32], an extensive simulation study has been
carried out on sufficiently large fictitious populations to
compute the bias and the PREs defined above. Data is
generated from three different probability distributions,
namely, normal and Gamma distributions (continuous
distributions) and Poisson distribution (discrete distribu-
tion). Some important properties of the distributions have
been summarized in Table 4. Such distributions are chosen
based on their occurrence in real-life situations.

Data from normal distribution is rampant in nature. It
can be used to model heights of individuals, test scores of
students, blood pressure, daily returns of any particular
stock, weights of items produced by a manufacturing

process, etc. Poisson distribution can be used to model the
probability that a given number of events occur in a
specific time interval, for example, the number of in-
surance claims filed per month, the number of network
failures occurring per week, and the number of bulbs
manufactured per minute. It also finds use by medical
statisticians, such as for estimating the number of births
that may be expected on a particular night, the number of
patients with an infectious disease arriving at a clinic
within a given hour, the number of mutations on a given
strand of DNA per time unit, etc. Gamma distribution can
be used for modeling wait time, reliability, service time in
queuing theory, etc. For example, it can be used to model
the amount of rainfall that accumulates in a given res-
ervoir, the flow of items through manufacturing as well as
distribution processes, the size of loan defaults, etc. Thus,
these three distributions are chosen based on their im-
portance in practical scenarios.

It is seen through trial and error that the estimator
performs well when X and Y take small values and the
varjation in X is greater than that in Y.

The steps of the simulation are as follows:

(1) The sizes of the population, the sample, and the
responding part of the sample are defined. For the
purpose of the study, sufficiently large values of
N =100000,7 = 40000, and r = 35000 have been
chosen.

(2) The parameters of the population are defined.

(3) Simulation is conducted for various values of p. For
the purpose of the study, p in the range (0.1,0.9); i.e.,
positively correlated variable X is considered.

The results of the simulation study related to the PREs
have been presented in Tables 5-11, while the biases have
been presented in Table 12.

6. Results and Discussion

The simulation study enables us to study the behavior of the
proposed estimator under various scenarios involving var-
ious values of parameters. The chief conclusions are as
follows:

(1) From the values of PRE, in Table 5, it is seen that the
proposed estimator is more efficient than y,, for all
values of p for normal data and for p € (0.2,0.9) for
Gamma and Poisson data for the various values of
response rates.

(2) Itis seen that the proposed estimator performs better
than ¥y r for all values of p for normal and Gamma
data and for p € (0.1,0.8) for Poisson data for the
various values of response rates from the values of
PRE, in Table 6.

(3) From the values of PRE, in Table 7, it is seen that the
proposed estimator dominates T'y¢ for all values of p
for normal data and for p € (0.1,0.7) for Gamma
and Poisson data for the various values of response
rates.
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TABLE 4: Some properties of normal, Poisson, and Gamma distributions.
Distribution Normal
Parameters U, o 2
pdf f(x) = (1/oV2m)exp[-((x — 1)*/20%)], —co<x<00
Mean E (X) U
Variance V (X) o’
Distribution Poisson
Parameter A>0
Pmf f(x)=21eMx!
Mean E (X) A
Variance V (X) A
Distribution Gamma
Parameters a, A
a_a-1 —Ax .
pdf f(x):{}tx e "IT(x), 1f§>0,.
Mean E(X) 0, a/d otherwise
Variance V (X) a/\?

TaBLE 5: Values of PRE, when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,
0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for
data generated from normal, Gamma, and Poisson distributions.

TaBLE 6: Values of PRE, when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,
0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for
data generated from normal, Gamma, and Poisson distributions.

PRE, when response rate is

PRE, when response rate is

P 75% 80% 85% 90% 95% P 75% 80% 85% 90% 95%
When data is generated from normal distribution When data is generated from normal distribution
0.1 100.1344 100.1106  100.0855 100.0587 100.0303 0.1 7694336 6511676 5257951 392.6560  251.0053
0.2 101.4571 101.1969 100.9224 100.6323  100.3254 0.2 299.6797 264.0204 2263992 186.6497 144.5860
0.3 102.6405 102.1645 101.6644 101.1383 100.5843 0.3 2742303 2428182 209.8193 1751101 138.5542
0.4 103.5638 1029165 102.2389 101.5285 100.7831 0.4 4963156 4243378 3489743 269.9806 187.0878
0.5 104.4114 103.6048 102.7629 101.8832 100.9632 0.5 3654077 316.8827 266.2293 213.3043 157.9516
0.6 106.3144 105.1428 103.9281 102.6678 101.3594 0.6 161.4679 150.0628 138.2380 125.9698 113.2330
0.7 1083134 106.7474 1051351 103.4746 101.7637 0.7 1949341 177.0506 158.6399 139.6782 120.1405
0.8 107.6268 106.1975 104.7225 103.1995 101.6262 0.8 1428418 134.8129 126.5272 117.9722 109.1346
0.9 109.2664 107.5084 105.7046 103.8532 101.9524 0.9 1574717 1465681 1353807 123.8982 112.1088
When data is generated from Gamma distribution When data is generated from Gamma distribution
01  99.2980 99.4211 99.5521 99.6916 99.840 6 0.1 167.4469 155.6134 143.0306 129.6250 115.3132
0.2 99.9500 99.9589 99.968 2 99.9781 99.9887 0.2 163.1577 152.0168 140.1986 127.6393 114.2669
0.3 100.5877 100.4835 100.3732 100.2563  100.1321 0.3 159.9707 149.3365 138.0818 126.1507 113.4804
0.4 101.3856 101.1383 100.8773 100.6015 100.3095 0.4 151.3665 142.1987 132.5239 122.2991 111.4758
0.5 102.4251 101.9886 101.5297 101.0467 100.5375 0.5 1453332 137.1742 1285962 119.5664 110.0479
0.6 103.6162 1029592 102.2714 101.5506 100.794 3 0.6 137.7449 130.8870 123.7077 116.1842 108.2909
0.7 1053406 104.3571 103.3338 102.2684 101.1581 0.7 129.0671 123.7141 118.1449 112.3460 106.3029
0.8 106.9622 105.6640 104.3211 1029312 101.4917 0.8 1132161 110.7518 108.2026 105.5642 102.8317
0.9 109.2799 107.5191 105.7126 103.8585 101.9550 0.9 100.8421 100.6823 100.5184 100.3501 100.1774
When data is generated from Poisson distribution When data is generated from Poisson distribution
0.1 999701  99.9753  99.9809  99.9869  99.9932 01 139.7079 132.7024 1252714 1173751 108.968 4
0.2 100.2482 100.2043 100.1578 100.1084 100.0559 0.2 136.5954 130.1242 123.2670 1159882 108.2476
0.3 100.6020 100.4952 100.3822 100.2625 100.1353 0.3 1323074 126.5778 120.5143 114.0868 107.2614
0.4 100.9377 100.7709 100.5947 100.4081 100.2102 0.4 129.0758 1239052 118.4399 112.6539 106.5182
0.5 101.5369 101.2623 100.9726 100.6666 100.3430 0.5 122.2485 118.2728 114.0795 109.6503 104.9648
0.6 101.9469 101.5979 101.2302 100.8426 100.4331 0.6 117.6557 114.4902 111.1565 107.6407 103.9276
0.7 102.6533 102.1749 101.6723 101.1437 100.5871 0.7 109.9558 108.1607 106.2749 104.2916 102.2028
0.8 103.2256 102.6414 102.0289 101.3861 100.7106 0.8 104.3631 103.5728 102.7444 101.8749  100.9612
09 1041234 103.3712 102.5852 101.7631 100.9023 09 932660 94.494 4 95.7780 97.1206 98.526 5

(4) The values of PRE, in Table 8 show that the proposed
estimator is more efficient than T'gyx for all values
of p for normal data and for p € (0.1,0.7) for Gamma
and Poisson data for the various values of response
rates.

(5) In Table 9, the values of PRE; show that the proposed
estimator performs better than T for all values of
p and for the various values of response rates for
normal, Gamma, and Poisson data.
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TaBLE 7: Values of PRE; when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

PRE; when response rate is

75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 470.6541 448.598 9 405.082 4 3358116 2359446
0.2 205.9296 200.4779 188.554 3 168.842 5 139.8731
0.3 188.8019 184.9377 175.366 8 158.9122 134.2714
0.4 303.8193 294.1930 271.676 3 233.7198 177.5226
0.5 229.1919 224.740 8 211.4849 187.6201 151.176 6
0.6 120.640 2 122.286 4 121.6535 118.1561 111.1646
0.7 133.2641 135.276 3 133.8068 128.0301 117.0710
0.8 103.726 6 108.0715 110.4939 110.391 4 107.1219
0.9 105.568 7 111.2012 114.246 5 113.9394 109.4739
When data is generated from Gamma distribution
0.1 137.107 3 135.0152 130.737 8 123.8271 113.7744
0.2 134.0241 132.2356 128.3940 122.0727 112.7901
0.3 131.4353 129.9555 126.514 3 120.6959 112.0335
0.4 125.754 8 124.791 5 1221295 117.396 2 110.1751
0.5 121.1861 120.746 3 118.779 8 114.9341 108.818 8
0.6 115.3791 115.6415 114.5838 111.8737 107.146 3
0.7 108.611 5 109.7314 109.758 0 108.3771 105.2479
0.8 97.5700 99.957 8 101.676 9 102.4550 102.000 3
0.9 88.167 8 91.8278 95.1090 97.750 4 99.477 3
When data is generated from Poisson distribution
0.1 121.737 3 120.509 3 118.000 0 113.948 4 108.059 8
0.2 119.4690 118.4929 116.324 8 112.7142 107.3790
0.3 116.3871 115.7496 114.0429 111.031 3 106.449 9
0.4 113.8979 113.5651 112.2512 109.728 2 105.7403
0.5 108.9561 109.183 7 108.621 6 107.062 5 104.2750
0.6 105.457 8 106.1194 106.1137 105.2428 103.286 8
0.7 99.941 6 101.2359 102.0750 102.2825 101.663 1
0.8 95.6267 97.480 5 99.0220 100.0827 100.477 0
0.9 87.5557 90.3922 93.207 4 95.8558 98.178 2

TaBLE 8: Values of PRE, when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

PRE, when response rate is

P 75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 1916.780 1 1674.549 3 1417.763 3 1145.069 6 854.9427
0.2 647.902 5 569.8619 487.527 8 400.5359 308.479 5
0.3 582.505 4 509.8201 433.4627 353.1480 268.5599
0.4 1197.061 4 1032.4981 860.1941 679.590 3 490.0720
0.5 844.349 3 725.848 4 602.149 8 472.9041 337.7295
0.6 281.9458 244.0446 204.748 7 163.9796 121.6530
0.7 380.226 8 322.5477 263.168 1 202.0115 138.996 9
0.8 240.6409 203.1637 164.487 8 124.554 8 83.3023
0.9 288.7217 238.802 4 187.583 5 135.0138 81.0389
When data is generated from Gamma distribution
0.1 284.1391 259.9150 234.1570 206.714 6 177.4171
0.2 272.9792 249.2994 224.1799 197.4853 169.062 6
0.3 265.010 4 241.396 3 216.404 5 189.9107 161.775 4
0.4 242.326 3 220.6217 197.7172 173.5102 147.886 6
0.5 226.876 8 205.793 4 183.627 6 160.294 0 135.697 8

0.6 207.6590 187.4203 166.233 6 144.030 8 120.736 8
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TasLE 8: Continued.
PRE, when response rate is
P 75% 80% 85% 90% 95%
0.7 185.5227 166.100 6 145.893 8 124.8539 102.9281
0.8 144.503 8 128.566 4 112.080 4 95.0170 77.3455
0.9 112.6831 98.642 6 84.237 3 69.4527 54.2737
When data is generated from Poisson distribution

0.1 208.198 7 193.6330 178.1828 161.7650 144.286 0
0.2 200.3449 186.2824 171.3810 155.563 5 138.7426
0.3 189.4851 176.1792 162.097 7 147.170 8 131.3200
0.4 181.498 6 168.5897 154.9450 140.499 7 125.1812
0.5 164.2279 152.5221 140.1759 1271351 113.3396
0.6 152.8811 141.8375 130.206 9 117.9412 104.987 0
0.7 133.2809 123.7061 113.6481 103.069 4 91.9283
0.8 119.4790 110.693 3 101.4831 91.8169 81.660 1
0.9 91.5449 84.9140 77.9851 70.737 8 63.149 4

TaBLE 9: Values of PRE; when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

PRE; when response rate is

P 75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 1361.4511 1484.757 6 1615.4732 1754.286 6 1901.974 3
0.2 523.0419 562.9262 605.004 8 649.463 8 696.511 2
0.3 504.8837 541.7947 580.5703 621.3557 664.3111
0.4 998.053 7 1078.963 1 1163.678 3 1252.4742 1345.6530
0.5 769.2790 828.0162 889.3297 953.3927 1020.394 5
0.6 341.1435 360.1527 379.8615 400.309 2 421.5381
0.7 458.5577 485.768 8 513.7822 542.6339 572.3621
0.8 3541103 373.2518 393.005 4 413.4012 434.4708
0.9 434.663 4 459.058 3 484.0883 509.778 4 536.1553
When data is generated from Gamma distribution
0.1 226.9510 239.7630 253.3863 267.900 4 283.3958
0.2 227.5398 240.069 8 253.3615 267.486 8 282.526 4
0.3 230.863 6 243.3833 256.6334 270.6799 285.596 7
0.4 224.737 5 236.2532 248.4055 261.2489 274.8439
0.5 226.0919 237.2010 248.8803 261.1751 2741351
0.6 226.8304 237.3953 248.4550 260.0452 272.2049
0.7 227.996 6 237.7807 247.9601 258.5593 269.604 7
0.8 213.7513 221.4994 229.5142 237.8097 246.400 8
0.9 207.7226 213.8714 220.1800 226.6547 233.3021
When data is generated from Poisson distribution
0.1 177.014 5 184.5777 192.6001 201.124 8 210.2007
0.2 176.981 0 184.4231 192.3091 200.6799 209.5817
0.3 176.082 6 183.2879 190.913 3 198.996 4 207.5799
0.4 176.690 9 183.8135 191.3422 199.3126 207.764 7
0.5 174.141 1 180.768 9 187.7593 195.1429 202.9538
0.6 173.116 4 179.477 2 186.176 0 193.240 6 200.701 8
0.7 167.633 3 173.1930 179.033 2 185.1759 191.6450
0.8 165.091 7 170.188 2 175.5309 181.1382 187.0301
0.9 153.8281 157.5546 161.448 6 165.5216 169.786 3

(6) From the values of PRE, in Table 10, it is seen that

the proposed estimator dominates T, for all values in Table 11.

of p and for the various values of response rates for
normal, Gamma, and Poisson data.

(7) 1t is seen that the proposed estimator is more ef-
ficient than Tgc_ for all values of p and for the
various values of response rates for normal,

Gamma, and Poisson data from the values of PRE,

(8) From Table 12, it is seen that the estimator is neg-
atively biased. The bias is negligible, being of the
order 107> and 1077 for various values of the pa-
rameter p and for various response rates, and hence,
bias correction is not needed.
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TaBLE 10: Values of PRE; when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

PRE, when response rate is

75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 2062.1827 2061.693 8 2061.1755 2060.6251 2060.039 5
0.2 757.2556 755.3134 753.264 3 751.099 3 748.808 2
0.3 728.3521 724.9739 721.4250 717.6922 713.760 8
0.4 1494.9925 1485.649 2 1475.866 3 1465.612 3 1454.8521
0.5 1138.6499 1129.854 3 1120.672 8 1111.0796 1101.046 4
0.6 471.604 1 466.406 9 461.018 4 455.4280 449.6239
0.7 653.1379 643.694 4 633.9725 623.9597 613.6426
0.8 491.0456 484.5244 477.794 5 470.8459 463.667 7
0.9 615.439 5 605.537 5 595.3776 584.949 8 574.2432
When data is generated from Gamma distribution
0.1 297.869 3 298.238 8 298.6317 299.0502 299.4971
0.2 298.4230 298.449 3 298.4772 298.506 9 298.538 5
0.3 303.2390 302.924 8 302.5923 302.2398 301.8655
0.4 293.266 4 292.5510 291.796 2 290.998 4 290.1539
0.5 294.7957 293.5394 292.2187 290.828 4 289.3629
0.6 295.2827 293.4103 291.4502 289.396 0 287.2410
0.7 296.138 8 293.3739 290.497 3 287.5021 284.3807
0.8 273.078 6 269.764 2 266.3357 262.7872 259.1122
0.9 262.4129 258.184 8 253.8469 249.3947 244.823 8
When data is generated from Poisson distribution
0.1 219.8170 219.828 6 219.8410 219.8541 219.868 0
0.2 219.6104 219.5142 219.412 4 219.3042 219.1892
0.3 218.0162 217.7849 217.5400 217.2805 217.0049
0.4 218.776 0 218.4146 218.0326 217.628 2 217.1993
0.5 214.4767 213.896 6 213.2847 212.638 5 211.9548
0.6 212.6550 211.9269 211.1600 210.3513 209.497 3
0.7 203.7334 202.7839 201.786 5 200.737 4 199.6326
0.8 199.4617 198.3327 197.1492 195.9071 194.6019
0.9 181.4417 180.1310 178.761 4 177.328 8 175.828 7

TaBLE 11: Values of PRE, when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

PRE; when response rate is

P 75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 2062.1827 2061.693 8 2061.1755 2060.6251 2060.039 5
0.2 757.2556 755.3134 753.264 3 751.099 3 748.808 2
0.3 728.3521 724.9739 721.4250 717.6922 713.760 8
0.4 1494.992 5 1485.649 2 1475.866 3 1465.612 3 1454.8521
0.5 1138.6499 1129.854 3 1120.672 8 1111.0796 1101.046 4
0.6 471.604 1 466.406 9 461.018 4 455.4280 449.6239
0.7 653.1379 643.694 4 633.9725 623.9597 613.6426
0.8 491.0456 484.5244 477.794 5 470.8459 463.6677
0.9 615.439 5 605.537 5 595.3776 584.949 8 574.2432
When data is generated from Gamma distribution
0.1 297.869 3 298.2388 298.6317 299.0502 299.4971
0.2 298.4230 298.449 3 298.4772 298.506 9 298.5385
0.3 303.2390 302.924 8 302.5923 302.2398 301.8655
0.4 293.266 4 292.5510 291.796 2 290.998 4 290.1539
0.5 294.7957 293.5394 292.2187 290.828 4 289.3629
0.6 295.2827 293.4103 291.4502 289.396 0 287.2410

0.7 296.138 8 293.3739 290.497 3 287.5021 284.3807
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TaBLE 11: Continued.

PRE, when response rate is

P 75% 80% 85% 90% 95%

0.8 273.078 6 269.764 2 266.3357 262.787 2 259.1122
0.9 262.4129 258.1848 253.8469 249.3947 244.823 8

When data is generated from Poisson distribution

0.1 219.8170 219.828 6 219.8410 219.8541 219.868 0
0.2 219.6104 219.5142 219.4124 219.304 2 219.1892
0.3 218.0162 217.7849 217.5400 217.2805 217.004 9
0.4 218.776 0 218.4146 218.0326 217.6282 217.1993
0.5 214.4767 213.896 6 213.2847 212.6385 211.9548
0.6 212.6550 211.9269 211.1600 210.3513 209.497 3
0.7 203.733 4 202.7839 201.786 5 200.737 4 199.632 6
0.8 199.4617 198.3327 197.1492 195.9071 194.601 9
0.9 181.4417 180.1310 178.761 4 177.328 8 175.828 7

TaBLE 12: Values of bias when p € (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and response rates are 75%, 80%, 85%, 90%, and 95% for data
generated from normal, Gamma, and Poisson distributions.

Bias of the proposed estimator when response rate is

75% 80% 85% 90% 95%
When data is generated from normal distribution
0.1 —0.0000950000 —0.0000920000 —0.000 090 000 0 —0.000 088 000 0 —0.000 086 0000
0.2 —0.000 093 0000 —0.000 088 000 0 —0.000083 0000 —0.000078 0000 —0.000 0750000
0.3 —0.000121 0000 —-0.000114 0000 —0.000108 0000 —0.000102 0000 —0.000097 000 0
0.4 —-0.000114 0000 —0.000104 0000 —0.000096 0000 —0.000 089 0000 —0.000 082 000 0
0.5 —-0.000126 0000 —-0.000113 0000 —0.000101 0000 —0.000 091 000 0 —0.000 0820000
0.6 —-0.0001350000 —-0.000120 0000 —-0.000106 000 0 -0.000 094 000 0 —0.000 083 0000
0.7 —-0.000143 0000 —-0.000126 0000 —-0.000111 0000 —0.000 098 000 0 —0.000 086 000 0
0.8 —0.000154 0000 —0.000133 0000 —0.0001150000 —0.0000990000 —0.000084 0000
0.9 —0.000159 0000 —-0.000136 0000 —-0.000115 0000 —0.000 097 000 0 —0.000 081 000 0
When data is generated from Gamma distribution
0.1 —0.0000305800 -0.0000305100 —0.000 0304600 -0.000 0304000 —0.000 0303600
0.2 —0.000 026 3000 —-0.0000261500 —0.000 026 020 0 —0.000 0259000 —-0.000 0258000
0.3 —0.000 0304000 —-0.0000301900 -0.0000300100 —0.000029 8400 —0.000 029690 0
0.4 —0.0000277600 —0.0000274200 —-0.0000271100 —0.0000268400 —0.000026 6000
0.5 —-0.000027 550 0 -0.0000271100 —0.000026 7300 —0.000 026 3900 —0.000 026 080 0
0.6 —-0.0000328200 -0.0000321700 —0.000 0315900 —0.000031 0800 —-0.0000306200
0.7 —-0.000029 3500 —-0.000028 5300 —-0.000027 8100 -0.0000271700 —0.000 026 590 0
0.8 —-0.0000311900 —-0.0000301500 —0.000029 2300 —0.000028 4200 —0.000 027 690 0
0.9 —0.000034 8100 —0.0000333300 —0.0000320300 —0.0000308800 —0.0000298500
When data is generated from Poisson distribution
0.1 —0.000 0004030 —0.0000003950 —0.000 0003870 —0.000 0003810 —-0.0000003750
0.2 —0.000000 4470 —0.0000004300 —0.0000004150 —0.000 0004020 —0.000 0003900
0.3 —0.000000 4550 —0.0000004310 —-0.0000004110 —0.000 0003920 —-0.0000003760
0.4 —0.000 0005100 —0.0000004730 —0.000 0004400 —-0.0000004110 —0.000 0003850
0.5 —0.000 0005520 —0.0000005030 —0.000 0004600 —0.000 0004210 —0.000 0003870
0.6 —0.000 0006320 —0.000 000 568 0 —0.0000005110 —0.000 000 461 0 —0.000000416 0
0.7 —0.0000007030 —0.000 0006200 —0.0000005470 —0.0000004830 —0.0000004250
0.8 -0.000 0007770 —-0.000 0006750 —0.000 0005850 —0.000 000 5050 —0.0000004340

0.9 —0.000 0008710 —0.000 000746 0 —0.000000 6350 —0.000000 5360 —0.000000 448 0
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7. Conclusion

The following trend in the PREs is noticed from the tables:
PRE, increases with the increase in value of p, while
PRE,, PRE;, PRE,, PRE;, PRE,, and PRE, decrease with the
increase in value of p.

The proposed estimator is seen to be consistent, exists for
all real values of parameters, has negligible bias, and is more
efficient than 7 other contemporary estimators. Hence, the
proposed estimator may be recommended for use in field
work.
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