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In this paper, we propose an underwater target perception architecture, which adopts the three-stage processing including
underwater scene acoustic imaging, local high-order statistics (HOS) space conversion, and region-of-interest (ROI) detection.
After analysing the problem of the underwater targets represented by the acoustic images, the unique cube structure of the target
in local skewness space is noticed, which is used as a clue to develop the ROI detection of underwater scenes. In order to restore the
actual appearance of the ROI as much as possible, the focus processing is explored to achieve the target reconstruction. When the
target size and number are unknown, using an uncertain theoretical template can achieve a better target reconstruction effect. ,e
performance of the proposed method in terms of SNR, detection rate, and false alarm rate is verified by experiments with several
acoustic image sequences. Moreover, target perception architecture is general and can be generalized to a wider range of
underwater applications.

1. Introduction

Interpreting target information from acoustic images has
long been an active research field [1] in ocean acoustics.
According to the different application requirements [2–5],
the research is mainly carried out along the direction of
target detection, target recognition, target classification, and
target tracking. An essential step is to search the region of
interest (ROI), associated with the potential target, in the
acoustic image. Conventional methods take local contrast as
a cue to divide the acoustic image into different areas and
mark specific areas as the ROI. Following this strategy, a
variety of methods [6–8] including threshold segmentation
method, clustering method, mathematical morphology
method, and level set method have been developed. Alter-
native approaches have tended to focus on model-based
detection [9] or supervised learning [10]. In many cases,
acoustic images are difficult to interpret due to multiple
artifacts, low signal-to-noise ratio (SNR), and inadequate
resolution.

One solution is to construct a local background distri-
bution model and take the discontinuous isolated singular as
the clue to correlate ROI. Higher-order statistics (HOS) is

considered as a possible local background transformation
method because it has been proven to be sensitive to outliers
[11] and is suitable for image processing. Jacovitti [12] in-
troduced the application of HOS in image decomposition,
blind deconvolution, coding, and pattern recognition. A
group of scholars use HOS for image processing to solve line
detection [13], sea mine classification [14], motion estima-
tion [15], edge extraction [16], etc. Furthermore, research
showed that statistics of small pixels in the neighbourhood
are able to accomplish considerable differentiation. Sharma
et al. [17] proposed an image representation method based
on local HOS for texture classification and face analysis. ,e
most enlightening research is proposed by Maussang [18],
which employed local HOS to detect small deterministic
regions surrounded by random noise in the synthetic ap-
erture sonar (SAS) image.

In this paper, we address the challenges of perceiving
underwater targets in local HOS space of underwater scenes
and, starting from our previous research [19, 20], we design a
three-stage automatically processing architecture outlined in
Figure 1. In the first stage, acoustic imaging is performed on
the underwater scene in a certain field of view and mapped
into corresponding acoustic images. In the second stage, the
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acoustic image is converted to the local HOS space, hoping
to acquire clearer target information. In the third stage, the
ROI detection algorithm is implemented in the local HOS
space to remove abnormal target areas and screen out po-
tential targets. We focus on two key challenges:

(1) Can the local HOS space be a good representation of
targets with low SNR in underwater scenes?

(2) Can the target information obtained in the local HOS
space be directly used for ROI detection?

,e structure of the paper is organized as follows: Section
2 gives a brief review of the target representation in acoustic
images and formulates the target representation in local
HOS space. Section 3 presents the ROI detection method in
local HOS space and studies the target reconstruction by
focus processing. Section 4 provides experimental results of
the proposed three-stage architecture on real acoustic image
sequences and compares its performance with conventional
methods. Finally, the conclusion is drawn in the last section.

2. Target Representation from Acoustic
Images to Local HOS Space

2.1. Problem Formulation. A target in the underwater scene
is usually represented as a set of specific pixels in acoustic

images. ,e echo intensity, shape, and contour are used to
describe this group of specific pixels, which become clues to
indicate the presence or absence of the target in the image.
Due to the complex and changeable characteristics of the
underwater acoustic channel medium and its boundary, the
highlight area associated with the potential target will also
change significantly. Acoustic images of the same under-
water scene collected at different time periods are shown in
Figure 2(a), and the segmented highlighted area is shown in
Figure 2(b). In the first line, the target appears as a long strip,
which is a group of pixels whose echo intensity is higher than
in the surrounding pixels. In the second line, there are two
highlighted areas with similar shapes, indicating that the
target is split into two subareas. In the third line, there are
many highlight areas of different sizes, indicating that the
target and noise reverberation have similar echo intensity, so
it is difficult to distinguish which highlight areas correspond
to potential targets.

,e above analysis shows that the shape and contour
features are not stable. In order to identify the target in the
acoustic image sequence formed by the time-varying un-
derwater scene, one solution is to explore the invariable local
features [21, 22] and another solution is to establish a
background model to indirectly identify underwater targets.

2.2. Target Representation in Local HOS Space. ,e back-
ground model of the acoustic image is established, which is
transformed into HOS space, and the discontinuous dis-
tribution region is regarded as the potential target.
According to previous research, Weibull distribution is used
to represent the background of water imaging and skewness
is chosen as the HOS. A rectangular window is designed to
traverse the entire acoustic image, and the local skewness of
each unit in the window Sw is calculated by

SW �
α(1 − 2α)A

3
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2
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where α is the ratio of the target to the background in the
window, mB(r) is the r-th origin moment of the background,
and A is the average echo intensity of the target. In cal-
culation, A is commonly replaced by the SNR, which is
defined as the average power ratio of the target and back-
ground echo intensity:

SNR � 20 log10
A − μB




σB

 , (2)

where μB and σB are the mean value and mean square error
of the background, respectively.

Local skewness can be regarded as a function of the
target-to-background ratio and the SNR in the window. In
the selection of sliding window size, a tradeoff must be made
between obtaining high target contrast in the local skewness
space and stable background distribution. A simulated
acoustic image of 100×100 pixels was established, including
a square target SNR� 12 dB with a side length To � 4, and the
background followed Weibull distribution. Scale parameters
k � 5.2 and shape parameters λ � 0.42 were estimated from
the actual data. As seen in Figure 3(a), due to the small size of
the target and weak SNR, the echo intensity is submerged in
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Figure 1: Underwater target perception architecture.
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the surrounding background clutter. A sliding window of
Tw � 7 is set to transform the original acoustic image to the
local skewness space, and the deviation correction estima-
tion of the local skewness is given by

SW �
n
2

(n − 1)(n − 2)

1/n 
n
i�1 xi − x( 

3

1/n − 1
n
i�1 xi − x( 

2
 

3/2, (3)

where n is the total number of pixels in the window.
In the local skewness space, the target displays a cube

structure as shown in Figure 3(b), which can be easily
identified from the background compared to the original

acoustic image. As shown in Figure 3(c), the 3D represen-
tation of target details shows that the edge of this structure is
high and the middle is low. ,e fewer the target pixels in the
calculation window, the larger the SW, and as the target pixels
increase in the calculation window, SW gradually decreases.

3. ROI Detection and Target Reconstruction in
HOS Space

3.1. ROI Detection. Once the SNR of the acoustic image is
relatively low, the target will be submerged by the back-
ground, and it is difficult to identify the potential target
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Figure 2: Target representations in different acoustic images: (a) targets in the acoustic image and (b) target segmentation.
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directly by the detection algorithm. Create a 100×100 pixel
simulated acoustic image containing a square target of size
To � 8. Change the SNR to 6 dB, 8 dB, 10 dB, and 12 dB from
left to right in Figure 4(a). ,e previously proposed subset
censored-constant false alarm rate (SC-CFAR) algorithm
[20] is used to detect the target in the above acoustic image,
with Pfa � 0.01, and the detection result is shown in
Figure 4(b). One can see that when the SNR is 6 dB, the
target cannot be detected at all; When SNR is 8 dB or 10 dB,
Only a part of the target can be detected. When the SNR
reaches 12 dB, the target can be fully detected. ,e simu-
lation results confirm that it is very difficult to detect the
target in the acoustic image with lower SNR.

It is considered to implement detection in local HOS
space through transformation. Let the window size Tw � 10;
convert the original acoustic image in Figure 4(a) to the local
skewness space, and the result is shown in Figure 5(a). It can
be found that no matter whether the SNR of the original

acoustic image is high or low, the target will form a unique
cube structure in the local skewness image. ,e higher the
SNR of the original acoustic image is, the clearer the target is
and the easier it is to distinguish. Similarly, the SC-CFAR
algorithm is executed in the local skewness space, and the
detection result is shown in Figure 5(b). When the SNR is
6 dB and 8 dB, part of the cube structure can be detected but
there are many false alarms. When the SNR is 10 dB, the
number of false alarms is reduced but the cube structure is
incomplete. When the SNR is 12 dB, the cube structure can
be completely detected.

,e simulation results show that the cube structure
formed by the potential target in the local skewness space
can be used as a clue of ROI, but the SC-CFAR algorithmwill
have a high false alarm rate in case of low SNR. In addition,
the use of large computing windows will form a larger cube
structure, which will cause problems in actual target
positioning.
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Figure 3: Local skewness for target representation (SNR � 12 dB): (a) original acoustic image, (b) local skewness image, and (c) target details
in local skewness space.
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3.2. Target Reconstruction. ,e problem of ROI detection in
the local HOS space mentioned above can be solved by target
reconstruction. ,e focus processing is used to reconstruct
the target for restoring the original appearance, and the local
HOS image and target theoretical template are processed for
correlation. ,e target theoretical template size TM is related
to the calculation window size Tw and the target size To, and
its expression is as follows:

TM � TW + TO − 1. (4)

A simulated acoustic image including a square target of
SNR� 10 dB with a size of To � 12 was built. ,e size of the
calculation window was selected as Tw � 15, and TM � 26
could be obtained from equation (4). A theoretical template
of the target in the local skewness space was established
according to equation (1).

,e local skewness image is shown in Figure 6(a). It is
clear that the target in the local skewness image is a special
large cube structure when choosing a larger computing
window. By correlating the local skewness image with the
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Figure 4: Detection on simulation images with lower SNR: (a) simulated acoustic image (6 dB, 8 dB, 10 dB, and 12 dB) and (b) corre-
sponding detection results.
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Figure 5: SC-CFAR detection on local skewness images: (a) local skewness image for Figure 4(a) and (b) corresponding detection results.
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theoretical template of the target, the result is shown in
Figure 6(b). ,e highlight region formed after focus pro-
cessing represents the target, and its maximum value is
located at the center of the original sound image. SC-CFAR
is used for ROI detection in Figures 6(a) and 6(b). In
Figure 6(c), without target focusing, the target presents a
hollow rectangular shape and there are a few false alarms. In
Figure 6(d), the actual appearance and position of target can
be easily detected after target focusing.

3.3. Uncertain Target .eory Template. In the application,
the calculation window size is defined by the researcher and
the potential target size and number are unknown. In this
case, the theoretical template of the target in the local
skewness space cannot be determined. To solve this problem,
a theoretical template with an uncertain target size can be
designed, which is composed of multiple target theoretical
templates with different sizes. ,e weight coefficient obeys
the Gaussian distribution, the typical template size is taken
as the mean value, and the uncertainty of the size is taken as
the mean square error.

A simulated acoustic image containing two square tar-
gets with SNR� 10 dB and sizes of To1 � 12 and To2 � 6,
respectively, is established. ,e original acoustic image is
shown in Figure 7(a), and the gap between the two targets is
10 pixels. ,e size of the calculation window was selected as
Tw � 15, and the local skewness image is obtained in

Figure 7(b) when the target position is close; the overlap of
the calculation windows causes the special cubes to be mixed
together, which makes the subsequent target detection ex-
tremely difficult.

Using the certain target theoretical template and
selecting the template size TM � 26, the local skewness image
with target focusing is shown in Figure 8(a). Only the large
one with To1 � 12 can be observed, and the small one with
To2 � 6 is submerged in the background. In this case, if the
target detection algorithm is executed directly, smaller
targets will be missed. Design an uncertain target theoretical
template with the size TM � [20–28], and the result after
target focusing is shown in Figure 8(b). Two targets can fully
be observed, both of which are higher in magnitude than the
surrounding background. ,e results of SC-CFAR detection
are shown in Figures 8(c) and 8(d). Only the larger size target
can be obtained with a certain target template, while both
targets with different sizes and close positions can be clearly
detected with an uncertain target template. It is concluded
that the uncertain template exhibits better focusing effect
and stronger robustness than the certain template, when the
target size is unknown or multiple targets exist.

4. Experiments

4.1. Configuration. ,e operating frequency of the sonar
system used in the experiment is 300 kHz, the sampling
frequency is 58 kHz, the receiving array has 65 elements, the
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Figure 6: Comparison of detections with and without target focusing. (a) Local skewness without target focusing. (b) Local skewness with
target focusing. (c) Detection results without target focusing. (d) Detection results with target focusing.
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Figure 7: Underwater scene simulation with two targets: (a) simulation acoustic image and (b) local skewness image.
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Figure 8: Comparison of focusing with different templates. (a) Focusing with a certain target template. (b) Focusing with an uncertain target
template. (c) Detection results with a certain template. (d) Detection results with an uncertain template.
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number of beams is 256, and the beam coverage is 150° ×1.5°.
,e multibeam sonar system is located 2m above the water
surface by lifting the rod. ,e receiving array and the
transmitting array are placed along the X-axis and Z-axis,
and the two forms a T-type perpendicular to the Z-axis. As
shown in Figure 9, the sonar system is fixed and the beam
sector is parallel to the water surface.,e underwater field of
view under this layout can be called fixed-point head-up
view.

4.2. Evaluation. Experimental evaluation focuses on two
aspects: (i) target representation in space; (ii) ROI detection
performance. Calculate the target SNR of the original image
and the local HOS image by equation (2), and evaluate the
target representation in the space by comparison. ,e de-
tection performance is evaluated by the detection rate Pd and
the observed false alarm rate Pfa, which are defined as

Pd �
Nd

No

,

Pfa �
Nfa

Nt − No

,

(5)

where Nt is the sum of pixels of the acoustic image, No is the
sum of pixels belonging to the target, Nfa is the sum of pixels
observed as false alarms, andNd is the sum of pixels observed
as the target.

,e proposed method is compared with other methods
in terms of ROI detection performance. ,e method de-
scription and parameter setting are shown in Table 1.
Method-I directly performs segmentation in the acoustic
image, and the threshold range is 0–1, which is set to 0.99.
Both Method-II and Method-III carry out target recon-
struction in the local HOS space and then perform SC-
CFAR.,e window is selected as Tw � 12, and the false alarm

Table 1: Method description and parameters setting.

Method Execution object
Detection algorithm ,eoretical template

Algorithm Parameter Window size Target size
I Acoustic image Segmentation ,reshold� 0.99 — —
II Local HOS space SC-CFAR Pfa� 0.01 12 9
III Local HOS space 6–12
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Figure 10: Acoustic image sequence I: (a) original acoustic image, (b) local HOS image, and (c) target reconstruction using uncertain
template.
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rate is set to an equivalent 0.01. Method-II uses a certain
theoretical template with a target size To � 9, while Method-
III uses an uncertain template with a target range
To � [6∼12].

4.3. Results and Analysis. ,e indoor pool experiment is
designed to simulate the underwater scene in which the
sonar system is fixed in the safe area near the port to monitor
the approaching threat target. A large amount of actual data
including real targets was collected, and the acoustic image
sequences were generated by water imaging.

Acoustic image sequence I contains 33 frames of
261× 541 acoustic images with a resolution of 0.02× 0.02m2.
It describes 5.2×10.8m2 water scene parallel to the water
surface, in which two targets marked T1 and T2 move along

the direction of the track simultaneously.,e typical original
acoustic image is shown in Figure 10(a), the local HOS image
is shown in Figure 10(b), and target reconstruction using an
uncertain template is shown in Figure 10(c). ,e size of the
target is small and the echo intensity is close to the back-
ground, which makes it difficult to identify the target in the
original image. In the local HOS image, the target forms a
unique square structure, which shows a clearer original
appearance after the target reconstruction.

,e three methods described in Table 1 are used to
perform ROI detection. Figure 11(a) shows the detection
result with Method-I. A large number of false alarms are
detected along with the targets. Figures 11(b) and 11(c) show
Method-II and Method-III, respectively, and both have
achieved better detection results. Using a certain template,
the area of the target is slightly larger, while using an
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Figure 11: ROI detection on acoustic image sequence I: (a) results with Method-I, (b) results with Method-II, and (c) results with Method-
III.

Table 2: Detection statistics on the image sequence I.

SNR Pd Pfa
Original HOS Method-I (%) Method-II (%) Method-III (%) Method-I (%) Method-II (%) Method-III (%)

Image1 37.34 45.34 10.93 75.58 96.23 0.63 0.12 0.00
Image2 29.42 44.42 5.06 90.45 100.00 0.67 0.03 0.00
Image3 36.35 44.68 19.64 61.30 84.28 0.57 0.23 0.05
Average 35.05 45.68 14.05 70.94 91.35 0.61 0.17 0.03
Image1, Image2, and Image3 correspond to the three rows of images from the top to bottom in Figures 10 and 11, respectively.
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uncertain template, the target is closer to the actual ap-
pearance and the false alarm rate is lower.

,e detection statistics of the image sequence I are
shown in Table 2, which lists SNR, Pd, and Pfa of the above
three images and the average of the entire image sequence.
From the original image to the local HOS space, the average
SNR of the target is improved by 30.33%. Comparing
Method-I and Method-II, Method-III achieved the highest
Pd � 91.35% and the lowest false alarm rate Pfa � 0.03%.

Acoustic image sequence II contains 48 frames of
125× 205 acoustic images with a resolution of
0.05× 0.05m2. It describes a water scene of 6.2 ×10.2m2

parallel to the water surface, containing two groups of
targets, one set of relatively stationary targets marked S1
and S2 and another set of moving targets marked T1. ,e
typical original images shown in Figure 12(a) have prob-
lems such as large background fluctuations, and the moving
target is too close to the stationary target. ,e proposed
method can form a highly discriminative cube structure
shown in Figure 12(b) and achieve focus at the target lo-
cation shown in Figure 12(c).

,e detection results with Method-I shown in
Figure 13(a) still have a high false alarm rate. Figure 13(b)

shows the detection result with Method-II and there are
many blocky highlight areas, corresponding to false targets.
Method-III can fully detect both stationary and moving
targets shown in Figure 13(c), and the false alarm rate is also
acceptable.

,e detection statistics of the image sequence II are
shown in Table 3, and the content displayed is similar to
Table 2. Converting to the local HOS space, the average SNR
of the target is only improved by 12.20%, but the proposed
method still achieves Pd � 76.87% and the lowest false alarm
rate Pfa � 0.13%.

In summary, the qualitative comparison of the target
representation and detection results is given in
Figures 10–13 and the corresponding quantitative results are
in Tables 2 and 3. ,e performance of the proposed method
is better than that of the traditional methods in terms of Pd
and Pfa. Moreover, the target reconstruction restores the
cube structure in local HOS to its original appearance, and
the uncertain template is used to achieve better focusing
effect than the certain template. ,e target area has a slight
but negligible offset, mainly due to the sliding window.
Further improvements can be optimized through window
location estimation.
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Figure 12: Acoustic image sequence II: (a) original acoustic image, (b) local HOS image, and (c) target reconstruction using an uncertain
template.
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5. Conclusion

,is paper studies target perception in local HOS space,
which is difficult to interpret in an original acoustic image.
,e main conclusions are as follows:

(1) When the original acoustic image is mapped to the
local skewness space, the target presents a special
cube structure and the SNR is enhanced. ,erefore,
the target with low SNR is easier to identify in the
local skewness space.

(2) ,e cube structure formed by the target in the local
skewness space will cause the problem of target
positioning. ,e focus processing can restore the
actual appearance of the target as much as possible

and determine the position of the target. When the
target size and number are unknown, using the
uncertain target template can achieve a better
effect.

(3) An underwater target perception architecture
based on layered processing mechanism is pro-
posed and verified by experiments with multiple
sets of real data. Experimental results show that
compared with the traditional method, the pro-
posed method has a higher detection rate and a
lower false alarm rate.

Future research will promote the application of a layered
target perception architecture to threat target tracking in
warning areas such as wharf, port, and nearshore.
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Figure 13: ROI detection on acoustic image sequence II: (a) results with Method-I, (b) results with Method-II, and (c) results with Method-
III.

Table 3: Detection statistics on the image sequence II.

SNR Pd Pfa
Original HOS Method-I (%) Method-II (%) Method-III (%) Method-I (%) Method-II (%) Method-III (%)

Image1 33.33 38.02 12.84 35.20 52.85 0.88 1.05 0.41
Image2 36.88 40.23 22.18 57.41 87.84 0.79 0.30 0.04
Image3 38.71 41.25 26.46 41.67 79.78 0.75 0.36 0.08
Average 37.37 41.93 26.33 52.69 76.87 0.75 0.55 0.13
Image1, Image2, and Image3 correspond to the three rows of images from the top to bottom in Figures 12 and 13, respectively.I
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