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The reinforcement learning algorithms based on policy gradient may fall into local optimal due to gradient disappearance during
the update process, which in turn affects the exploration ability of the reinforcement learning agent. In order to solve the above
problem, in this paper, the cross-entropy method (CEM) in evolution policy, maximum mean difference (MMD), and twin
delayed deep deterministic policy gradient algorithm (TD3) are combined to propose a diversity evolutionary policy deep
reinforcement learning (DEPRL) algorithm. By using the maximum mean discrepancy as a measure of the distance between
different policies, some of the policies in the population maximize the distance between them and the previous generation of
policies while maximizing the cumulative return during the gradient update. Furthermore, combining the cumulative returns and
the distance between policies as the fitness of the population encourages more diversity in the offspring policies, which in turn can
reduce the risk of falling into local optimal due to the disappearance of the gradient. The results in the MuJoCo test environment
show that DEPRL has achieved excellent performance on continuous control tasks; especially in the Ant-v2 environment, the

return of DEPRL ultimately achieved a nearly 20% improvement compared to TD3.

1. Introduction

Reinforcement learning [1, 2], as an important branch of
machine learning [3, 4], has always been a research hotspot.
Reinforcement learning constantly improves its policy by
interacting with the actual environment, so that the policy
can get the maximum cumulative return in the current
environment. In recent years, deep learning has exerted
more and more influence on various research fields. The
combination of deep learning and reinforcement learning
produces a variety of deep reinforcement learning algo-
rithms. Deep reinforcement learning can be divided into
three types: value-based deep reinforcement learning [5-7],
policy-based deep reinforcement learning [8], and deep
reinforcement learning based on actor-critic structure
[9-11].

Value-based deep reinforcement learning methods es-
timate the value function through a neural network and use
the value function output by the neural network to guide the

agent to choose policies, such as deep Q network (DQN)
algorithm [12]. Policy-based deep reinforcement learning
methods can parameterize policies and achieve policy op-
timization through learning parameters, so that the agent
can obtain the largest cumulative return, such as deter-
ministic policy gradient (DPG) algorithm [5]. This type of
algorithm has good performance when dealing with high-
dimensional continuous space problems, but it is easy to
cause gradient disappearance in the process of policy update
and then fall into the local optimal solution problem [8].
Deep reinforcement learning methods based on actor-critic
structure combine value-based and policy-based methods to
learn policies while fitting value functions, such as deep
deterministic policy gradient (DDPG) algorithm. Actor
network parameters are trained according to the value
function output by the critic network, and the critic network
parameters are updated in a single step using the time
difference (TD) method. Although the actor-critic-based
methods have the advantages of both value-based and
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policy-based methods, they also inherit the shortcomings of
the policy gradient algorithm; that is, the policy update falls
into a local optimal solution due to the disappearance of the
gradient.

The DDPG algorithm combines the ideas of DQN [12]
and DPG [5] to solve tasks under continuous action. As an
off-policy actor-critic algorithm, DDPG can be trained with
historical data through experience playback pool, which
greatly improves the utilization of samples and achieves better
results in continuous action tasks. Subsequently, inspired by
double DQN [13], twin delayed deep deterministic policy
gradient algorithm (TD3) [10] on the basis of DDPG si-
multaneously uses two critic networks to fit the state action
value function. And it takes the minimum value of the two
target network outputs as the final estimate. TD3 solves the
problem of overestimation of the DDPG median function and
improves the stability of the agent. However, since DDPG and
TD3 both use a similar way to the policy-based algorithms
when updating the policy, they also rely on the gradient
information for updating policy, which undoubtedly suffers
from the vanishing gradient problem during the update
process. By adding a small amount of random noise to the
policy output by the neural network, the influence of the
disappearance of the gradient on the policy update can be
alleviated to a certain extent. For example, NoisyNets [14]
enhance the exploration ability of the algorithm by directly
adding random noise to the parameters of the neural network.
However, since the influence of random noise on the policy is
random and nondirectional, the effect of this method is
limited. The combination of policy gradient and deep learning
can be applied to complex and challenging tasks such as game
simulation [15], robot control [16], and dialogue system [17].
However, when the policy gradient methods are applied to the
continuous control filed, there still exists a basic problem, that
is, the local optimal problem caused by the disappearance of
gradient in the updating process. Tessler et al. [8] put forward
that the generation model can be used to learn policies. In this
way, although local optimal problem can be avoided, the
difficulty of algorithm training is increased.

Evolutionary policy has been used as a nongradient
optimization algorithm for decades and performs well in
some reinforcement learning benchmark environments.
Compared with gradient optimization, the evolution policy
is simpler to implement, uses fewer hyperparameters, does
not require gradient information, is easier to expand in a
distributed environment, and is less affected by sparse re-
wards. Wierstra et al. [18] proposed Natural Evolution
Policies (NES), which optimizes the policy by searching for
the distribution of parameters and uses natural gradients to
update the distribution in the direction of higher fitness.
Inspired by the NES, Tim et al. [19] used the NES as a
nongradient black box optimizer to find the optimal policy
parameters. Khadka and Tumer [20] proposed evolutionary
reinforcement learning (ERL) by effectively combining the
evolutionary algorithm based on population with DDPG.
Based on ERL, Pourchot and Sigaud [21] combined the
cross-entropy method (CEM) with reinforcement learning
and proposed CEM-RL method, which further improved the
performance of the algorithm.
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At present, most of the algorithms that combine rein-
forcement learning and evolutionary policy only make use of
the cumulative return information of policies in each gen-
eration population but do not make full use of the distance
information of policies between different generations. Ef-
fectively increasing the distance between policies of different
generations is conducive to the generation of diverse policies
for future generations and can improve the exploration of
the environment by the reinforcement learning agent. Si-
multaneously, compared with the single policy, the diverse
policies can effectively reduce the risk of falling into the local
optimal solution in the updating process. Therefore, in this
paper, a diversity evolutionary policy deep reinforcement
learning (DEPRL) algorithm is proposed. DEPRL uses
maximum mean discrepancy (MMD) to measure the dis-
tance between different policies. In the contemporary
population, some policies maximize the cumulative return
while maximizing the distance from the previous generation
policy during the gradient update process. In the process of
population evolution, the distance information and cumu-
lative return of the policy are taken as the fitness of the
population. The difference between the new generation
policy and the previous generation policy is enlarged on the
basis of ensuring the higher cumulative return of the new
generation policy. By diversifying the policies in the pop-
ulation, DEPRL reduces the risk that the algorithm will fall
into local optimum due to the disappearance of gradient in
the process of updating and improves the exploration effi-
ciency of agents. Finally, the effectiveness of DEPRL in
continuous action task is verified by MuJoCo simulation
environment.

The remainder of this paper is organized as follows. The
next section describes the related works of DEPRL method.
Section 3 represents the framework and details of DEPRL
method. Then, in Section 4, a series of comparison exper-
iments on MuJoCo test environment are conducted. The
final section provides our concluding remarks and points
out our future work orientation.

2. Related Works

2.1. Markov Decision Process (MDP). In reinforcement
learning, the interaction process between reinforcement
learning agents and the environment can be represented by
Markov decision process (MDP). MDP can be represented
byatuple M = (S, A, R, P!, y), where S is the state space, A is
the action space, R is the reward function, P' is the state
transition probability, and y € [0 ~ 1] is the discount factor.
When the agent interacts with the environment, the way of
choosing an action is called an action policy. Generally, the
action policy can be a random policy or a deterministic
policy. The random policy 7 is a probability value, which
represents the probability that the agent chooses different
actions from the action space in the state S, and the de-
terministic policy 7, represents the choice of a certain action
in the state S. In each time step, the agent observes the
current state s, € S according to the environment and
chooses action a, ~ 7(s,) according to the policy to get the
reward r, =r(s;,a,) of the environment feedback.
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Subsequently, the agent enters the next state according to the
state transition probability P'. The goal of reinforcement
learning is to train the agent so that the agent finds an
optimal policy 7* that can obtain the largest cumulative
return.

2.2. Cross-Entropy Method (CEM). Evolutionary algorithms
update the population by managing a finite number of in-
dividuals and generating new individuals near the previous
elite sample. Some evolutionary algorithms are temporary
optimization methods based on heuristics, such as genetic
algorithm (GA) [22]. And the other part is based on the
distribution algorithm that estimates the elite sample, such
as estimation of distribution algorithms (EDA) [23, 24].
Cross-entropy method (CEM) is a simple EDA algorithm.
Suppose that the total number of individuals in the pop-
ulation is K, where the total number of elite individuals is
fixed at a certain value K, which is usually set to half of the
total number of individuals in the population. After eval-
uating all the individuals in the population, the first K,
outstanding individuals are used to calculate the new mean
and variance of the population. Then, additional variance is
added to prevent premature convergence, and the next
generation is sampled from the new population. A new
distribution is obtained by adding Gaussian noise ¢ around
the average value y of the distribution, so that each indi-
vidual (x;);_; _x is sampled from this new distribution, that
is, x; ~ N (u, Z), where X represents the current covariance
matrix. By calculating the fitness of these newly generated
individuals related to specific problems, CEM uses the best
performing K, individuals (z;);-; _x to update the distri-
bution parameters. ’

2.3. Neural Networks. In recent years, many neural net-
works, such as extreme learning machine (ELM) [25],
probabilistic neural network (PNN) [26], and deep neural
networks (DNN) [27], have been proposed and applied in
many research fields. For example, Yi et al. [26] proposed a
self-adaptive probabilistic neural network (SaPNN) method
for transformer fault diagnosis problem. SaPNN can select
the best spread self-adaptively all the time and always get the
best prediction accuracy. To improve the accuracy and
usefulness of target threat assessment in the aerial combat,
Wang et al. proposed Elman-AdaBoost strong predictor [28]
and multiple wavelet function wavelet neural networks
(MWFWNN) [29] to solve threat assessment. Elman-Ada-
Boost strong predictor uses the Elman neural network as a
weak predictor and obtains a strong predictor composed of
multiple Elman neural network weak predictors through the
Elman-AdaBoost algorithm. In [29], a wavelet mother
function selection algorithm was proposed with minimum
mean squared error and used to construct MWFWNN
network. Cui et al. [30] proposed a novel method that used
convolutional neural network (CNN) to improve the de-
tection of malware variants. They converted the malicious
code into grayscale images and used CNN to identify and
classify the images.

Neural networks can also be applied to reinforcement
learning. Traditional reinforcement learning is limited to
small action space and sample space, which are generally
discrete. However, more complex and more realistic tasks
often have a large state space and continuous action space.
When the input data is image or sound, it usually has a very
high dimension, which is difficult for traditional rein-
forcement learning to deal with. Deep reinforcement
learning is to combine the high-dimensional input of deep
neural networks with reinforcement learning. Deep Q
network (DQN) [12] can be regarded as the beginning of the
successful combination of the two. It uses a deep network to
represent the value function. Based on Q-learning in rein-
forcement learning, it provides target values for the deep
network and constantly updates the network until conver-
gence. After that, many deep reinforcement learning algo-
rithms have been proposed, such as double DQN [13], DPG
[5], and TD3 [10].

2.4. Twin Delayed Deep Deterministic Policy Gradient Algo-
rithm (TD3). Both DDPG and TD3 are oft-policy rein-
forcement learning algorithms based on the actor-critic
structure. DDPG is easy to cause the problem of overesti-
mation of value function, which affects the stability of al-
gorithm. To mitigate the negative effects of overestimation,
TD3 uses both critic networks to estimate the state action
values and takes the minimum value of the two target
network outputs as the final estimate.

In order to make the parameters of actor and critic
networks updated stably, TD3 makes the updating frequency
of network parameters of actor network lower than that of
critic network during the training process. TD3 also adds
random noise to the action output by the target policy, which
not only improves the agent’s exploration ability, but also fits
the state action value of a small area around the target action.
TD3 makes the value function learned by critic network
smoother in the action dimension. Since the update di-
rection of actor network parameters is affected by the value
function learned from the critic network, the policy learned
from actor network also tends to be smoother in the action
dimension. By adding random noise, TD3 improves the
stability of the agent during training process. The calculation
formula of the action value of the target state in TD3 is as
follows:

y(r,s)y=r+ yminQ, (s (s") +¢),
121,2 (1)
e~ clip(A(0,0),—c,c).

3. Methods

3.1. Diversity Evolutionary Policy Deep Reinforcement
Learning (DEPRL). The objective function of DEPRL mainly
includes the objective function of critic network and actor
network. To mitigate the impact of overestimation of the
value function, critic network takes the minimum value of
the two target network outputs to calculate the final target
value. Assuming that 6, and 6, represent the estimated



network parameters of the two critic networks, ..., and
Gtarg)z represent target network parameters of the two critic
networks. Then, the update process of the critic networks in
DEPRL is shown in Figure 1. The target value of state action
under time steps ¢ is

Y(spa)=r+y 117:11“21 Qe,a,g,i(5t+1’ Ty (Sz+1))a (2)

where r is the reward to the environment,
Qp,... (St415 7 (5.41)) represents the target network output
value of the i-th critic network, ¢ represents the network
parameters of the actor network, and y is the discount factor.
Assume that Qg (s, a,) represents the estimated value
output by the i-th estimation network under the number of
time steps t, and then the objective function of critic network
can be written as

1
10(0) = E (ua)-n|5(Qu (swa) =Y (sna)) | @)

Therefore, the estimated network parameters 6, and 6,
can minimize the objective function ], (6;) through gradient
descent. That is, gradient descent is used to minimize the
mean square error between the estimate and the target value:

1 2

0, —06, - “Vf)li (Qel (spar) =Y (s, at)) >
| (4)

2

b, —6, - “VGZE (Qez (spar) =Y (s at)) >
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where a represents the update step size. In the process of
gradient updating, the target network parameters 0,,,,, and
O1arg> are kept constant to ensure the stability of updating.

After the estimated network parameters are updated, the
parameters of the target network are updated by soft update
method. The formula is as follows:

etarg,l — ‘[91 +(1- T)etarg,l’ (5)

etarg,Z — THZ + (1 - T)Htarg,Z’ (6)
where 7 is the coefficient of soft update method. For the
parameter ¢ of actor network, the gradient update direction
is to maximize the distance between the current policy and
m, while maximizing the cumulative return. The distance

n
between 77, and the current policy can be calculated by using

the squareﬂ of the maximum mean discrepancy (MMD).
Given samples x,,...,x,, ~ P and y;,...,¥,, ~ G, the

square of the MMD can be estimated only from the sample

of the distribution. Then, the square of MMD between

distribution P and G can be written as

1 2 1
MMD? ({1, -, %} (V15 You}) = ) gk(xi’xi') o ;jk(xi’)’j) Tz k(i) (7)

where k (-, ) is the kernel function. Here, Gaussian kernel is
used in DEPRL, that is,

2
k(x;,x;y) = exp(—”xi;—fi,“) >0, (8)
o

where o is standard deviation. Record the square of MMD
between Policy m, and policy 74 as Dyyp (71, 74), and the
formula is as follows:

DMMD(nﬂ,%) = MMDZ(T[H (ls), mg (-Is)) s~ D, 9)

where D is the experience pool.
To sum up, the objective function of actor network only
considering the maximum cumulative return is

]n ((/)) = E5~D,a~n¢ (x[s) [QGI (S’ 61)] (10)

When Dy (7,,7,) that satisfies the gradient update
requirement is obtained, the objective function of the actor
network can be written as

i8]
Jvmp (¢) = IEs~D,a~7r¢(‘|s) [Qe)l (s, a)]

11)
+ BE,-p [MMD? (7, (-Is), 7, (1s)) ],

where 3> 0 is the weighting factor. The number of actors

that only consider cumulative returns is recorded as Kj, and

then the number of actors that maximize Dy (77, 77) at

the same time is K/2 - K;.

3.2. The Framework of DEPRL. In CEM-RL method, the
total number of individuals in the population is set to K. The
mean y and covariance matrix X of the policy parameter
distribution are obtained by random initialization.
According to the covariance matrix and the mean value, K
parameters are extracted from the distribution as the pa-
rameters of actor network in the population. The actor
network with half of the total number of individuals in the
population is randomly selected for gradient update
according to the value function output from critic network.
The goal is to maximize the cumulative return of the actor
network’s corresponding policy. The critic network that
guides actor network gradient updates throughout the
process is the same; that is, half of the actors in the
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FiGURE 1: The update process of critic networks in DEPRL.

population use the same critic network to guide updates. In a
population, the data generated by the interaction between
the actor and the environment is stored in the experience
pool and is used to train the critic network. By evaluating the
cumulative returns of the policies corresponding to all actors
in the population after gradient updating, the policies ranked
in the top half of the cumulative returns are selected as the
elite sample. The number of the elite sample K, is usually set
to K, = K/2. Finally, according to the parameters of con-
temporary elite samples, y,.,, and 2, of the new generation
actor network parameter distribution are generated.

The framework of DEPRL algorithm is shown in Fig-
ure 2. Assume that the corresponding policy of Actor,
composed of elite sample parameters is 77,. When the critic
network guides the next generation policy update, it needs to
maximize the MMD between a part of policies and 7,. By
increasing the diversity of descendant policies, more space is
explored, and the probability of the algorithm falling into the
local optimal solution is reduced. When selecting the elite
sample, not only the cumulative return of each policy should
be considered, but also the MMD between each policy and
7, should be considered. In the population, the updated new
policy is first sorted according to the cumulative return from
high to low, and the policies with cumulative return ranked
between 2 and K/2 greater than mu cumulative return are
taken out, and the MMD values between these policies and

Storage i
[ Evaluate ]‘—T—‘Environment}—gv@
pool

MMD Update the
Select elite sampling y_sampling
samples
L "Actor,, | Populati
1 Actor, opulation| Update
PR PR - actor
| Actorl .
i Critic
"1 Actor K/2|!
Maximize L2t K2 e
the MMD Actor K critic
Sampling [}

FiGure 2: The framework of DEPRL.

7, are calculated, and reorder the MMD value from largest
to smallest. In the population, the updated new policy is first
sorted according to the cumulative return from high to low.
Then, the policies in which the cumulative return is between
2 and K/2 greater than the cumulative return of 7, are taken
out. Finally, the MMD values between these policies and 7,
are calculated. These policies are reordered in descending
order of MMD value.

Use MMD as the standard to select policies that is quite
different from 7y among contemporary policies, which helps
transfer the diversity policy to the next generation



distribution. The new generation policy generated by
sampling in the new distribution is quite different from the
old policy, which makes the trajectory of the new generation
policy more diversified and can increase the exploration
space. In order to reduce the amount of calculation when
calculating the new distribution parameters, X is constrained
to be a diagonal matrix. The update formulas of the new

distribution parameters y,.,, and Z ., are as follows:

K,
.unew = ZAizi’ (12)
i=1
KE
T
Zew = Z/\i (zi = thota) (zi — ota)” +& (13)

i=1

where A; represents the weight of the parameter corre-
sponding to the i-th elite policy in the population, and ¢ is
the Gaussian noise. A; can be defined as

_ (log(1+K,)/i) .
Y (log (1+K,)/i)

The above formula indicates that the higher the ranking
of the parameters corresponding to the elite policy, the
greater the value of a A,.

To sum up, the update process of DEPRL can be simply
summarized as follows: (1) the parameter distribution of the
initialization policy is N (po, Y.0); (2) K group policies are
randomly selected corresponding to K group parameters
from the distribution; (3) gradient updating is performed by
randomly selecting K/2 policy; (4) the fitness of the corre-
sponding policy under the K set of parameters is calculated;
(5) the parameters corresponding to the current elite policy
are used to calculate the parameter distribution (y, }’) of the
next generation policy, as shown in equations (12) and (13);
(6) whether the parameter distribution of the contemporary
policy meets the requirements is determined; if so, stop
updating; if not, repeat step (2).

The pseudocode of DEPRL algorithm is shown in
Algorithm 1.

(14)

i

4. Results and Analysis

4.1. Experiment Settings. In this section, we use the MuJoCo
test environment implemented in OpenAl Gym [31] to
evaluate the performance of the proposed algorithm and
comparison Algorithms. Gym is a basic platform for testing
deep reinforcement learning algorithms provided by
OpenAl It provides a large number of simple interfaces for
the training of the agent, greatly simplifies the interaction
process between the agent and the environment, and fa-
cilitates related researchers to implement deep reinforce-
ment learning algorithms and test the performance of deep
reinforcement learning algorithms. Figure 3 shows the
corresponding status screens of the four tasks in the MuJoCo
test environment. Table 1 describes the state dimension and
action dimension of the four tasks in the MuJoCo test
environment, as well as specific task goals. According to the
state dimension and action dimension information provided
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by MuJoCo, it is convenient to design the corresponding
neural network for learning. The version of OpenAl Gym
used in the experiment is 0.17.3, and the version of MuJoCo
is 2.0.

Experiment settings are set up as follows:

(1) We chose to compare TD3, multiactor TD3, CEM,
and CEM-TD3 to verify the superiority of the
proposed DEPRL. The common superparameter
settings of the five algorithms are the same as shown
in Table 2, and the total numbers of population
individuals and elite individuals of CEM-TD3 and
DEPRL are the same, 10 and 5, respectively. When
DEPRL calculates Dygyp, the data size M extracted
from the experience pool is 600, the number of
Gaussian kernel function m =n =5, and the value of
K; is 4. The weighting factor f in the objective
function Jyup is 0.2 in the Ant-v2 environment, and
0.1 in all other test environments.

(2) In order to make a fair comparison between different
algorithms, we combined CEM and TD3 to form
CEM-TD3 algorithm for experiment. And the net-
work structure used by CEM to represent policies is
consistent with that of DEPRL, CEM-TD3, multi-
actor TD3 and TD3. Multiactor TD3 is a variant of
TD3. Compared with TD3, multiactor TD3 has
multiple actors. The experience data generated by the
interaction between multiple actors and the envi-
ronment are sent to the experience pool together,
and the critic remains unchanged. In the experiment,
the number of actors in multiactor TD3 is set to 5,
and the total number of gradient updates of critic
and actor in multiactor TD3, CEM-TD3, and DEPRL
is the same.

(3) We selected four environments HalfCheetah-v2,
Hopper-v2, Walker2d-v2, and Ant-v2 for compari-
son, and the details of the test environment are
shown in Table 1. The experimental results are shown
in Figure 4, where the horizontal axis represents the
number of time steps, and the vertical axis represents
the cumulative return value of a round in the
evaluation stage. During the training process, the
performance of the current algorithm is evaluated
every 1000 steps. Each algorithm was repeated with
five different random seeds in different test envi-
ronments. When drawing the reward curve, the
sliding window size is set to 100. The curve part and
shaded part in the figure represent the mean value
and the standard deviation of the accumulated
return value under multiple random seeds, respec-
tively. We also present the mean and standard de-
viation of the cumulative return per turn in different
MuJoCo tasks. The results can be found in Table 3.

4.2. Analysis of Experimental Results

(1) As can be seen from Figure 4, DEPRL performs best
overall in the test environment and also performs
best in the environment with higher state dimension
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(6)
7
(8)
)

(13)
(14)

(18)
(19)

(23)
(24)
(25)
(26)
(27)
(28)

Input: the coefficient of soft update method 7, sampling size of the experience pool N and M, maximum number of time steps T ,ax
discount factor y, experience pool capacity Ag,e, population parameter K and K;
Output: actor network parameters ¢* corresponding to the optimal policy 7*
(1) Initialize critic network parameters 0y, 05, Oarg 1> Otarg2 and actor network parameter distribution (uo, o)
(2) Tiota1=0, Tactor=0
(3) WHILE Ttotal < Tmax:
(4) Extract K sets of parameters para from the current distribution (¢, )’)
(5) FOR k=1 TO K/2:

Initialize the actor according to the parameter paralk]
FOR t=1TO 2 * Thuo/K:

Sampling N samples from A to minimize the objective function (3)
Update Oarg1 and Oy > through equations (5) and (6)

(10) FOR k=1 TO K,:

(11) Initialize the actor according to the parameter para [k]
(12) FOR t=1 TO T,or:

Sample N samples from A to maximize the objective function (11)
Replace the original parameter para [k] with the new actor parameter
(15) FOR k=K, +1 TO K/2:

(16) Initialize the actor according to the parameter para [k]
(17) FOR t=1 TO Ty

Sample N samples from A to maximize the objective function (12)
Replace the original parameter para [k] with the new actor parameter
(20) Tactor =0

(21) FOR k=1 TO K:

(22) Initialize the actor according to the parameter paral[k]
Interact with the environment to calculate the cumulative payoff G and the total number of time steps used T.pisode

Store data (s,a,s’,r) in the experience pool A

Sample M samples from A to calculate the Dypp between them and Actor,

Tactor = Tactor + Tepisode
Tiotal = Trotal + Tactor

Select elite samples according to G and Dyvp, and update the distribution according to equations (12) and (13)
(29) END WHILE

ArLcoriTHM 1: DEPRL.

and action dimension, such as Ant-v2 and Wal-
ker2d-v2. CEM performs worst overall and learns
few effective policies in environments with higher
state and action dimensions. Therefore, it can be
shown that both the sample utilization and learning
rate of CEM are significantly lower than those of
other algorithms based on single-step update.

(2) In order to explore whether the improvement of

DEPRL effect is due to the adoption of multiactor
structure, we tested the influence of multiactor
structure on the algorithm. Compared with the
traditional actor-critic structure, the training data
used by the critic in the multiactor structure is
generated by the interaction between multiple actors
and the environment. By comparing the reward
curves of TD3, multiactor TD3, and DEPRL in
Figure 4, it can be found that the reward curve of
multiactor TD3 is only slightly higher than that of
TD3 based on the traditional actor-critic structure.
Therefore, it can be explained that the multiactor
structure does not improve the algorithm much. In
the Hopper-v2 training environment, multiactor
TD3 began to oscillate when the cumulative return of
the policy reached about 3200 and could not learn a

better policy, while DEPRL with the same multiactor
structure could get about 3600 cumulative returns.
By comparing the reward curves among TD3,
multiactor TD3, and DEPRL, it can be shown that
the performance improvement of DEPRL does not
simply depend on the multiactor structure.

(3) To explore the benefits of DEPRL in encouraging

offspring diversity, we compared it with CEM-TD3,
which only uses cumulative returns as a policy
learning goal. CEM-TD3 also uses multiactor
structure, and the total number of population in-
dividuals and the number of elite individuals is set
the same as DEPRL. It can be seen from Figure 4 that
the reward curve of DEPRL is significantly higher,
and the reward curve of CEM-TD3 gradually levelled
off in the second half due to the decline of explo-
ration ability. Except for the Hopper-v2 test envi-
ronment, DEPRL still maintained a relatively high
growth trend in the second half of the reward curve.

(4) As can be seen from Table 3, the DPERL algorithm

has the highest mean cumulative return of all the
algorithms. The CEM algorithm performs the
worst, which once again demonstrates that CEM, as
a turn update algorithm with no experience replay,
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FIGURE 3: MuJoCo test environments. (a) Hopper-v2, (b) HalfCheetah-v2, (c) Ant-v2, and (d) Walker2d-v2.

TaBLE 1: The test environment in the MuJoCo benchmark.

Environment Action dimension/state dimension Task goals
Hopper-v2 3/11 Make a two-dimensional one-legged robot hop forward as fast as possible
HalfCheetah-v2 6/17 Make the 2D cheetah robot run fast
Ant-v2 8/111 Make a four-legged creature walk forward as fast as possible
Walker2d-v2 6/17 Make a two-dimensional bipedal robot walk forward as fast as possible
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FiGure 4: Continued.
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FIGURE 4: Results of each algorithm in MuJoCo test environment. (a) Hopper-v2. (b) HalfCheetah-v2. (c) Ant-v2. (d) Walker2d-v2.

TaBLE 2: Values of hyperparameter.

Hyperparameter Values
Critic/actor learning rate 0.0003
Critic/actor hidden layer 2
Number of neurons 400/300
Critic activation Relu
Actor activation Tanh
Discount factor 0.99
Optimizer Adam
Soft update coeflicient 0.005
Experience pool capacity 10°
Experience pool sample size 100

Gauss noise

Clip ((0, 0.2), 0.5, 0.5)

TaBLE 3: The mean and standard deviation of the cumulative return per turn in different MuJoCo tasks.

Task TD3 Multiactor TD3 CEM CEM-TD3 DPERL

Hopper-v2 3025 +577 3241 + 363 1054 +17 3652+ 116 3732+ 106
HalfCheetah-v2 10002 + 930 10341 £ 578 2298 £690 10978 + 758 11615 + 464
Ant-v2 3618 £425 3881 £319 845 £ 52 4037 + 466 4852 +317
Walker2d-v2 4399 +238 4470 + 301 743 £225 4612 + 357 5001 + 562

could not learn effective strategies. Compared with
TD3 and multiactor TD3 algorithms, DPERL and
CEM-TD3 algorithms have higher average cumu-
lative returns, which is due to the addition of
evolutionary strategy into DPERL and CEM-TD3
algorithms. Compared with the CEM-TD3 algo-
rithm, the DPERL algorithm achieves better results,
because it increases exploration by encouraging the
generation of diversity strategies in the offspring. In
addition, in the Hopper-v2, HalfCheetah-v2, and
Ant-v2 test environments, DPERL has smaller
standard deviations than TD3, multiactor TD3, and
CEM-TD3 algorithms, which indicates that DPERL
algorithm has more stable results than the other
three algorithms. To some extent, this also shows
that DPERL algorithm can explore more effective
strategies.

The above results clearly show that DEPRL improves the
exploration ability of reinforcement learning agents and, to
some extent, reduces the risk of policy updating falling into
local optimum due to the disappearance of gradient.

5. Conclusions and Discussions

In this paper, we propose the DEPRL algorithm, which
combines CEM and TD3 to measure the distance between
different policies through MMD method. Some contem-
porary policies maximize the cumulative return while
maximizing the distance between them and the previous
generation policies and obtain policies with large differences
to increase the scope of exploration. In the course of evo-
lution, combining the cumulative return of a contemporary
policy with the distance between the previous generation’s
policy as fitness helps the next generation’s policy have more
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diversity based on a higher cumulative return. By combining
TD3 with gradient updating and CEM without gradient
updating, DEPRL can reduce the risk of policy updating
falling into local optimal solution due to gradient disap-
pearance by encouraging the generation of diversified pol-
icies in the offspring. By comparing DEPRL with CEM-RL,
TD3, CEM, and multiactor TD3 in MuJoCo test environ-
ment, the experimental results show that DEPRL achieves
more effect without increasing the number of update steps.

In DEPRL, we use an estimation of distribution algo-
rithm to estimate the distribution of the elite samples and
then select the elite samples that meet certain conditions to
improve the diversification of the elite strategy. Except for
estimation of distribution algorithms, some of the most
representative computational intelligence algorithms can be
used to reinforcement learning. Monarch butterfly opti-
mization (MBO) [32] algorithm generates offspring by
migration operator, which can be adjusted by the migration
ratio of monarch butterflies. It is followed by tuning the
positions for other butterflies by means of butterfly adjusting
operator. In reinforcement learning, MBO can adjust the
selection of elite samples in the global scope to avoid the loss
of potential elite samples. In earthworm optimization al-
gorithm (EWA) [33], the offspring are generated through
Reproduction 1 and Reproduction 2 independently, and
then, the weighted sum of all the generated offspring is used
to get the final earthworm for next generation. Reproduction
1 generates only one offspring by itself that is also special
kind of reproduction in nature. Reproduction 2 is to gen-
erate one or more than one offspring at one time. EWA can
be used to replicate elite samples to ensure the high efficiency
of elite strategies in reinforcement learning and speed-up
learning. In elephant herding optimization (EHO) [34], the
elephants in each clan are updated by its current position
and matriarch through clan updating operator. It is followed
by the implementation of the separating operator, which can
enhance the population diversity at the later search phase.
EHO is an appropriate way to increase the diversity of a
population. Not only can it be used to eliminate bad rein-
forcement learning strategies, but it can also be used to add
new strategies that did not exist before. Exploration is a vital
part of reinforcement learning. Exploratory algorithms in
computational intelligence algorithms can provide mean-
ingful guidance for reinforcement learning. For example,
slime mould algorithm (SMA) [35] uses adaptive weights to
simulate the process of producing positive and negative
tfeedback of the propagation wave of slime mould based on
bio-oscillator to form the optimal path for connecting food
with excellent exploratory ability and exploitation propen-
sity. According to the moth’s phototaxis and Levy flight
characteristics, moth search (MS) [36] algorithm can do
exploitation and exploration at the same time and ensures
local search and global search. Harris Hawks Optimizer
(HHO) [37] is a popular population-based nongradient
optimization algorithm, which has many active time varying
exploration and development stages. It has strong global
searching ability.

We only analyzed the possibilities of the above com-
putational intelligence algorithms in reinforcement learning

Computational Intelligence and Neuroscience

applications, but these algorithms are not really used in
reinforcement learning. Therefore, in the future work, we
will devote ourselves to applying computational intelligence
algorithms to strategy optimization, exploration enhance-
ment, and acceleration of learning speed in reinforcement
learning.
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