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A synthetic aperture radar (SAR) target recognition method based on image blocking and matching is proposed. The test SAR image is
first separated into four blocks, which are analyzed and matched separately. For each block, the monogenic signal is employed to describe
its time-frequency distribution and local details with a feature vector. The sparse representation-based classification (SRC) is used to
classify the four monogenic feature vectors and produce the reconstruction error vectors. Afterwards, a random weight matrix with a
rich set of weight vectors is used to linearly fuse the feature vectors and all the results are analyzed in a statistical way. Finally, a decision
value is designed based on the statistical analysis to determine the target label. The proposed method is tested on the moving and
stationary target acquisition and recognition (MSTAR) dataset and the results confirm the validity of the proposed method.

1. Introduction

High-resolution synthetic aperture radar (SAR) images
provide basis for efficient and accurate intelligence inter-
pretation [1]. The moving and stationary target acquisition
and recognition (MSTAR) dataset provided a benchmark for
the research and evaluation of SAR target recognition al-
gorithms [2, 3]. The resolution of SAR images in this dataset
reaches 0.3 m, which can be effectively used for the classi-
fication of vehicle targets such as tanks, armored vehicles,
and cannons. With nearly 30 years of developments, the SAR
target recognition methods on the MSTAR dataset have
made great progress in performance. However, these re-
searches also revealed the shortcomings of current methods
for the extended operating conditions (EOCs). EOCs in SAR
target recognition may be caused by variations of target
configurations, backgrounds, sensors, etc. [4]. As a result,
the test samples to be recognized may have notable differ-
ences with the established training samples. Hence, the
recognition problems under the standard operating condi-
tion (SOC) are not challenging and more focus should be
imposed on solving the nuisance cases under EOCs [5, 6].

SAR target recognition methods usually combine feature
extraction and classifier design. The two steps are closely

coupled to improve the recognition performance. In terms
of feature extraction, a rich set of features has been applied
into SAR target recognition, which can be generally sum-
marized as geometrical, transformation, and electromag-
netic ones. The geometrical features depict target shapes
including region, contour, and shadow. In [7-10], the
Zernike and Chebyshev moments were used as basic features
to describe the target region. In [11-13], the target regions in
SAR images are directly matched with the support of
morphological operations. In [14-16], the target contour or
outline was adopted for target recognition. The transfor-
mation features are usually extracted based on the pixel
distribution in SAR images. Typical algorithms include the
projection ones such as principal component analysis (PCA)
[17] and nonnegative matrix factorization (NMF) [18] and
the decomposition ones such as monogenic signal [19, 20]
and empirical mode decomposition (EMD) [21]. The elec-
tromagnetic features describe the backscattering charac-
teristics of the targets such as the attributed scattering
centers (ASC) and polarization [22-25]. In the classification
stage, a decision is made on the features extracted from the
test sample. For the transformation features with uniform
forms and dimensions, traditional classifiers such as
K-nearest neighbor (KNN) [17], support vector machine
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[26, 27] (SVM), and sparse representation classification
(SRC) [27-29] can be directly employed for classification.
For the irregularly arranged and inconsistent features such
as target contour points and scattering centers, it is necessary
to employ some specially designed classification strategies,
such as the similarity measure for the scattering center sets
designed in [22-25]. In recent years, the deep learning
models have been also widely used in SAR target recognition
like the convolutional neural networks (CNN) [30-32]. The
deep learning models are directly trained and learned based
on the original images, avoiding the traditional manual
feature extraction process. The research results verified the
effectiveness of the deep learning models for SAR target
recognition under the premise of sufficient training samples.
For EOCs, the relevant training samples are very limited,
which leads to poor adaptability of the deep learning
methods for SAR target recognition.

This paper proposes a SAR target recognition method
based on image blocking and matching. The original image is
separated into several blocks and the target label is deter-
mined by comparing and analyzing each block. Under
EOCs, the target in SAR images may have local changes
caused by noises, occlusions, etc. But in essence, the cor-
rupted test sample can still share high similarities with the
corresponding sample from the actual training class. In this
sense, by observing and evaluating the local differences and
consistency between SAR images, EOCs can be overcome
with high effectiveness. The proposed method divides the
SAR image into 4 blocks of equal area with the target center
as the reference point. For each block, the monogenic signal
is employed for feature extraction and a unified feature
vector is constructed. According to the properties of
monogenic signal, the constructed features can effectively
reflect the spectral characteristics and local distribution of
the target. For the feature vector constructed from each
block, SRC is used for as the basic classifier and the re-
construction error vector of different training classes can be
obtained. For the results of 4 blocks, a random weight matrix
with massive weight vectors is developed to linearly fuse
them. For the correct class, the blocks with low recon-
struction errors account for the majority, so its corre-
sponding reconstruction errors from the four blocks have
smaller mean and variance. On the contrary, for the wrong
class, the mean value of the four reconstruction errors tends
to be relatively large and also the variance because of the
randomness. Based on statistical analysis, a decision value is
defined as the measure to determine the target label. In the
experiments, the proposed method is investigated on the
MSTAR dataset under different scenarios. The experimental
results show its significant superiority over the compared
methods under both SOC and EOCs.

2. SAR Image Blocking

The previous researches showed that EOCs in SAR images
are mostly related to the local variations of the target. For
example, in the case of configuration variation, the test target
only has some local structural differences with the reference
one in the training set, which can also be reflected in local
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pixel distribution and geometric structure in the SAR image.
Therefore, it is meaningful to fully investigate the local
changes of the target as for handling the EOCs. Traditional
methods were generally developed based on overall SAR
images for feature extraction and classification. In this case,
the local changes may cause variations of global feature
changes. As a result, the idea of global feature matching may
lose some precision for target classification. As a remedy,
this study divides the original SAR image into several blocks
and then analyzes the target characteristics by each of them
separately. Finally, a reliable classification result can be
achieved based on the joint analysis of the results from
different blocks.

Specifically, the image blocking algorithm used can be
implemented mainly in two steps. First, the original image is
centralized and the target centroid is adopted as the refer-
ence point for the following blocks. Afterwards, the original
image is divided along the range and cross range directions
to obtain 4 subimages. Figure 1 shows the blocking result of a
SAR image from the MSTAR dataset. Each subimage is
processed independently. Hence, when a certain subimage
has some local variations, its classification result has little
influence on other subimages. It is beneficial to obtain the
true correlation between the test sample and the training
classes, thus improving the classification accuracy.

3. Feature Extraction

For each subimage from the blocking stage, the traditional
target recognition procedure with feature extraction and
classification is employed. The monogenic signal is used for
feature extraction for those subimages [19, 20]. Denote z =
(x, y)T as the coordinates in 2D space; f (z) is the image or
matrix to be processed. The monogenic signal corresponding
to f(z) is calculated as follows:

Fu(2) = f(2) = j)fr(2), (1)

where fj (2) represents the Riesz transform of f (z); i and j
are the imagery units along two dimensions of the image. A
further decomposition is conducted with three types of
components, i.e., local amplitude, local phase, and local
orientation, as follows:

amplitude: A(z) = \/f (2)* +|fr (Z)|2,

phase: ¢(z) = a tan 2(|fR(z)|,f(z)) € (—m,ml,

orientation: 0(z) = a tan 2(%) € (—g,g],

(2)

where f,(z) and f (z) are resulted from the i-imaginary
and j-imaginary parts of f,;(z), respectively.

Generally, the target recognition methods based on
monogenic signal are developed on the three components
because they can comprehensively describe the target
chrematistics. A(z) reflects the local amplitudes, which
describes the intensity distribution. ¢ (z) and 6(z) depict the
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FiGgure 1: lllustration of the results of blocking a SAR image.

structural and geometric properties of the target, respec-
tively. This study constructs a feature vector based on the
monogenic components with reference to [15], in which the
special parameters were determined for monogenic de-
composition and the results are reorganized to a concate-
nated vector.

4. Method Description

4.1. SRC. For the extracted monogenic features, SRC is
adopted as the classifier [27-29]. The idea of sparse repre-
sentation assumes that the test sample can be linearly
reconstructed by the training samples from the same class.
Dy = [xp15- - > X, ] € R (k = 1,...,C) is constructed as
a local dictionary with #, d-dimensional samples from the
kth class; the test sample y is represented as follows:

Y= X1 Oy o+ Xy M = Pty (3)
where a; = [og ), ... ,ock’nk]T € R™ comprises of the linear
coefficients.

When the test sample is from an unknown class, the
linear representation should be performed on all the po-
tential classes. So, SRC usually conducts the representation
over the global dictionary as follows:

o = argmin | «fly,
24

(4)
sty - (Doclli <s,

where @ = [®@,,...,®:] € R™" is the global dictionary
which comprises of samples from C training classes; a =
[a,...,ac]” € R" is the global coefficient vector to be
solved; ¢ is the error tolerance.

As a nondeterministic polynomial (NP) hard problem,
the optimization task in equation (4) is complex to be solved.
There are two main ways to handle this issue in previous
works. One is replacing the £, norm by ¢, norm to formulate
a convex optimization objective function for smooth solu-
tion. Another is using the greedy algorithms, such as the

orthogonal matching pursuit (OMP), to obtain an

approaching result.

4.2. Decision Fusion with Random Weight Matrix. For the
classification results from different subimages, they should
be combined and fused to reach a final decision. Although
there are different information fusion algorithms in previous
works, the linear weighing fusion is a simple but suitable one
for this study. Furthermore, to handle the possible instability
of a fixed weight vector, the random weight matrix W is
designed with multiple choices of weight vectors, in which
the elements in each row are subject to the following
constraint:

wy+wy - +w, =1 (5)

For different weight vectors in the weight matrix, dis-
proportionate importance is imposed on different sub-
images. With a rich set of weight vectors, the complex
situations in different subimages can be comprehensively
analyzed. The fusion process with the random weight matrix

is performed as follows:
FVk =W % RVk (6)

Here, RV, denotes a row vector related with the kth
training class, containing N elements corresponding to
reconstruction errors of the N subimages. FV corresponds
to the fused error vector at different choices of random
weight vectors. Then, for C different training classes, there
are C fused vectors denoted as FV,, FV,, ..., FV.

When the test sample is actually from the kth class, the
fused errors in FV tend to be small. Otherwise, these errors
are probably at high levels. In addition, the errors at different
weight vectors may vary intensively and disorderly. These
statistical phenomena can be used to evaluate the true re-
lationship between the test sample and training classes. At
first, the mean and variance of FV, are calculated as y; =
mean (FV;) and ai = Var (FV,). Then, a similarity measure
is developed as follows to properly evaluate the relation
between the test sample and kth training class:

Si=L e p(ai) (7)
=— x exp| = ).
e 2

Accordingly, with lower y, and o3, a higher S, can be
achieved, which indicates a higher similarity. After obtaining
the similarities between the test sample and different classes,
the target label can be determined as follows:

indentity (Y) = mkax(Sk), k=1,2,...,C. (8)

Figure 2 shows the basic implementation process of the
proposed method. The image blocking algorithm is used to
process all training samples, and a single feature vector is
extracted for each subimage based on the monogenic signal.
Afterwards, the dictionaries of different subimages are
constructed. For the test sample, the same blocking algo-
rithm is used for processing and feature extraction. Then, the
corresponding four monogenic feature vectors are obtained.
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FIGURE 2: Procedure of implementation of the proposed method.

SRC is used to classify the feature vectors of the 4 blocks, and
the reconstruction error vectors are obtained. Finally, the 4
error vectors are fused using the random weight matrix and
the target label of the test sample is determined.

5. Experiments and Analysis

5.1. Basics of MSTAR Dataset. The experiments are designed
and conducted based on the MSTAR dataset, a popular and
authoritative data source for the evaluation of SAR target
recognition algorithms. Ten typical targets shown as Figure 3
are measured with thousands of 0.3 m-resolution SAR im-
ages, which is suitable to be used for target identification.
With the support of the rich set of SAR images, various
conditions or situations can be designed for experimental
validations.

To objectively evaluate the performance of the proposed,
we also drawn several previous methods in this field for
comparison. The first one used Zernike moments of the
whole target as features, which were classified by SVM for
decision [7]. The second one adopted the monogenic signal
and the resulted three types of features were classified by
joint sparse representation [20]. The third one employed the
ASCs as features and developed a matching algorithm [23].
The fourth one developed a novel CNN architecture, namely,
all fully convolutional neural network (A-ConvNet), for SAR
target recognition [31], which is chosen as a representation
for deep learning-based algorithms. The following tests are
conveyed under both SOC and EOCs to provide compre-
hensive evaluation of the proposed method.

5.2. Condition 1: SOC. As explained in the former texts, SOC
is a simple but representative case in SAR target recognition.
Table 1 establishes the setup for SOC based on the MSTAR
dataset. The training and test samples with 2° depression
angle variance are assumed to be highly alike. Figure 4
displays the recognition results of the proposed method
with a confusion matrix. As shown, the x and y labels
correspond to the 10 targets and the diagonal elements mark
the recognition rates of different classes. We define the
average recognition rate of the 10 classes as P,, = (N/N),

in which N denotes the number of the correctly-classified
samples and N is the total number of all test samples.
Correspondingly, the P,, of the proposed method is com-
puted as 99.48%. Table 2 summarizes the P,.s of all the
methods. In comparison with the Zernike method, the
blocking of the whole image and decision fusion significantly
enhance the final result. Compared with the monogenic
method, the joint use of the blocks further improves the
recognition performance. The A-ConvNet method ranks
second in these methods, validating the high effectiveness of
deep learning models when the test samples share high
similarities with the training ones.

5.3. Condition 2: Configuration Variants. For the ground
targets, it is usual to see their variants for different scenarios.
The 10 targets in the MSTAR dataset also have configuration
variants and some are chosen as shown in Table 3 to establish
the experimental setup. For the BMP2 and T72 targets, their
test samples include more configurations than the training
sets. The use of BTR70 in this case is mainly causing con-
fusion, thus enhancing the difficulty of the recognition
problem. Table 4 lists the P, s of different methods for
comparison. With the highest performance, the proposed
method maintains the best robustness under configuration
variants. The ASC matching method ranks second among
the five methods. As local descriptors, the structural mod-
ifications caused by configuration variants can be well sensed
by the ASC parameters. Compared with the Zernike and
monogenic methods, the blocking and fusion strategy in the
proposed method contributes to higher recognition
performance.

5.4. Condition 3: Depression Angle Variances. When the test
samples and the training samples come from two depression
angles with large differences, their similarity also decreases
sharply, enhancing the difficulty of the recognition problem.
Table 5 establishes the experimental setup for configuration
variants. The training samples of the three targets are from
17° depression angle, but the corresponding test samples are
from 30° and 45°, respectively. Figure 5 shows the
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()
FI1GURE 3: The ten targets in MSTAR dataset. (a) BMP2. (b) BTR70. (c) T72. (d) T62. (¢) BRDM2. (f) BTR60. (g) ZSU23/4. (h) D7. (i) ZIL131. (j) 2S1.

TABLE 1: Details of training and test samples under SOC.

- Training set Test set
e

P Depression angle (°) Number of samples Depression angle (°) Number of samples
BMP2 233 195
BTR70 233 196
T72 232 196
T62 299 273
BRDM2 17 298 15 274
BTR60 256 195
ZSU23/4 299 274
D7 299 274
ZIL131 299 274
281 299 274

BMP2 0.005  0.000  0.000 0.000 0.000 0.000 0.000  0.000 -

BTR70 1.000 0.000  0.000  0.000  0.000  0.000  0.000

T72  0.005 0.005 0.000  0.000  0.000  0.000  0.000

Te2 - 0.004 0.996 0.000  0.000  0.000 0.000  0.000 -

BRDM2 |- 0.000  0.004  0.000 0.996 0.000  0.000  0.000  0.000 -

BTR60 | 0.000  0.000  0.000  0.000 1.000 0.000
7SU23/4 | 0.000  0.004  0.000  0.000  0.000 0.000
D7 | 0.000 0000 0.000  0.00  0.000 0.000

7IL131 | 0.000  0.000  0.000  0.000  0.000 1.000

281 F 0.000 0000 0000 0000 0.000 0.000 0.00  0.000 1.000

D~ —
%)
A &

BMP2 |
BTR70 |
T72 |
T62
BRDM2
BTR60 |
ZSU23/4
ZIL131 |

FIGUure 4: Confusion matrix of the proposed method under SOC.

performance of all the methods at the two depression angles  large depression angle change causes intensive influences on
for comparison. First, the performance at 30° depression  the recognition results. Second, at both depression angles,
angle is much higher than that at 45°, which shows that the  the proposed method achieves the highest P, s because the
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TaBLE 2: Comparison between the performance of the proposed method and reference ones under SOC.
Method Proposed Zernike Monogenic ASC A-ConvNet
Py (%) 99.48 98.12 98.86 98.54 99.14
TaBLE 3: Details of training and test samples under configuration variants.
- Training set Test set
e
P Depression angle ()  Configuration ~Number of samples  Depression angle (")  Configuration ~ Number of samples
9566 196
BMP2 17 9563 233 15 a1 196
BTR70 17 c71 233 15 c71 196
812 195
T72 17 132 232 15 7 191
TaBLE 4: Comparison between the performance of the proposed method and reference ones under configuration variants.
Method Proposed Zernike Monogenic ASC A-ConvNet
P, (%) 98.64 97.92 97.61 98.02 97.83
TaBLE 5: Details of training and test samples under depression angle variances.
- Training set Test set
e
P Depression angle (°) Number of samples Depression angle (*) Number of samples
30 288
281 299 45 303
30 287
BRDM2 17 298 45 303
30 288
ZSU23/4 299 45 303

blocking patches could better deal with the image variations
caused by depression angle changes. In the reference
methods, the ASC matching method obtains the best per-
formance due to the robustness of features.

5.5. Condition 4: Noise Corruption. When the test sample is
measured with a low signal-to-noise ratio (SNR), it is
assumed to have many differences with the one from a
high SNR. The original MSTAR images were mainly ac-
quired from high SNRs. To test the method under noise
corruption, we first simulate the noisy test sets based on
the original test samples. The energy of the original SAR
image is used as the reference and the additive Gaussian
noises are generated according to the desired SNR [24].
Finally, these noises are added into the SAR images to
obtain the noisy image. Based on the noisy test sets at
different SNRs, the performance of all the methods is
obtained, as shown in Figure 6. It is noticeable that the
noises have significant influences on the recognition
performance of all the methods. In comparison, the
proposed method achieves the highest P, s at different
noise levels, validating its superior noise robustness. The

blocking algorithm divides the whole image into several
patches. The noises in one parch will not affect the other
ones. Therefore, the noise interferences can be relieved to
some extent. In addition, the monogenic features have
some robustness to noises. So, the overall noise robustness
of the proposed method can be further enhanced.

5.6. Condition 5: Partial Occlusion. The possible occlusion
case is also considered in the experiments. For example, when
there is a building or obstacles between the target and SAR
sensor along the radar view direction, some parts of the target
may be occluded and will not be reflected in the measured
SAR image. According to the previous works, the directional
occlusion model is adopted in this experiment [24]. A certain
proportion of the target region is removed from the original
image to generate the occluded sample. Based on the sim-
ulated test sets at different occlusion levels, the performance
of all the methods is obtained, as shown in Figure 7. Similar to
the case of noise corruption, the directional occlusions de-
crease the recognition performance. With the highest P, s at
different occlusion levels, the good robustness of the proposed
method is validated. With the blocked patches, the occlusions
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FIGUure 5: Comparison between the performance of the proposed method and reference ones under depression angle variances.
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FiGure 7: Comparison between the performance of the proposed method and reference ones under partial occlusion.



in one of them will not affect the remaining ones. In this
sense, the occlusions can be better handled to make sure the
fused decision is more accurate.

6. Conclusion

The paper proposes a SAR image target recognition method
based on block matching. The original SAR image is pro-
cessed in 4 blocks, and each subblock reflects local char-
acteristics in different directions. The monophonic signal is
used to describe the spectral characteristics and local features
of each subblock and construct a feature vector. The
monomorphic feature vectors of the 4 subblocks are clas-
sified by SRC to obtain the reconstruction error vector.
Based on the random weight matrix, the reconstruction
error vectors of the 4 subblocks are weighted and fused.
Through statistical analysis of the fusion results under multiple
sets of weight vectors, the decision variables are designed to
obtain sample categories. The experiment sets 4 test conditions
in the MSTAR dataset, including standard operating condi-
tions and extended operating conditions. The experimental
results show that this method has significant performance
advantages compared with the existing methods.

Data Availability

The dataset can be accessed upon request to the corre-
sponding author.
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