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(e deep Q-network (DQN) is one of the most successful reinforcement learning algorithms, but it has some drawbacks such as
slow convergence and instability. In contrast, the traditional reinforcement learning algorithms with linear function approxi-
mation usually have faster convergence and better stability, although they easily suffer from the curse of dimensionality. In recent
years, many improvements to DQN have been made, but they seldom make use of the advantage of traditional algorithms to
improve DQN. In this paper, we propose a novel Q-learning algorithm with linear function approximation, called the minibatch
recursive least squares Q-learning (MRLS-Q). Different from the traditional Q-learning algorithm with linear function ap-
proximation, the learning mechanism and model structure of MRLS-Q are more similar to those of DQNs with only one input
layer and one linear output layer. It uses the experience replay and the minibatch training mode and uses the agent’s states rather
than the agent’s state-action pairs as the inputs. As a result, it can be used alone for low-dimensional problems and can be
seamlessly integrated into DQN as the last layer for high-dimensional problems as well. In addition, MRLS-Q uses our proposed
average RLS optimization technique, so that it can achieve better convergence performance whether it is used alone or integrated
with DQN. At the end of this paper, we demonstrate the effectiveness of MRLS-Q on the CartPole problem and four Atari games
and investigate the influences of its hyperparameters experimentally.

1. Introduction

Reinforcement learning (RL) is an important machine
learning methodology for solving sequential decision-
making problems. In theory, by interacting with an initially
unknown environment, the RL agent can learn the optimal
action policies at different states to maximize the cumulative
expected return [1]. Unfortunately, in the past several de-
cades, due to the so-called “curse of dimensionality,” RL can
only be used to solve some real-world problems with the
small-scale discrete or low-dimensional continuous state
space. It is not until 2013 that this dilemma was partially
solved by Mnih et al. [2]. By combining the Q-learning
algorithm with deep learning, they proposed the preliminary
version of the deep Q-network (DQN) algorithm. Two years
later, Mnih et al. [3] presented the normal version of DQN,
which achieves the human-level performance on 49 classical
Atari games. Since then, DQN has attracted more and more
research attention, and many other novel deep RL

algorithms [4, 5] and new applications [6, 7] have been
proposed, and thus deep RL has become a thriving research
branch in artificial intelligence. However, although DQN has
succeeded in some more complicated problems [8–10], it
still has many drawbacks, such as slow convergence, in-
stability, and low sample efficiency. (erefore, we will focus
on how to improve the DQN’s performance in this paper.

Currently, there are three main categories of research
work on improving DQN. (e first category mainly focuses
on how to estimate action values accurately. For example,
Hasselt et al. [11] proposed the double DQN, which can
reduce the observed overestimation by exploiting the idea of
double Q-learning. Wang et al. [12] introduced a dueling
network architecture, which separately estimates state values
and advantage values to improve the policy evaluation.
Hausknecht and Stone [13] presented the deep recurrent
Q-network, which is more suitable for solving partial ob-
servation problems, by adding recurrent LSTM layers to
convolutional networks. Kim et al. [14] combined the
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mellowmax method with DQN to calculate the target action
values, preventing overestimation effectively. Anschel et al.
[15] proposed the averaged DQN, which uses some previ-
ously learned action-value estimates to produce the current
action value. (is algorithm can reduce the approximation
error variance in the target values. (e second category
mainly focuses on how to explore or exploit samples effi-
ciently. Schaul et al. [16] presented a prioritized experience
replay, which canmake the effective use of historical samples
to improve the DQN’s convergence performance. Fortunato
et al. [17] proposed the noisynet DQN, which adds noise to
the deep network parameters for aiding efficient exploration.
Lee et al. [18] introduced an episodic backward update to
improve the sample efficiency. (e third category mainly
focuses on how to reduce memory and computation. Mnih
et al. [19] proposed asynchronous variants of four standard
reinforcement learning algorithms, such as the asynchro-
nous one-step Q-learning algorithm and the asynchronous
n-step Q-learning algorithm. Interestingly, this work also
opens the door to research the asynchronous advantage
actor-critic (A3C) algorithm.

In traditional RL, Q-learning algorithms often use linear
functions to approximate action values, which have better
stability and fewer hyperparameters to be trained than
DQNs [20]. In particular, the least squares (LS) type RL
algorithms, such as the least squares policy iteration (LSPI)
algorithm [21], the fitted-Q iteration (FQI) algorithm [22],
and the recursive least squares temporal difference with
forgetting factor (RLS-TD-f) algorithm [23], not only have
better stability but also have faster convergence. In the re-
search community of adaptive filtering, the LS and the re-
cursive least squares (RLS) algorithms are famous for their
fast convergence rate. Obviously, the success of LS-type RL
algorithms mainly benefits from this merit. In recent years,
many newmachine learning algorithms, such as the extreme
learning machine (ELM) [24] and the broad learning system
[25, 26], have been proposed by combining LS or RLS al-
gorithms. In practice, the last layer of the neural network
used for DQN is usually a linear layer, which means that we
probably can improve the DQN’s performance by inte-
grating DQN with the LS-type RL algorithms. In fact, Levine
et al. [20] proposed a hybrid approach—the least squares
deep Q-network (LS-DQN), which combines DQN with
LSPI or FQI. By retraining the last layer of the policy net-
work with a batch least squares update periodically, LS-DQN
can obtain better convergence performance than DQN,
whereas LS-DQN is not easy to use. At each update by using
LSPI or FQI, LS-DQN needs to use the current network
parameters to generate a training dataset, which requires
running a forward pass of the deep network for each sample
in the experience replay buffer. In addition, LS-DQN needs
to generate new state-action features and compute the
matrix inverse. From the DQN’s learning mechanism, a
perfect integrated LS-type algorithm should be able to use
the inputs of the DQN’s last layer for approximating action
values and should have the same learning mode as DQN.

In our previous work [27], we propose two policy
control algorithms called ESNRLS-Q and ESNRLS-Sarsa.
(ey seem to meet the above requirements to some extent,

although they are also difficult to integrate with DQNs.
(ey use the same experience replay and minibatch
learning mode as DQN. In addition, they can avoid
computing the matrix inverse and are more suitable for
online learning by using recursive least squares (RLS).
Based on this work and inspired by the work of Levine
et al., we propose a novel minibatch RLS Q-learning al-
gorithm with linear function approximation, called the
MRLS-Q. Our main contributions are as follows. (1) By
borrowing the experience replay to remove the temporal
correlation between the observed transitions, we first
combine the traditional Q-learning algorithm with the
RLS optimization technique. (2) By using state features
rather than state-action features for linear function ap-
proximation, we make MRLS-Q able to be used alone and
also be integrated into DQN seamlessly. (3) In order to
reduce the computational complexity and make the RLS
method suitable for training parameters in the minibatch
mode, we present an average approximation method for
updating the RLS autocorrelation matrix. (4) In order to
alleviate the feature change of the same state and integrate
MRLS-Q into DQN, we present a new method to define
the feature function of MRLS-Q. (5) We demonstrate the
effectiveness of MRLS-Q, alone and as the last layer of
DQN, by using the CartPole problem and four Atari
games, respectively. We also test the influences of its
hyperparameters experimentally.

(e remainder of this paper is organized as follows.
Section 2 describes the related theories and algorithms of
MRLS-Q. Section 3 represents the detailed derivation and
the practical implementation ofMRLS-Q.(en, in Section 4,
comparison experiments on the CartPole problem and four
Atari games are conducted to separately verify the effec-
tiveness of MRLS-Q used alone and as the last layer of DQN.
Finally, Section 5 summarizes the whole paper.

2. Background

In this section, we briefly review the related theories and
algorithms of our MRLS-Q, including the Markov decision
process (MDP), DQN, and LS-DQN. In addition, we also
describe some notations that will be used throughout this
paper.

2.1. Markov Decision Process. In RL, a sequential decision
problem is generally formulated as an MDP with a five-tuple
〈S,A, P, r, c〉, where S is the state space, A is the action
space, P(st

′|st, at) ∈ [0, 1] and r(st
′|st, at) ∈R are the state-

transition probability and the immediate reward from the
state st to the next state st

′ by taking the action at, and
c ∈ (0, 1] is the discount factor. At the state st, the agent’s
action at is determined by the control policy π.

For a given MDP, the goal of RL is to learn the optimal
policy π∗ for maximizing the cumulative expected return
J(π), i.e.,

π∗ � argmax
π

J(π), (1)
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where J(π) is usually defined in the form of discount return
[1] as

J(π) � E 
∞

t�0
c

t
rt|s0, π⎡⎣ ⎤⎦, (2)

where s0 is the initial state, whereas J(π) is hardly calculated
by using the above equation directly, since P(st

′|st, at) is
unknown in RL, and st

′ and rt can only be obtained by the
agent’s interaction with the environment.

To tackle this problem, RL usually resorts to estimating
the action value Qπ(st, at) to measure the performance of π
when the initial state and action are st and at. In this paper,
we assume that S is continuous and A is discrete. For this
kind of MDP problems, to overcome the curse of dimen-
sionality, Qπ(st, at) is often approximated by linear function
approximators or deep neural networks.

2.2. (e DQN Algorithm. DQN is probably the most im-
portant algorithm in deep RL. It combines the Q-Learning
algorithm with deep neural networks and uses the experi-
ence relay for breaking the correlation among samples and
training network parameters.

(e DQN algorithm can be summarized as follows. At
the current step t, the agent firstly uses the ϵ-greedy policy to
select the action at as

at �

argmax
a∈A

Q st, a;Θt−1( , w.p. 1 − ϵ,

a random action inA, w.p. ϵ,

⎧⎪⎨

⎪⎩
(3)

where ϵ is the exploration factor, Θt−1 is the policy network
parameter, and Q(st, a;Θt−1) is approximated by this net-
work. (en, after taking at, the agent moves to the next state
st
′, obtains the reward rt, and stores (st, at, st

′, rt, dt) into the
experience replay buffer D, where dt ∈ 0, 1{ } denotes that st

′
is the terminal state or not. Next, by using the minibatch
M t � (st,i, at,i,st,i

′, rt,i,
dt,i) 

i�1,...,M
sampled from D ran-

domly, the algorithm calculates the loss of the policy net-
work as

L Θt−1(  �
1
2M

Q
π St, at  − Q St, at;Θt−1 

�����

�����
2

2
, (4)

where St � [st,1, . . . ,st,M]T, at � [at,1, . . . , at,M]T, and
Qπ(St, at) is the target value of Q(St, at;Θt−1), which is
estimated by the target network as

Q
π St, at  � rt + c 1 − dt  ∘ max

a∈A
Q St
′, a; Θ , (5)

where rt � [rt,1, . . . , rt,M]T, St
′ � [st,1′, . . . ,st,M

′]T, dt � [dt,1,

. . . , dt,M]T, ∘ denotes the Hadamard product, and Θ is the
target network parameter which is copied from the policy
network every some fixed steps or episodes. Finally, by using
some gradient descent optimization method, the algorithm
updates Θt−1 to Θt. For example, by using the SGD method
[28], Θt−1 is updated as

Θt � Θt−1 − α∇Θt−1
, (6)

where α is the learning rate and ∇Θt−1
denotes

zL(Θt−1)/zΘt−1.

2.3.(e LS-DQN Algorithm. LS-DQN is a hybrid approach,
which combines the traditional LSPI or FQI algorithm with
the DQN algorithm. By enjoying the stability and efficiency
of LSPI or FQI, it can obtain better performance than DQN.

(e LS-DQN algorithm can be briefly summarized as
follows. Whenever the agent runs DQN some steps, it uses
LSPI or FQI to retrain the last layer of the policy network
once. (e retraining consists of the following three substeps.
Firstly, by recalculating all samples in the experience replay
buffer with the current network parameters, the policy
network generates a new dataset D. Secondly, by using the
current network parameters and the dataset D, the algo-
rithm generates state-action features. Finally, the algorithm
uses LSPI to retrain the current last-layer parameter ΘL

t in
the policy network as

ΘL
t(:,1) 

T
, . . . , ΘL

t(:,|A|) 
T

 
T

� A
− 1

b, (7)

where ΘL
t(: ,i) is the ith column vector of ΘL

t . Besides, A and b
are defined as follows:

A �
1

| D|


|D|

j�1
ϕ sj, aj  ϕ sj, aj  − c 1 − dj ϕ sj

′, π sj
′   

T
 ,

b �
1

| D|


|D|

j�1
ϕ sj, aj rj ,

(8)

where ϕ(sj, aj) is the state-action feature of the state-action
pair (sj, aj). As Levine et al. stated in their work [20], the
algorithm can also retrainΘL

t by using FQI, since it is a batch
shallow RL algorithm that computes iterative approxima-
tions of the Q-function using regression. For brevity, we will
not discuss the FQI algorithm in this paper.

3. The Proposed Algorithm

In this section, we will introduce the detailed derivation and
the practical implementation of our proposed algorithm,
respectively. Our algorithm, the MRLS-Q algorithm, can be
used not only alone but also as the last layer of DQN.

3.1. Algorithm Derivation. MRLS-Q is a new Q-learning
algorithm with linear function approximation, but it is more
similar to the DQN algorithm rather than the traditional
Q-learning algorithm. It uses the experience replay and the
minibatch training mode, separates the linear function
approximator into a policy approximator and a target
approximator, and uses the state features rather than the
state-action features. Besides, it uses an average RLS method
for updating parameters.

First, we introduce the agent’s interaction with the en-
vironment. At the current step t, the agent also uses the
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ϵ-greedy policy to select the action at as equation (3). Note
here that Q(st, a;Θt−1) is approximated by the policy
approximator as

Q st, a;Θt−1(  � ϕ st( 
TΘt−1(:,in(a)), (9)

where ϕ(st) ∈R
N is the feature vector of st,

Θt−1 ∈R
N × |A| is the policy approximator parameter,

in(a) denotes the index of a in A, and Θt−1(: ,in(a)) is the
in(a)th column vector of Θt−1. (en, the agent takes at,
moves to st

′, obtains rt, and stores (st, at, st
′, rt, dt) into the

experience replay buffer D.
Second, we introduce the RLS update of the policy

approximator parameter in the minibatch training mode.
Let M n � (sn,i, an,i,sn,i

′, rn,i,
dn,i) 

i�1,...,M
denote the mini-

batch sampled from D at the nth step, and let Φ(Sn) �

[ϕ(sn,1), . . . , ϕ(sn,M)]T denote the feature matrix of Sn.
Define the least squares loss function as

L(Θ) �
1
2M



t

n�1
λt− n

Q
π Sn, an  − Q Sn, an;Θ 

�����

�����
2

2
, (10)

where λ ∈ (0, 1] is the forgetting factor and Q(Sn, an;Θ) is
approximated by the policy approximator as

Q Sn, an;Θ  � Φ Sn Θ
:,in an( ( 

, (11)

and Qπ(Sn, an) is estimated by the target approximator as

Q
π Sn, an  � rn + c 1 − dn  ∘ max

a∈A
Φ Sn
′  Θ(:,in(a)), (12)

where Θ is the target approximator parameter which is
copied from the policy approximator every some fixed steps
or episodes. (en, the parameter learning problem of the
policy approximator can be transformed into

Θt � argmin
Θ

L(Θ). (13)

By using the chain rule, we can get

∇Θ � −
1

M


t

n�1
λt− n Φ Sn  

T Q
π Sn,A  − Q Sn,A;Θ  ,

(14)

where ∇Θ denotes zL(Θ)/zΘ, and an element in
Q(Sn,A;Θ) ∈RM×|A| is defined as

Q sn,i, a;Θ  �
Q sn,i, an,i;Θ , a � an,i,

0, a≠ an,i,

⎧⎨

⎩ (15)

and an element in Q
π
(Sn,A) ∈RM×|A| is defined as

Q
π

sn,i, a  �
Q

π
sn,i, an,i , a � an,i,

0, a≠ an,i.

⎧⎨

⎩ (16)

Let ∇Θ � 0. (en, we can get

Θt � A
−1
t Bt, (17)

where

At �
1

M


t

n�1
λt− n Φ Sn  

T
Φ Sn ,

Bt �
1

M


t

n�1
λt− n Φ Sn  

T Q
π Sn,A .

(18)

Rewrite the above two equations as the following re-
cursive forms:

At � λAt−1 +
1

M
Φ St  

T
Φ St , (19)

Bt � λBt−1 +
1

M
Φ St  

T Q
π St,A . (20)

Further, rewrite the above two equations as the following
vector forms:

At � λAt−1 +
1

M


M

i�1
ϕ st,i  ϕ st,i  

T
, (21)

Bt � λBt−1 +
1

M


M

i�1
ϕ st,i  Q

π
st,i,A , (22)

where Q
π
(st,i,A) is the ith row vector of Q

π
(St,A). Un-

fortunately, we cannot directly use the Sherman–Morrison
formula [29] to compute A−1

t , since the last term in the right-
hand side of equation (21) is a sum of vector products.

Next, we present an average approximation method to
deal with the above problem. Considering that all training
samples are from the same environment and thus their
features have some similarity, we rewrite equations (21) and
(22) as follows:

At ≈ λAt−1 + kϕtϕt

T
, (23)

Bt ≈ λBt−1 + kϕtq
π
t , (24)

where k is the approximation factor, and ϕt and qπt are
defined as

ϕt �
1

M


M

i�1
ϕ st,i , (25)

qπt �
1

M


M

i�1

Q
π

st,i,A . (26)

Let Pt � A−1
t . By using the Sherman–Morrison formula

for (23), we can get

Pt �
1
λ

Pt−1 − gtv
T
t , (27)

where

vt � Pt−1ϕt, (28)

gt �
kvt

λ + kvT
t ϕt

. (29)
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Plugging equations (24) and (27) into (17), we finally get

Θt ≈ Θt−1 +
kPt−1ϕt qπt − qt( 

λ + kvT
t ϕt

, (30)

where

qt �
1

M


M

i�1

Q st,i,A;Θt−1 , (31)

where Q(st,i,A;Θt−1) denotes the ith row vector of
Q(St,A;Θt−1).

3.2. Practical Implementation. As reviewed in Section 2.2,
DQN generally uses gradient descent methods to update
network parameters. To make MRLS-Q easier to be inte-
grated into DQN, we next rewrite equation (30) as the
“gradient descent” form of ∇Θt−1

.
If the loss function of MRLS-Q is defined by equation

(4), by using the chain rule for equation (4), we can get

∇Θt−1
� −

1
M
Φ St  

T Q
π St,A  − Q St,A;Θt−1  . (32)

Recall the fact that we once used kϕtϕt

T and kϕtqπt in
equations (23) and (24) to replace (1/M)(Φ(St))

TΦ(St) and
(1/M)(Φ(St))

T Q
π
(St,A) in equations (19) and (20), re-

spectively, which means

kϕtϕt

T
�

1
M
Φ St  

T
Φ St , (33)

kϕtq
π
t �

1
M
Φ St  

T Q
π St,A . (34)

In addition, from equation (31), we can obtain

kϕtqt �
k

M
ϕt 

M

i�1

Q st,i,A;Θt−1 . (35)

Using equation (9) yields

Q st,i,A;Θt−1  � ϕ st,i 
T
Θt−1. (36)

(en, equation (35) can be written as

kϕtqt �
k

M
ϕt 

M

i�1
ϕ st,i 

T
Θt−1. (37)

Further, from equation (25), the above equation can be
written as

kϕtqt � kϕtϕ
T

t Θt−1. (38)

Next, plugging equation (33) into equation (38), we have

kϕtqt �
1

M
Φ St  

T
Φ St Θt−1. (39)

From equations (9) and (11), the above equation can be
rewritten as

kϕtqt �
1

M
Φ St  

T
Q st,i,A;Θt−1 . (40)

Using equations (34) and (40), we can get

kϕt qπt − qt(  � −∇Θt−1
. (41)

(erefore, we can rewrite equation (30) as

Θt ≈ Θt−1 −
Pt−1

λ + kvT
t ϕt

∇Θt−1
. (42)

It shows that (Pt−1/(λ + kvT
t ϕt)) is the learning rate ofΘt

in MRLS-Q.
However, although RLS has a fast convergence rate, it

often suffers from overfitting. In recent years, there has been
extensive research on this problem. Based on Ekşioğlu’s
work [30], we add an L1 regularization term into the above
equation, i.e.,

Θt ≈ Θt−1 −
Pt−1

λ + kvT
t ϕt

∇Θt−1
− ηPtsgn Θt−1( , (43)

where η is the regularization factor and sgn(·) is the sign
function.

Based on the above derivation, the pseudocode ofMRLS-
Q is summarized in Algorithm 1, and the flow diagram of
MRLS-Q is summarized in Figure 1. In the practical
implementation, here ∇Θt−1

can be calculated by the auto-
matic differentiation package of PyTorch or TensorFlow
directly. Besides being used alone, MRLS-Q can also be used
as the last layer of DQN, since it uses the same loss function
and experience replay as DQN. However, there is still an
obstacle to the combination of MRLS-Q and DQN. As the
training goes on, the parameters of the DQN network are
continuously changing, and the outputs of the same inputs
are changing as well. (us, we cannot use the inputs of the
DQN’s last layer as the features of MRLS-Q directly. In order
to alleviate this kind of change and integrate MRLS-Q into
DQN, we present a new method to define the feature
function of MRLS-Q as

Φ Sn  �
X

L
t

1/MNL−1(  
M
i�1 

NL−1
j�1 X

L
t,i,j + ]

, (44)

where XL
t ∈R

M×NL−1 is the output matrix of the DQN’s
penultimate layer and ] is a small hyperparameter to prevent
the denominator becoming zero.

4. Experiments

In this section, we use two sets of experiments to demon-
strate the effectiveness of MRLS-Q. Our experiments are
divided into two sections. In Section 4.1, we test MRLS-Q on
the CartPole problem as an independent algorithm. In
Section 4.2, we test MRLS-Q on four Atari games as the last
layer of DQN.

4.1. (e CartPole Problem. In this set of experiments, we
firstly verify the performance of MRLS-Q on the CartPole-v0
problem, which is from the OpenAI Gym. For comparison
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purposes, we build a new algorithm called Adam-Q, by
replacing Pt−1/(λ + kvT

t ϕt) in equation (42) with the Adam
optimizer, since the traditional Q-learning algorithm with
linear function approximation is hardly convergent in 100
episodes. (en, we verify the influences of hyperparameters
on MRLS-Q, experimentally.

To compare the performance between MRLS-Q and
Adam-Q, the experimental settings are summarized as
follows. (1) Both algorithms use 400 radial basis functions
(RBFs) for action-value approximation. (ese RBFs are
generated from 104 random samples in the CartPole’s state
space, by using eight scikit-learn RBFSamplers [31] with
kernel parameters {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. (2)(e

exploration rate ϵ is initialized to 0.95 and is gradually
decreased to 0.01 over 1000 steps. (3)(e discount factor c is
0.99. (4) (e capacity of the experience replay buffer D is
104, and the minibatch size is 32. (e learning starts when
the number in D reaches the minibatch size. (5) (e policy
approximator parameter Θ0 and the target approximator
parameter Θ are initialized randomly. (6) Θ is updated byΘt

each step. Note that the performances of both algorithms
will get worse if we increase the update steps, since the
CartPole problem is very simple and both algorithms
converge fast. (7) (e max norm of ∇Θt−1

is clipped to 1 by
the L2 norm. (8) (e two algorithms run five times and 100
episodes for each time. In each episode, each algorithm runs

Environment

Replay Bu�er D

Policy
Approximator

Q (St, ât; Θt-1)

Target
Approximator

max
aєA

Loss Function 

(st+1,rt,dt)

St

at

∆

loss compute
rollout
update weights

Θ
~

(ât)(St () rt ,dt)

Q (St, ât; Θt-1)L (Θt-1) = 1/2M max
aєA

(rt + γ (1–dt)ο Q (S′t, at; Θ) –
~ 2

2

Θt-1

(S′t)

Q (Ŝ′t, a; Θ)
~

Figure 1: Flow diagram of MRLS-Q.

(1) input ϕl(·) l�1,...,N, ϵ, c, λ, k, η, M and initialize D �, Θ0, Θ, P0 � αI

(2) for episode� 1, . . ., MaxEpsidoes do
(3) initialize state s1
(4) for t � 1, . . ., MaxSteps do
(5) select action at with ϵ- greedy policy, and take action at

(6) measure next state st+1, reward rt and terminal state dt

(7) store (st, at, st+1, rt, dt) into D

(8) sample minibatch Mt from D

(9) compute loss function L(Θt−1) according to (11), (12) and (4)
(10) compute gradient ∇Θt−1

according to (32)
(11) update Θt and Pt according to (43) and (27)
(12) update Θ by Θt every fixed steps or episodes
(13) if dt �� 1 or t � �MaxSteps do
(14) set P0 � Pt and Θ0 � Θt, and break the inner loop
(15) end if
(16) end for
(17) end for

ALGORITHM 1: MRLS-Q.
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200 steps at most. (9) Besides, in Adam-Q, the learning rate,
β1, and β2 of Adam are 0.001, 0.9, and 0.999; in MRLS-Q, the
initialization P0, the forgetting factor λ, the regularization
factor η, and the approximation factor k are 0.5I, 1, 10− 5,
and 1/32, respectively. (e average result of this experiment
is shown in Figure 2(a). It can be seen that our MRLS-Q has
better convergence than Adam-Q.

To investigate hyperparameter influences on MRLS-Q,
we test |D| ∈ 500, 1000, 5000, 10000{ }, P0 ∈ 0.1I, 0.2I,{

0.5I, I}, and k ∈ (1/2), (1/8), (1/32), (1/128){ }, respectively.
(e other settings of these experiments are the same as what
we did for MRLS-Q in the previous experiment. (e average
results of these experiments are presented in Figures 2(b)–
2(d). From Figure 2(b), it shows that the capacity ofD has a
significant influence on the performance of MRLS-Q. (e
larger capacity will result in the better performance, since big
D is helpful to remove the correlation between the observed
transitions. From Figure 2(c), it can be seen that MRLS-Q is
robust to the initialization P0, whereas too big P0 will make
MRLS-Q become unstable and too small P0 will make
MRLS-Q converge slowly. From Figure 2(d), it can be seen
that k also has a significant influence on MRLS-Q. From
equation (29), bigger k will make Pt update with higher

strength. If state feature values change greatly, k should be
set to a big value.

4.2. Four Atari Games. In this set of experiments, we verify
MRLS-Q as the last layer of DQN on four Atari games: Pong-
v0, Breakout-v0, SpaceInvaders-v0, and RiverRaid-v0, which
are from the OpenAI Gym. Here we choose the traditional
DQN algorithm with the Adam optimizer for comparison.
For Adam-DQN and in the second to fifth layers of Hybrid-
DQN, the learning rate, β1, and β2 of Adam are 0.0000625,
0.9, and 0.999; in the last layer of Hybrid-DQN, the ini-
tialization P0, the forgetting factor λ, the regularization
factor η, the approximation factor k, and ] are 0.1I, 1, 10− 8,
1/2, and 10− 12, respectively. Note that here we use a big k to
update Pt for adapting to the feature change.

(e average evaluation results are presented in Figure 3.
It shows that Hybrid-DQN can speed up the convergence of
all tested games. Figure 3(a) is much clearer to demonstrate
this advantage, since the Pong game is much simpler than
other three games. In addition, Figures 3(a), 3(c), and 3(d)
show that Hybrid-DQN can improve the convergence
quality of Pong, SpaceInvaders, and RiverRaid, and
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Figure 2: Performance comparison and hyperparameter influences on MRLS-Q. (a) Adam-Q vs. MRLS-Q. (b) Influence of D’s capacity.
(c) Influence of P’s initialization. (d) Influence of k value.
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Figure 3(b) shows that Hybrid-DQN can improve the
learning stability of Breakout. In summary, by integrating
our MRLS-Q, Hybrid-DQN can improve the stability and
performance. Compared with the LS-DQN algorithm,
MRLS-Q can be used as the last layer of DQN directly, and
thus Hybrid-DQN is easier to use.

5. Conclusion

How to improve convergence and stability of the DQN
algorithm is one of the key issues in deep RL. In this paper,
we propose MRLS-Q, a linear RLS function approxima-
tion algorithm with the similar learning mechanism to
DQN. MRLS-Q can be used not only alone but also as the
last layer of DQN. Similar to LS-DQN, the Hybrid-DQN
with MRLS-Q can enjoy rich representations from deep
RL networks as well as stability and data efficiency of the
RLS method, but it can seamlessly integrate MRLS-Q and
thus is easier to use. In MRLS-Q, we use the experience
replay to break the correlation between training samples,
present an average RLS optimization method to improve
the convergence performance and reduce the computa-
tional complexity, employ an L1 regularization technique
to prevent overfitting, and propose a new method to

define the feature function for alleviating the feature
change of the same state and integrating MRLS-Q into
DQN. Experiment results on the CartPole problem
demonstrate that MRLS-Q has better convergence than
Adam-Q and reveal the hyperparameter influences on
MRLS-Q. In addition, experiment results on four Atari
games demonstrate that DQN can improve convergence
and stability by integrating with MRLS-Q.
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Figure 3: Performance comparison between Adam-DQN and Hybrid-DQN. (a) Pong. (b) Breakout. (c) SpaceInvaders. (d) RiverRaid.
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