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Scientists rely more and more upon computerized data mining and artificial intelligence to analyze data sets and identify as-
sociation rules, which serve as the basis of evolving theories. &is tendency is likely to expand, and computerized intelligence is
likely to take a leading role in scientific theorizing. While the ever-advancing technology could be of great benefit, scientists with
expertise in many research fields do not necessarily understand thoroughly enough the various assumptions, which underlie
different data mining methods and which pose significant limitations on the association rules that could be identified in the first
place. &ere seems to be a need for a comprehensive framework, which should present the various possible technological aids in
the context of our neurocognitive process of theorizing and identifying association rules. Such a framework can be hopefully used
to understand, identify, and overcome the limitations of the currently fragmented processes of technology-based theorizing and
the formation of association rules in any research field. In order to meet this end, we divide theorizing into underlying neu-
rocognitive components, describe their current technological expansions and limitations, and offer a possible comprehensive
computational framework for each such component and their combination.

1. Introduction: The Principles of Theorizing
and Its Comprehensive Generalization

&e wisdom of building and improving theories regarding our
environment is a peak cognitive achievement of our human
society. In this context, a theory could be described as the
identification of a set of association rules, among the imprints
of the world reality upon our senses [1]. Notably, complex
theories about our environment are often the accumulative
product of a group effort and not of a single brain. Further-
more, their development may also be based upon technological
aids including, nowadays, modern computerized intelligence.

In fact, it seems that we are in an era, in which the process
of theorizing, and specifically of scientific theorizing, will in-
volve, in an ever-growing manner, computerized intelligence
[2]. On the one hand, this growing involvement offers great
potential for extracting effective theories from vast and com-
plex data sets. But, on the other hand, at times, it seems that the
computational methods employed might be complex and not
intuitive (e.g., [3]) andmay lead to less-informed reliance upon

methods, which, even if powerful, could still limit the scope of
possible results and enable, or prefer, the formation of only
specific types of theories or sets of association rules.

Still, as a product of the human brain (or of a society of
brains), it should be possible to describe theory building in
terms of a neurocognitive computational process or as an
algorithm [4]. Generally, neurocognitive processing has
computational limitations, and the neurocognitive algorithmic
description of theory building is no exception in this regard.
Like any other “neurocognitive algorithm,” it should have
computational limitations. Furthermore, even a society of such
embodiments, which further utilizes external computational
aids, would still have computational limitations.

&us, the purpose of the current work is to present a
preliminary analysis of the “algorithmic” components and flow
of the neurocognitive processes, which underlie theory building,
and to discuss their current and possible futuristic computerized
extensions. Once such an algorithm of theorizing is formulated,
including such current and potentially futuristic computerized
extensions, itmay contribute, on the one hand, to our theorizing
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ability and, on the other hand, might shed light on specific
artificial intelligencemethods, which are used in theorizing their
potential role, their merits, and their limitations.

&erefore, as stated, the core of this manuscript is a
neurocognitive analysis of the process of theorizing. To this
end, we start by noting that our ability to identify association
rules (or to theorize) is based, as a first step, on our sensation
of the environment, which involves the formation of brain
representations for the environmental stimuli that act upon
us. Furthermore, the association between representations is
based on the co-occurrence of their activation. However, the
evaluation of co-occurrence of representation activations is
based on some “indexing” of the activations, for example, in
time or in space. &en, activations, which occur within a
certain proximity window (e.g., in time or in space), could be
considered as co-occurring and could be associated.
&erefore, the first major component of theorizing, which
will be presented in some detail below, comprises sensory
activation of stimulus representations and their indexing.

Upon this initial major component of sensation and
indexing, the brain associates between the sensory represen-
tations on the basis of the co-occurrence of their activations. In
fact, the brain can associate two or more representations.
&erefore, we will discuss below, in some detail, a secondmajor
component of the association between sensory representations,
based on their co-occurrence in a given sample of the envi-
ronment. We will term this major component of association:
the “bottom-up” association, as it generates the association
rules from the elementary sensory representations.

Still, it seems that a major part of our identification of the
existence of association rules within a given sample of the
environment is based on the evaluation of the applicability
(and possible adjustment) of previously learned association
rules. Often, the current sample might be too small for
generating strong new associations (an underfitting error).
Furthermore, we hope that associations, which are generated
on the basis of a specific sample, might be relevant for other
samples, at least from similar environments, in order to
enable prediction and favorable intervention. However, in a
given (and especially in a small) sample, there is also a risk
for specific (nongeneralizable) co-occurrences, which take
place either by chance or due to specific circumstances
during the sample (an overfitting error). Lastly, the thorough
sample-based bottom-up association is demanding com-
putationally. Often, it is less consuming to explore top-down
the applicability of previously learned association rules.

&erefore, we will also discuss below, in some detail, a third
major component of evaluating the applicability of previously
learned association rules for the current sample. We will term
this component of association by checking the applicability of
previously learned association rules: the “top-down” associa-
tion, as it starts from the rules and looks for their manifestations
in the currently sampled elementary sensory representations.
Notably, the previously learned association rules are simply the
result of earlier samples or their combination. So, in a sense, the
top-down association is an exploration of association rules,
which are shared by multiple samples (sample-crossing asso-
ciation rules). Importantly, bottom-up and top-down associa-
tions may be combined. For example, after partial bottom-up

processing, the applicability of top-down association rules
might become more evident. Furthermore, we will also discuss
below the impact of the association components on the first
component of sensation and indexing.

To summarize, it might be possible to view theorizing as
being comprised three major components: (1) sensation and
indexing, (2) bottom-up association, and (3) top-down asso-
ciation and derived reshaping of sensation. Below, we will
discuss each of these major components in some detail, as well
as the interaction among them. For each major component, we
will discuss its underlying components, which together char-
acterize the “algorithm” by which our brains identify the as-
sociation rules or theorize. As was stated above, complex
theories are often not the product of a single brain, but rather of
a society of brains. Furthermore, we use various external aids,
for example, paper and pencil as well as advanced artificial
intelligence, in the process of identifying the association rules.
&erefore, our algorithmic characterization will also encom-
pass these aspects of theorizing. Finally, for various algorithmic
components (except for the elementary sensory level, which
might be viewed as a limit given, upon which our theories are
formed), we will discuss the possible principles of their
comprehensive computational expansion.

It should be emphasized that the current manuscript does
not suggest an implementational algorithm. It seems that the
abstract comprehensive algorithmic components, which are
suggested below, would be, even if feasible to implement, very
demanding in terms of computer resources. However, on the
one hand, computer resources are constantly improving, and on
the other hand, it might be possible to develop practical
implementation embodiments of the algorithmic components
described in this work. Furthermore, even a strictly theoretical
and impractical description might contribute to our under-
standing of the theorizing process and the current merits and
limitations of its computerized expansions.&erefore, we do not
present here a detailed algorithmic description but halt at the
level of basic numerical examples for the sake of illustration.&e
numerical examples are given in “demonstration boxes” for the
sake of concretization of the more complex components.
However, we have learned that for some readers, the basic text,
without the demonstration boxes, might be sufficiently clear.

2. The First Major Component: Sensation and
Indexing (The Data Set for Association)

Claim 1. &e underlying substrate of our theorizing or
association processes is the activations of sensory repre-
sentations of the world. &ese representation activations
could be computerized in a comprehensive manner, and in
fact, computerization may enhance this set of representation
activations for the sake of association and theorizing.

Suggested subcomponents for modeling sensory repre-
sentation are as follows:

(1) &e elementary sensory layer and its dimensions
(2) &e array of the compound entities of association
(3) &e values set per entity
(4) Indexing entities
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2.1. �e Elementary Sensory Layer and Its Dimensions

Claim 2. &e elementary substrate of our representation of the
world involves activations of our sensory layer. &ese activa-
tions could be viewed as involving discrete representations with
the following four dimensions: (1) the discrete values of a
specific physical attribute, which is being activated (e.g., specific
ranges of light wavelengths, specific ranges of temperature,
specific ranges of sound wave frequencies, etc.); (2) the timing
of the activation; (3) the spatial position of the activation; and
(4) the intensity of the activation.

We sample the world through our senses, and the first layer
of the senses comprises receptor cells, which are specialized in
sensing specific physical attributes: for example, visual receptors
may respond to a specific range of wavelengths in the visible
light; thermoreceptors in the skin may respond to a specific
range of temperatures and so on (see relevant sections in [5]).
&us, each specific set of receptors is tuned to sample a specific
subset of physical attributes. Physiologically, the span of our
sensory entities is diverse, yet limited in both range and res-
olution.&ere are light waves we cannot see, sound frequencies
we cannot hear, and so on; there are also light waves and sound
frequencies within our sensory range, among which we cannot
differentiate [6]. Importantly, the limitation in resolution im-
plies that the range of values we can sense, in a given elementary
sensory set of receptors, is discrete. Indeed, as each specific set of
receptors, which sense specific physical attributes (light wave-
length, temperature, sound wave frequency, etc.), comprises a
limited number of sensory neurons, which are often active in a
binary mode (all-or-none action potentials), it is reasonable to
expect that the sensation of each such physical attribute would
involve a limited set of discrete values, and each value would
involve a limited set of discrete intensities of activation.

&e activation of the neurons of each sensory set, by a
transient stimulus, is limited in time and is often manifest by a
burst of activity (e.g., action potentials), which lasts for a limited
duration, for example, less than a second [7]. &us, each acti-
vation of a sensory set has also a temporal (timing) value.
Furthermore, the receptors are often sensitive to the spatial
location of the stimulus (e.g., its place in the visual field or its
somatosensory location on the body surface) [8]. &erefore, it is
possible to view each representation, which is evoked at our
elementary level of sensation, as comprising four dimensions
that are: the physical attribute value, its intensity of activation, the
time of the activation, and the spatial position of the activation.

Claim 3. &e use of external technology-based sensors
seems to expand our sensory layer. For example, it seems
possible to sense new types of physical attributes (e.g., there
are velocity and acceleration sensors instead of just time and
position, which are sensed in various modalities); it seems
possible to expand our sensory range (e.g., by infrared or
ultraviolet sensors); and it seems possible to increase the
resolution of our sensation (e.g., by microscopes or tele-
scopes). However, all these (hopefully useful) extensions are
theory-driven and are therefore based upon associations,
which were built from our elementary sensory layer.

Allegedly, the limited range and resolution of our sensory
abilities have been expanded technologically by various sensory

devices, which involve receptors capable of sampling physical
attributes beyond our sensory abilities. Seemingly, these devices
then transform the expanded physical attributes to information,
which is within the range and resolution of our sensation [9].
However, it is clear that at least certain sensory device samples are
not a simple extension of our senses. Instead, they are derivatives
of previous theories that combine our elementary sensations into
theoretical constructs, which we then measure (and tend to treat
as independent and “real” sensations): for example, velocity and
acceleration are compounds of spatial position and time. Indeed,
one of the greatest challenges of theorizing concerns the validity
of forming such effective theoretical constructs [10].

Furthermore, even devices, which allegedly just expand the
range and resolution of our elementary sensory abilities, result
from previous theories that form associations between external
sensors and our elementary sensory representations (e.g.,
transform the output of infrared sensors to our visible range of
vision on the basis of a theory, which relates the activity in these
external sensors and our visual system). &us, both types of
extension of our sensory abilities (“simple” range extension and
addition of new constructs of physical attributes) seem to
evolve from theories, which our human cognition generated
from other analyses of previous samples of our environment.

Claim 4. Altogether, our ability to theorize is limited by our
underlying elementary sensory layer. What we may hope for
is expanding our ability to theorize within our sensory
boundaries in a comprehensive manner. &e current
manuscript aims at providing a framework for such a
comprehensive expansion of our theorizing ability.

In fact, a major outcome of this manuscript is hoped to
be the presentation of a comprehensive framework for the
derivation of such theories and thereby of enhanced sen-
sation, as part of the process of theorizing. However, in
accordance with the empiricist line of thought, even the
most comprehensive theory is limited in its ability to model
reality by our elementary sensory abilities [11]. &e theories
we can generate are not of reality but of its eventual sampling
through our bodily sensory channels. &us, according to the
above, advanced sensing devices do not really enable any
objective enhancement of our elementary sensory abilities.
In this sense, they are not equivalent to our elementary
sensing. Instead, they represent (hopefully) effective theories
and provide effective compound representations, which are
built upon our elementary sensing. &e use of these com-
pound representations may then enable even more effective
association (or better theorizing). &us, all theories could be
viewed as based upon our set of limited elementary sensory
representations on its four dimensions: physical attribute
values, their intensity of activation, the time of the activation,
and the spatial position of the activation.

2.2. �e Array of the Compound Entities of Association

Claim 5. Our brains build compound representations by as-
sociating the elementary representations from the elementary
sensory layer in a hierarchical manner. &e formed repre-
sentations are arranged within a limited and hierarchical set of
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modules, whereby each module includes related representa-
tions of a specific physical attribute: for example, the repre-
sentations in the “lines” module may relate to the perception of
alternative line tilts, while the representations in the “words
perception”modulemay relate to alternative word perceptions.

&e sensation could be viewed as comprising modules,
which are arranged in tiers. &us, despite some top-down
modulation [12], the organization of the sensory nervous
system, beyond its elementary level, could be viewed as hi-
erarchical, whereby each tier comprises modules, which
combine information from specific modules of underlying
tiers. For example, in the visual channel, the hierarchical
organization involves at the elementary tier sensory modules,
which sense specific ranges of wavelengths (the visual physical
attribute values); then at the following retinal tiers, there is the
processing of color contrast, by differentiating information
from two different types of wavelength receptor cells,
brightness; by combining information from various receptor
cells, the transience of the stimulus; and by differentiating
information over a time unit [13]. &is hierarchical combi-
nation continues all the way through the visual cortex, which
comprises modules with several levels of hierarchy that
combine information about line shapes, angles, color,
movement, and so on [14]. &us, the various tiers form a
hierarchical set of sensory modules, which process physical
attributes of varying complexity. Indeed, this organization of a
hierarchy of specific sensory modules also applies to the other

(nonvisual) sensory channels (e.g., [15]). Furthermore, while
more basic modules relate to a specific sensory channel
(unimodal), the highest modules combine representations
from multiple sensory channels (heteromodal) [16].

However, altogether, the number and complexity of
modules, in our sensory hierarchy, are rather limited [16].
Figure 1(a) presents this structure schematically. Impor-
tantly, such a well-structured hierarchy promotes certain
types of preferred associations: for example, faster percep-
tion of words from combining specific auditory patterns.
However, on the other hand, it poses limitations and reduces
the priority of other possible, less hierarchical, associations:
for example, between representations in different sensory
modalities. Certainly, we can identify also associations be-
tween value representations in modules, which are not re-
lated by hierarchy. However, such hierarchy crossing
association requires the recruitment of cognitive processes,
such as working memory, which are of limited capacity.

Claim 6. &e compound representations within each of the
physical-attributemodules are based on activations of neuronal
networks. Similar to the representations at the elementary
sensory level, these activations could be viewed as involving the
following four dimensions: (1) the discrete values of a specific
physical attribute, which is being activated (only this timemore
complex attributes than at the elementary sensory level); (2) the
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module 2
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unimodal levels

Higher unimodal
module 1 (modality 1)

Basic module 1
Sensory modality 1
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Figure 1: &e structure of representation of sensations in the brain. (a) Stimuli are perceived via the various sensory modalities. In each
modality, a stimulus activates elementary modules of representation. &ese elementary representations could be combined hierarchically to
activate more complex representations, which could be unimodal (belong to one sensory modality) or heteromodal (combining repre-
sentations in various sensory modalities).&e depth of the hierarchy, both unimodal and heteromodal, is rather limited. Also, the number of
different modules in the brain is limited. (b) Any module (elementary, higher unimodal, or higher heteromodal) comprises values, which
compete among themselves by a mechanism of lateral inhibition. Each of these values (e.g., different faces in the “faces module” or different
line tilts in a more basic “lines module”) is activated at any given time with a certain level of intensity out of a discrete set of intensity levels.
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timing of the activation; (3) the spatial position of the acti-
vation; and (4) the intensity of the activation.

Each module in the hierarchy is a collection of neuronal
networks, which may represent alternative, but related,
sensory objects. For example, alternative faces are repre-
sented in the “faces module,” and alternative line tilts are
represented in a more basic “lines module.” &ese neigh-
boring networks, with alternative value representations,
compete among themselves through a principle termed
lateral inhibition. According to this principle, each active
representation inhibits (reduces the activation of) other
representations of alternative sensations within the same
module, thereby rendering a sharper selection of the specific
stimulus representation (the “winners-take all” principle)
[17]. &us, the representation of sensory stimuli is organized
in modules, which comprise alternative values (embodied by
different neuronal networks in the same module).

During its activation, the neuronal network, which repre-
sents a specific stimulus, generates a “burst” response. In this
burst response, multiple neurons fire in synchrony. &is burst
could be graded in terms of the intensity of network activity and
with some variability in duration (often under the 1 s time scale)
[18]. &us, if a stimulus is sensed more intensely, a stronger
response could be evoked by the relevant network.However, the
network output activity (the activity, which is sensed by other
network units and can be used for association) is a summation
of the activity in a limited number of the network’s output
neurons. Furthermore, the single neuron activation is binary
(on-off and all-or-none). &erefore, taking together the limited
number of output neurons per network and the binary acti-
vation of each such neuron [19], there is a limited set of discrete
possible intensities of output activation of the neuronal network.

&us, it is possible to consider the representation of each such
neuronal network as comprising a range of discrete (even if at
times possibly multiple) intensities (Figure 1(b)).

&us, similar to the elementary representation level, also
at higher levels, the brain represents stimulus features
(values) and their intensity. Furthermore, as was stated
above, also at the higher levels of representation, the acti-
vation of each representation, by a transient stimulus, is
limited in time and is often manifest by a burst of activity
(action potentials), which lasts less than a second.&us, each
activation of a sensory set has also a temporal dimension (its
timing). Furthermore, the hierarchical summation, by which
values at a given level are based upon values of lower levels,
tends to be spatially oriented, namely, to associate values
from proximal locations [20]. &erefore, at least many of the
value representations in the sensory hierarchy also have a
spatial dimension (position). &us, altogether, similarly to
the representation at the elementary level, it is possible to
view each representation in the sensory hierarchy as com-
prising the same four dimensions, which are: a specific
stimulus value (specific face, specific line, specific word, etc.),
its intensity of activation, the time of the activation, and the
spatial position of the activation.

Claim 7. Current technology can already support the
comprehensive removal of hierarchical constraints upon
representation associations.

It seems that the hierarchical organization of repre-
sentations in the brain could pose significant limitations to
the association process. However, we can in principle de-
scribe the hierarchical representation of the brain in a table

Entry Module Value Intensity Time Position

(a)
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E2

E2.2E2.1

Target
E1

→

→

→

→

x

x

x

E2

E22

E21

E12

E11

Source
:

.. .. ..

:

:

:

:

(b)

Figure 2: Replacement of the brain’s hierarchical representation of sensation by a general table description. (a) &e top table has one entry
for each activation of representation anywhere in the sensory hierarchy, which has, as described in the text, the dimensions of value,
intensity, time, and position. (b)&e hierarchical relation between these table entries could be described by a matrix of relations, which may
enable some relations (√) and disable others (X; degree of enablement was ignored for simplicity). However, it is possible to ignore the
matrix limitations and permit association between any pair or set of entries.
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format (Figures 2(a) and 2(b)) and, in fact, can cancel the
hierarchy altogether (Figure 2(b)).

In the table format, the discrete combinations of values
and intensities, which were described in the brain repre-
sentation, could be replaced by combined new values. &us,
there is no a priori need to select only one intensity acti-
vation for a given brain value. Furthermore, the entire hi-
erarchical structure could be cancelled, and thus, all
associations between entities and values would be feasible,
without hierarchical limitation. For the sake of further
abstraction away from the strict brain structuring, we would
also replace the term brain module with the more abstract
term entity. &us, we can talk about the values of entities
instead of the intensities of values of brain modules.

However, one likely advantage of the hierarchical brain
representation is that a higher-order value could be acti-
vated, even when only some of its underlying basic values
were activated. Provided that this partial activation of basic
values crosses a combined threshold for activating the
representation of the higher value. For example, we need not
see, in full detail, both eyes, nose, mouth, and so on in order
for a specific face representation to be activated.&is enables
flexibility in the sensation of “real-life” environments, in
which there are multiple alternative combinations for basic
value sets, which may activate a higher module value [21].

In a tabular nonhierarchical organization, there would still
be use for compound entities (note: an “entity” is the general
term we use in the switch from a concrete brain module to an
abstract description), which comprise various partial combi-
nations of more basic entities, for the very same reason of
enabling tolerance in representation. Similar to the higher
hierarchical modules in the brain, these compound entities are
the result of association (also emerging from previous samples,
as will be discussed below, byways of bottom-up and top-down
association). However, the compound entities would not
necessarily form a hierarchical structure, but rather a more
flexible, heterarchical structure. Indeed, such a heterarchical
structure might capacitate many more entities (which are
formed by association) in comparison with a strictly hierar-
chical structure. An ever-increasing computational power may
enable this increased capacity.

2.3. �e Values Set per Entity

Claim 8. On top of the limited number of entities (brain
modules), the brain also has a limited capacity of values per
entity.

We may feel we are capable of representing entities with
an immense number of values, like the words in a language,
or even an infinite number of values, such as the natural
numbers. Yet our representation of entities with infinite
values (e.g., the natural numbers) or entities with an im-
mense number of values (e.g., the words in a language)
comprises sequences of basic entities (see, e.g., relevant
sections in [22]). For example, natural numbers comprise
sequences of digits, each with ten possible values, and words
in a language comprise sequences of letters. &e number of
values in a brain set (entity) is limited, and the associations
we generate between these values, in different entities or sets,

are based on a sequence of associations between the basic
values, which underlie them. For example, the arithmetical
operations, which associate between two numbers and their
sum, multiplication, or any other mathematical output, are
merely a sequence of associations between the digits of these
two numbers and the digits of the output [22].

Claim 9. As stated above, technology can expand the
number of possible entities. In principle, technology can also
expand the number of possible values per entity. However, a
large number of entity values may mean a small number of
occurrences per value. As the association is based on co-
occurrence, reduced occurrences per value may hinder it.
&erefore, it might be advisable instead to continue the use
of a limited number of basic entity values.

When we discussed above the array of compound entities,
we emphasized the merits of the increased capacity, which is
made possible by the technological expansion that promotes
the heterarchical and comprehensive formation of compound
entities from the elementary sensory representations. Allegedly,
it might have been useful to expand similarly the capacity of
value representations per entity, and indeed, this seems to be
done by some computational tools. However, in effect, such
computational tools involve specific operations (e.g., mathe-
matical operations, lexical operations, etc.), which, as we stated
above, are based on sequences of operations on the basic
entities (digits, letters, etc.) that underlie themultivalue entities.

Indeed, when we look for associations, which depend on a
sufficient count of co-occurrences, as is the case with our brain-
based intelligence, we need sufficient counts of occurrence of
the to-be-associated values. &e capacity increase, which is
enabled by computation, could also increase the number of
possible entity values. However, if there are toomany values for
given sample size, the count of single value occurrences (and,
therefore, the count of co-occurrences in which these values
participate) might be too small for forming associations.

&erefore, we do not necessarily seek to increase the
number of possible entity values. Instead, it seems that a
comprehensive expansion of the specification of a number of
values per entity would better be based upon the division of this
entity into basic entities, such as digits for numerical values and
letters for words. &e precise determination of the number of
basic entities (and the number of their possible values), which
should be used to span a given entity, could be dynamic. It
could be determined on the basis of associations found in the
current and previous samples. &e associations formed be-
tween the basic entities could then be combined to form more
complex associations between the given entities, as will be
described below, for the bottom-up and top-down association
components.

2.4. Indexing Entities

Claim 10. Association between entity values in the brain is based
upon temporal proximity and often also upon spatial proximity.
&erefore, it is possible to consider the activation of each entity
value in the brain as indexed in time and often also in space.

As was suggested above, the burst activation of each
value in any module often lasts well below one second.
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However, the association is based on co-activation [23].
&us, it is possible to derive a temporal “index” of activation,
which defines how proximal in time should the activation of
two or more values occur in order for them to associate.
Certainly, the brain has the ability to reverberate the acti-
vation of various sensory representations, for example, over
multiple seconds with the mechanism of working memory.
However, the capacity for co-activation of multiple repre-
sentations, by such mechanisms, is rather limited [24].

Furthermore, the brain representation is also tuned for
spatial indexing.&us, variousmodules of representation, from
the elementary (receptor) level and upward, are sensitive to
space (e.g., position in the visual field or somatosensory po-
sitioning over the body). With the advancement in the sensory
hierarchy, there seems to be a gradual blurring of spatial
precision [16]. Yet, even at relatively higher levels, represen-
tations of spatial proximity tend to associate more than rep-
resentations from distant loci. &us, it is possible to state that
brain representations are indexed for association in time and in
space, with some degree of temporal and spatial tolerance.

&e brain also possesses some ability to use various
modules, other than time and space, as an index for association
[25]. For example, we can explore for associations between
characteristics of people (or of any other group of objects). &e
grouping characteristics (people) are, in this case, the indices,
and the different characteristics are the representations, which
are being associated, such as height and weight. Both the
grouping characteristics and the associated characteristics are
represented in the brain as values of specific modules, or their
combinations, to begin with. Usually, these indexing modules
would be of higher levels in the sensory hierarchy. Still, the
value modules in the sensory hierarchy, which are beyond the
elementary level, are built by the association between ele-
mentary-level values on the basis of their temporal and spatial
proximity (or, in other words, based on their similar temporal
and/or spatial indexing). For example, people are perceived as
people in the first place because of spatiotemporal proximity in

the activation of representation of their body parts, and
therefore, the association of their height and weight is also
based on spatiotemporal indexing, to begin with. Generally, the
mere representation of values, beyond the elementary level, is
already based on temporal and spatial indices. &erefore, even
such allegedly nontemporal and nonspatial indexing, by the
brain, is based upon indexing modules, which are based upon
temporal and/or spatial indexing.&us, temporal and/or spatial
indexing underlies it and any kind of brain-based association. It
seems challenging to even imaginemodeling ourworldwithout
a strong preference for associations between sensory activa-
tions, which are proximal in time and/or in space.

Claim 11. Technology may enable overriding the time- and
space-based indexing limitation for the association, using
also the other representation dimensions of a physical at-
tribute value, intensity, or any combination of the four
representation dimensions (time, space, physical attribute
value, and intensity) for indexing

As was stated above, our brain is capable of utilizing
nonspatial and nontemporal indices. However, these indices
would be represented in higher levels of the sensory hier-
archy, and therefore, their very formation is based upon
temporal and spatial indexing.

Technology enables further indexing flexibility with any
entity or any combination of entities in the general tabular
structure of the sensory data set, which was described above
(see Figure 2 and related text) [26]. Demonstration box 1
presents the potential value of indexing by a specific entity for
the identification of association in a finite sample. However, it
should be remembered that the entities and values in the
tabular data set are still the results of our brains and, thereby, as
described above, were formed on the basis of temporal and
spatial indexing.&us, even the technological expansion of our
indexing ability still embeds temporal and spatial indexing.
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But, furthermore, the example in demonstration box 1 of
association by color may also be viewed as a demonstration
of a potential qualitative expansion beyond the basic brain’s
ability. As was discussed above, our brains associate on the
basis of temporal and spatial indexing.We further noted that
higher sensory representation modules (or entities), in the
brain, are also formed on the basis of this temporal and
spatial indexing, and therefore, their use as indexing entities
already embeds temporal and spatial indexing. However, we
also realized that at the level of the elementary sensory
representation, time and space are merely two of the four
sensory dimensions, which also include the physical attri-
bute values and this value’s intensity. At this elementary
level, there is no a priori preference for the representation
dimensions of time or space over the representation di-
mensions of physical attribute values or the value intensities.
Each of these dimensions, or their various combinations,
could be used equally for indexing. &erefore, demonstra-
tion box 1 could also be viewed as an example, in which the
physical attribute of color (sensed by wavelength receptors at
the elementary sensory level) was used for indexing, instead
of the activation timing (or order). Altogether, we may also
embody a significant external expansion of our association
ability by indexing on the basis of the other dimensions of
physical attribute values and value intensities and need not
be limited by the brain’s tendency to index by time and
space.

3. The Second Major Component: Bottom-Up
Association (Intrasample Association)

Claim 12. &e first type of the association we discuss is
“bottom-up” from the sampled data to association rules. It is
limited, both in our brain and with currently available
technologies, in terms of capacity (e.g., number of possible
entities and values, which could be associated) and demand
for temporal and spatial proximity to evoke association.&ese
limitations could be overcome in a comprehensive manner.

Suggested subcomponents for modeling bottom-up as-
sociation are as follows:

(1) Indexing association
(2) Multientity bottom-up association

3.1. Indexing Association

Claim 13. &e formation of association between represen-
tations is restricted by the proximity of their temporal and
spatial indexing. While the brain and technological ex-
pansions permit for some tolerance in the required index
proximity, it is still limited.

As was presented above, our sensation of the environ-
ment is indexed in time and space. Furthermore, we sug-
gested that the brain possesses innate, yet limited, abilities
for temporal and spatial tolerance, which could be used in
the process of association between values. As we discussed,
even when higher-level entities are used by the brain for
indexing, instead of proximal time or space relations, these
other entities were probably formed on the basis of proximal
time- and space-based associations (from the values of
entities at a lower level in the sensory hierarchy). &us,
altogether brain-based association is heavily based on
proximal time and space indexing.

Using computational expansion, the brain tolerance in
indexing could be increased. For example, with methods of
spatiotemporal data mining, it is possible to associate be-
tween distant (in space and in time) entity values and also to
associate between values with large tolerance regarding the
precision of their (spatiotemporal) distance [27]. Still, the
expansion offered by current computational methods in-
volves limiting assumptions regarding the spatiotemporal
distance between the associated values and regarding the
tolerance of the association window.

Claim 14. Technology may enable overriding the indexing
proximity constraints in a comprehensive manner.

However, theoretically, the association needs not be
limited by ranges of index proximity between the associated
entity values or by the degree of tolerance regarding their
relative distance. It could be possible to associate between
activations, which are indexed differently and apart from
each other, without any a priori limitations, as long as the
indexing of the two entities relates by some repetitive law.
For example, values of one entity at given index entries
(denoted by i) could be associated with values of another
entity at the succeeding index entries (i+ 1) or with values of
yet another entity at the double entries (i× 2). In order to
perceive the feasibility of comprehensive association, be-
tween any distant index entries, it is possible to envision the
index entries as a special entity and decompose it to basic
index entities (e.g., the units digit entity, the tens digit entity,
the hundreds digit entity, etc.). &en, it would be possible to
search for associations between couples of basic entities and
basic index entities on the basis of similarity in occurrence
counts. As there are, for example, ten index unit values, it
means that the number of samples of a couple of an index
unit value and a basic entity value would be decreased
tenfold on average when compared with the number of
samples of just the basic entity value. However, in a suffi-
ciently large sample, there may still be enough counts of the
couple values to form a basis for association. Demonstration
box 2, part A, presents an illustrative numerical example for
this possibility.
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Still, after the association between the decomposed
couples, there would be a need to recompose the identifi-
cation of the index entries, by combining the associations of

different index values and the same entity values (e.g. the
index units value, the index tens value, the index hundreds
value, etc.). &is way a mapping could be theoretically
completed, which associates values of one entity and that of
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another entity, without proximity constraints. Demonstra-
tion box 2, part B, continues the illustrative numerical ex-
ample for this possibility.

&us, altogether, it seems that we can envision a way to
expand our ability to associate while cancelling constraints
of index proximity. Each entity value could associate with
any other entity value, even if their index entries are distant,
as long as there is also an association between these index
entry values. While there are certainly implementation
challenges, the fact that we can envision such comprehensive
association between index values at any distance means that
it is within the reach of our extended theorizing ability.

While the origin for our discussion of unlimiting the
association proximity constraints was the brain’s indexing
by time and space, the above principles of association
without limitation of entry proximity are applicable to
indexing by any entity or combination of entities, whichmay
underlie the index.

3.2. Multientity Bottom-Up Association

Claim 15. Association is not just between pairs of repre-
sentations but also among larger sets of representation.
However, the brain is limited in its capacity for forming such
set associations. Current technology enables significant
expansion of this set’s association capacity. But every
available technology is still limited with regard to its possible
and preferred associations.

As discussed above, if two representations are co-active
in the brain, the connectivity between them strengthens, and
thereby, they become more associated and the opposite
occurs when the two representations are active separately
from each other. Importantly, the associability of pairs of
representations depends upon the physical connectivity
between the brain modules to which they belong.&us, pairs
of representations, which belong to modules that are
strongly connected, will associate more, while pairs of
representations, which belong to modules, that are not so
connected, will associate less effectively, given the same
degree of co-activation. Nevertheless, memory mechanisms
permit limited association of representations, which belong
to less connected modules, by promoting indirect
connectivity.

Furthermore, the association can form between groups
of representations (more than just two) [28, 29]. In fact, the

hierarchical structure of sensory representation embeds the
association of multiple representations. For example, the
representation of the face is basically an association of
multiple co-occurring face parts. &e association of groups
of representations, which do not belong to strongly con-
nected modules (by way of the hierarchical structure) and
may rely more on memory processes, maybe even more
limited than the association of only pairs of representations.

Moreover, we also emphasized above the limitations
imposed upon the bottom-up association process in terms of
index (temporal and spatial) distance and tolerance. Alto-
gether, these limitations also seem graver when considering
the association among groups of (more than just two)
representations.

Various data mining methods are in computational use
to enhance association abilities in large samples, which
involve multiple entities and values. However, each data
mining method has its underlying assumptions, and thereby,
each such method limits the range and the preference of
possible associations, which could be discovered, and even
with the combination of multiple methods, there are as-
sociations that would not be reached and multiple others
that would have low preferences [30]. &erefore, the chal-
lenge would be to envision a comprehensive approach,
which could expose all the possible associations in a sample,
without such limitations.

Claim 16. Technology may enable the scanning of all
possible associations among sets of representations, without
limitation.

&e key for such a theoretical generalization of multiple-
entity associations lies again in the finiteness of the set of
discrete entity values, which was described above, or in the
limited set of discrete values of the basic entities, which
comprise them. For example, let us assume that a standard
data mining method reached a certain formula, which as-
sociates entity Y with entities X1 and X2. In this case, there
would be an association between the basic X1 and X2 values
and the basic Y values (e.g., between the unit digits, tens
digits, etc.). Demonstration box 3 presents an illustrative
numerical example for this. However, given a sufficiently
large sample, such an approach, of associating the basic
values, would generate specific results for any formula of
association, which would be arrived at, by any data mining
method. &erefore, the approach of associating basic entity
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values is a conceptual way to generalize the outputs of any
data mining method.

Furthermore, at least theoretically, it is possible to as-
sociate between the basic discrete values by logical AND, in
which case, the Y value is y only if both the X1 value is x1 and
the X2 value is x2. Demonstration box 4 presents an il-
lustrative numerical example for this. It is also possible to
associate such values by logical OR, in which case, the Y
value is y if either the X1 value is x1 or the X2 value is x2.
Logical OR association is also possible between two X1

values: for example, the Y value is y if X1 value is either x11
or x12.&e associations may involve any number of multiple
entities and entity values. However, at the level of the values,
they will still follow a Boolean logic form and would be
describable with AND/OR predicates. &e basic items in
these logical expressions would be the values or their ne-
gations (x1′ associates with y if at the given index entries,
which relate X1 and Y values; the lack of occurrence of the x1
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value, in the X1 entity, associates with the occurrence of the y
value in the Y entity).

However, according to De Morgan’s laws, it is possible to
describe any logical expression in a disjunctive normal form,
which means that the elements are values or their negations
and they are combined at the first level by logical ANDs and at
the second level by logical ORs [31]. &erefore, an algorithm,
which aims to find all the combinations of source entity values
X1, . . ., Xn that predict a target entity value Y, could search
first for pair associations of Xi and Y andXi’ (negation) and Y,
then search for logical ANDs between these pairs, and then
form logical ORs among these AND sets. Such an algorithm
will explore, in principle, all possible combinations of entity
associations and thereby all multientity formulae.

Certainly, the use of a specific data mining method may
enhance performance and enable the extraction of the
formula from a smaller sample. However, our focus here is
not on the specific implementation, but instead on the
description of what a comprehensive expansion of our
theorizing abilities can reach. &us, according to the above,
we can certainly envision a way to generate all possible
association formulae between the values of multiple entities.

&e subcomponents, presented thus far, seem to suggest a
comprehensive theoretical extension to our bottom-up
neurocognitive ability of theorizing. However, they might not
be sufficiently effective for analyzing associations in a finite
sample as they are based on discretization of the data, which
reduces occurrence counts and leads to underfitting in the

discovered associations. To begin with, small sample sizes
certainly limit the brain, as well as the various data mining
methods, in finding comprehensive associations. Further-
more, the increased discretization, suggested above for the
sake of theoretical comprehensiveness of analysis, is certainly
likely to reduce the efficacy of associating even further. In a
way, the various data mining methods could be viewed as a
means to overcome such underfitting, at the expense of using
specific limiting assumptions regarding the nature of the
preferred association rules. Similarly, overfitting would also
be a risk in the case of small samples [32], for example, due to
incidental sensory activation, which does not repeat in other
samples. Indeed, this manuscript merely discusses the the-
oretical span of our cognitive abilities and is not focused upon
the feasibility of implementation. However, we would still be
interested in viewing (and in expanding) the manner by
which we currently overcome these limitations.

&erefore, we should discuss and generalize also the
component of correcting for this under- and overfitting.&is
is the goal of the next section.

4. The Third Major Component: Top-Down
Association (Intersample Association)

Claim 17. &e second type of association is “top-down,”
which evaluates the applicability of predefined association
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rules to the sampled data. However, predefined association
rules emerged from previous samples. &erefore, top-down
analysis is basically the employment of sample-crossing
association rules. Our brain and currently available tech-
nologies are limited in terms of the ability to scan the ap-
plicability of multiple sample-crossing association rules and
their combinations. We are also limited in scanning for
latent factors, which may be missing from the sample and
could have improved association if sampled. &ese limita-
tions could be overcome in a comprehensive manner.
However, some latent factors may still stay beyond our
reach.

Suggested subcomponents for modeling top-down as-
sociation are as follows:

(1) Top-down association

(2) Latent factors search

4.1. Top-Down Association

Claim 18. Building associations from one sample will often
be highly limited due to sample size. Instead, we are capable
of looking for the applicability of predefined rules in the
sampled data. &ese predefined rules are derived from
previous samples. While our brains have only limited ca-
pacity for exploring the applicability of these sample-
crossing rules, we expand our ability by harnessing ever-
improving technologies for this purpose. However, even the
most advanced technologies today are still based on as-
sumptions, which limit comprehensive exploration of al-
ternative sample-crossing rules.

In practice, we often look for associations in samples of
limited size. &erefore, the number of occurrences of various
entity values may be too small for the association, which is
based solely upon co-occurrence. Furthermore, with small
samples, there is a greater risk of underfitting as well as of
overfitting. &us, we often explore association rules using an
inductive reasoning process. In essence, this process is heavily
based on the exploration of the adequacy of various predefined
association rules for the current sample [33]. Notably, these
predefined association rules were in fact learned and estab-
lished on the basis of previous samples.&is exploration among
prelearned association rules is guided by our prefrontal cortex
with top-down exploration among the representations of en-
tities in the relevant sensory modules [34].

Importantly, inductive reasoning is content-dependent:
for example, we may explore first among a certain set of
mathematical association rules if the sample is numerical
and among another set of linguistic association rules if the
sample comprises words. However, we are also capable of
analogical reasoning [35], namely, of exploration, in a
manner which crosses content boundaries and is based upon
similarity of the distribution of entity values and upon
similarity in the distribution of relations between entity
values in the different samples [36]. &us, analogical rea-
soning does not assume a priori semantic knowledge about
the sample.

In fact, in a sense, inductive reasoning could be viewed as
a special case of analogical reasoning. &is is because each
inductive rule could be described in terms of the distribution
of entity values and the distribution of the interentity value
relations. &us, we can expect that if a given inductive rule is
applicable in a specific sample, we would find similarity in
the distribution of entity values and entity relations in the
specific sample and the distribution of the entity values and
relations of the inductive rule itself. For example, if the
entities are numbers, we would expect to find basic entities
with ten values each (digits) and relations between the
values, which may relate to arithmetical operations: for
example, digit multiplication by 2 would map from ten
values to only five values of unit digits (even numbers only).
&us, in principle, we can describe any matching with as-
sociation rules, which our brain can generate, in terms of
analogical reasoning or, in other words, as being based on
similarity in the distribution of entity values and value re-
lations between samples or between samples and rules.

We further possess the ability to explore association rules
by chaining several predefined rules in order to identify
associations in the current sample [37]. Nevertheless, this
ability of the brain to chain functions is limited in capacity
[38]. Indeed, this top-down association ability of the brain,
without and with chaining, is based on processes of executive
function, working memory, and sustained attention, which
are limited in capacity. &erefore, we often utilize external
aids for the effective implementation of exploring associa-
tion rules, from pencil and paper (and their historical
predecessors) to advanced computing.

An advanced method for improving the human top-
down exploration process for association rules is symbolic
regression [39]. In its basic form, this method starts with a
set of available association rules or, for quantitative data,
with a set of formulae. &ese formulae are applied at any
order on the sampled data, and effective formulae, or as-
sociation rules, are maintained. Combinations of successful
rules are further generated, and this hopefully leads to the
selection of effective formulae, or chains of association rules,
which identify associations in the sampled data. However,
this process of symbolic regression is still limited, for ex-
ample, by defining the set of formulae, which may be used as
a priori rules. &erefore, we discuss below its possible
comprehensive expansion and automation.

Claim 19. Technology may enable the exploration of all
possible sample-crossing association rules.

For a given sample, every association is describable as a
mapping between source and target. &e nodes in the source
partition are single entity values or, alternatively, the values
of a set of entities, which are combined by a logical predicate,
and the nodes in the target partition are other values of
another entity. &e edges of each such mapping represent
possible association relations between pairs of source and
target values. Importantly, from each sample, it might be
possible to derive multiple association relations between
various combinations of source and target entities. &us, the
associations in a given sample could be described by a set of
such multiple and alternative mappings, among which there
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are partial overlaps in terms of entities, values, and asso-
ciation relations. &e theoretical generalization of analogical
reasoning would be a comprehensive exploration of simi-
larities between such sets of mappings, which emerged from
different samples. Since, as was stated above, the rules, which
are evaluated for adequacy in a given sample, stem from
associations in other samples. &e similarity between sets of
mappings could be based, in principle, only on the distri-
bution of values and the value relations, without reference to

content semantics (or to the labeling of entities and values)
[40]: demonstration box 5 presents an illustrative numerical
example for this possibility. As we discussed above, even
content-based inductive reasoning could be viewed as a
private case of content-free association. Notably, the con-
tent-free association would enable the breaking of possible
barriers, which may prevent identifying certain relations
between samples of only allegedly different content.

Importantly, it should be pointed out that at times, the
relation between the sets of mappings might not be of
equality, namely, a similar number of values in the relevant
entities, or entity combinations, with similar value

distributions and similar intervalue relation distributions.
Instead, one set might be a subset of the other, or there might
be a significant, yet still partial, overlap between the samples.
&ese types of partial relations might also indicate under- or
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overfitting in the bottom-up associations of the involved
samples. &ereby, such under- and overfitting could be

corrected. Demonstration box 6 presents an illustrative
numerical example for this possibility.

Finally, in resemblance to the brain’s ability to chain
rules, similarity could also associate between a certain
sample and a chain of other samples. &us, the

comprehensive exploration of similarities between samples
also includes sample chains. Demonstration box 7 presents
an illustrative numerical example for this possibility.
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4.2. Latent Factors Search

Claim 20. &e effectiveness of association may be limited
due to the effect of latent factors (entities or values). Our
brains have a certain ability to explore such hidden factors.
However, it is based upon the same bottom-up and top-
down components described in the previous paragraphs and
is thus limited. Current technologies expand our ability in
this regard but are based on limiting a priori assumptions
regarding the nature of possible latent factors.

On multiple occasions, the associations for a given
sample would be only partly due to the presumed impact of
latent entities and values, which were not included in the
analysis. It seems that the identification of such an impact
and the search for latent entities and values is important for
effective theory building. Indeed, studies demonstrated our
ability to identify the existence of such latent factors from
early childhood [41], and in the history of science, on
multiple occasions, the existence of entities and values was

derived theoretically first and only later was also supported
by experimental data.

If the latent entities and values are present in a given
sample and were simply missed in the analysis due to
underfitting, we can include them for improving association
precision. &is condition is identified by top-down associ-
ation. However, as was described above, the embodiment of
top-down association by the brain is limited in its capacity.

Yet, on other occasions, the latent entities and values
were not part of the sample, to begin with. Still, research
regarding our exploration for such latent factors suggests we
use analogical reasoning to identify similar sample sets [42].
Such exploration may identify similar sets, which may also
include entities or values that improve the partial associa-
tions of the original sample. In which case, we can also try to
include, with further samples from the current source, these
additional entities and values. As described above, the ability
of our brain for analogical reasoning is limited. Sometimes,
for example, in the context of scientific theories, this ana-
logical reasoning quest for latent factors may be described as
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involving intuition and insight. However, cognitive analysis
of such processes seems to suggest that insight may be the
emergence of the results of unconscious exploration into
consciousness [43]. All in all, we have a limited ability to
identify the existence of latent factors and explore them in
the current sample or in other samples.

Various methods have been used to analyze latent factors
[44]. Each of these methods is based on specific assumptions
regarding the latent entities and values and their relation to
the sampled entities and values. Furthermore, these methods
are based only on the sample without automatization of the
analogical reasoning of exploration for finding candidate
latent variables in other samples. &erefore, below, we
discuss principles for comprehensive exploration for latent
entities and values, without human intervention.

Claim 21. Technology may enable the exploration of all
candidate latent factors. Due to the limited elementary
sensory level, some latent factors may be beyond our reach.

On the basis of our analysis thus far, our possible ex-
ploration for latent factors may be performed on three
different levels: (1) among additional entity values from the
current sample, which were not found in the basic associ-
ation; (2) among other existing samples, which show partial
similarity to the current sample; and (3) among the entities
of any other possible sample out of the finite set of samples,
as we will discuss below.

When the latent entities and values exist within the
current sample, they may have been missed because of the
computational limitations of the algorithmic implementa-
tion. It would then be possible to reexplore, among all
possible basic and compound entities and values, candidates
with a distribution of values that can combine with the
partial association for its improvement. &us, latent factors,
which were missed could be identified in a focused analysis,
which evaluates their contribution to other associations.
Demonstration box 8 presents an illustrative numerical
example for this possibility.
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As was suggested above, the latent factor could also be
explored in other samples, even if its counterpart is not
found in the current sample. &us, a partial association in
the current sample might have a parallel association in
another sample. However, in this other sample, there might
be an additional entity, which could be added to improve the

association. In which case, it might be possible to explore the
origin of the current sample for entity values, which could
parallel to the additional entity. Demonstration box 9
presents an illustrative numerical example for this
possibility.

Furthermore, as described for the top-down association,
similarity could also be analyzed, for the purpose of iden-
tifying candidate latent factors, between the partial associ-
ation sample, on the one hand, and a chain of other samples,
on the other hand.

Note that given a large enough set of samples and their
derived association rules, currently prevailing methods of
exploring latent factors (e.g., hidden Markov models as one
example) would emerge, as a special case. &is is because
they are merely based on a sequence (chain) of arithmetic
operations (associations), and as we described above, each
such association is based on a small set of relations between
basic entities (or, in the arithmetic case, of digits). However,
if the previous sample set is large enough, such underlying

associations are likely to be already included in it. In fact, the
view of the advanced methods, as composed of chains of
associations, relates to a core aspect of this work. Arithmetic
formulae, like any other association rule in any domain,
comprise a limited set of underlying associations (addition,
subtraction, multiplication, division, etc.) and their
chaining.

Finally, it is possible that a latent factor is not found in
the current sample, or in other samples, with partial simi-
larity to the current sample. In which case, it would be
possible to explore all existing and futuristic samples for
entities with a distribution of values, which may, if sampled,
improve the current association. To this end, it is possible,
for example, to count the number of ambiguities in the
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current association and look for entities, basic or compound,
which have enough values, to resolve these ambiguities in
the first place. Of course, it would still be required to check
whether co-sampling this new entity in addition to the

current entities indeed assists in resolving the ambiguities.
Demonstration box 10 presents an illustrative example of
this possibility.

Importantly, we started our analysis from the elementary
sensory layer and stated that our entire theory-building
process is based on a limited set of basic sensory entities and
values. Certainly, as stated, we are capable of generating
compound entities. But still, the set of all possible entities
and values, which could be candidates as contributors of
hidden factors, is limited. In principle, it is possible that
some hidden factors would remain beyond our sensory
reach and therefore also beyond our theorizing reach.

5. Summary

We divided the process of theorizing into three major
components: (1) sensation and indexing, (2) bottom-up
association, and (3) top-down association. For each major
component, we discussed its subcomponents in the brain
and with current technology. &ereafter, we described the
possible comprehensive expansion of the various subcom-
ponents (except for the first subcomponent of the ele-
mentary sensory layer, which could be considered a given,
upon which we can build theories). &e combination of all
these expansions would generate a comprehensive algorithm
for associations or theorizing.

As stated, the current manuscript does not claim to
suggest an implementational algorithm. It seems that the
abstract comprehensive algorithmic components, which are
described above, would be, even if feasible to implement,
very demanding in terms of computer resources. However,

on the one hand, computer resources are constantly im-
proving, and on the other hand, it might be possible to
develop practical implementational embodiments of the
above described algorithmic components. Furthermore,
even a strictly theoretical and impractical description might
contribute to our understanding of the theorizing process
and the current merits and limitations of its computerized
expansions.

We are in an era of ever-growing reliance upon data
mining and artificial intelligence for practically any de-
manding goal, and scientific research is no exception in this
regard. Indeed, artificial intelligence and data mining
methods produce ever more breakthrough scientific find-
ings. However, with this growing reliance upon such
methods, scientists should understand how each such
method, or even a combination of methods, is limited in
terms of the associations it is able to discover. As was
presented in the abstract, the purpose of this manuscript was
to offer a computational framework of the theorizing pro-
cess, as it stems from our brains, as it is currently expanded
by technological aids, and as it could be further expanded
theoretically to become comprehensive. &is may enable the
characterization of any state-of-the-art data mining method,
in terms of the subcomponents presented here, which it
implements, and in terms of its computational limitations
even within these sub-components. For example, certain
theories might provide effective, yet partial, algorithms,
which are mainly limited to specific bottom-up associations
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[45], while others might provide effective, yet partial, al-
gorithms, which are mainly limited to specific top-down
associations [39]. It is beyond the scope of the current
manuscript to analyze the various data mining methods
extensively. However, if we can produce a framework of the
theorizing process, which stems from our neurocognitive
abilities in a comprehensive manner, it should be possible to
pinpoint in it the scope of the various data mining methods,
whether their algorithms are based on cognitive principles,
such as symbols manipulation, or onmore abstract emergent
computation [46].

In all likelihood, the framework that was presented in
this manuscript would need significant improvement to
meet such a goal. However, in order to offer as sound as
possible first step, we tried to set this manuscript upon rather
established neurocognitive foundations, which seem to be
rather accepted after many decades of brain and behavior
research.

Notably, based on the above description, multiple dif-
ferent theories or associations might be identifiable in a
given set of samples. Indeed, the preference among these
different theories, or association rules, might be defined
parametrically in the embodiment of the algorithm. For
example, it might be possible to prefer theories, which ex-
plain multiple samples, even at the expense of precision and
coverage at the single sample level, or alternatively, to prefer
precision or degree of single sample coverage (to the level
that the top-down component merely serves to fill in some
gaps). Altogether, this can promote a more objective
quantification of preference among theories according to
different parameters. &is can also prioritize the use among
different possible theoretical constructs [10], which would be
the emerging compound entities, identified as useful for the
association.
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