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In this paper, the exponentiated gamma distribution (EGD) with generalized Type-I hybrid censored data under constant-stress
partially accelerated life test (CSPALT) model is considered. �e Bayesian and E-Bayesian estimation methods, as well as the
maximum likelihood estimation method, are discussed for the parameter of the distribution and the acceleration factor. �e
E-Bayesian and Bayesian estimates are derived by using the squared error loss (SEL) and the LINEX loss functions. �e MCMC
method is applied for deriving the Bayesian and then E-Bayesian estimates. Moreover, a real data set is given for the illustrative
purpose. After all, an evaluation is performed for the results of the proposed methods.

1. Introduction

Many types of censoring schemes are used in the last de-
cades. Type-I and Type-II censoring methods are still the
most often used censoring schemes. In Type-I censoring, the
test is terminated at a specified time τ and the number of
failures is random. In Type-II censoring, the test is ended
after obtaining a prefixed number of failures while the time
of the test is random. In these two types, the experimenter
does not know when he will finish the test (as in Type-II) or
he can get the required number before time τ (as in Type-I).
To overcome these disadvantages of Type-I and Type-II,
Epstein [1] introduced a mixture of Type-I and Type-II and
referred to as hybrid censoring scheme (HCS) mainly, Type-
I HCS and Type-II HCS. In Type-I HCS, the test is termi-
nated at a random time T∗ � min Xr:n, T , where
r ∈ 1, 2, . . . , n{ } and T ∈ (0,∞) are fixed from the begining

of the test. Regarding Type-II HCS, the examination is
terminated at a random point of time, and let us say it
T∗ � max Xr:n, T . Also, these schemes have drawbacks like
having a few number of failures or not knowing the max-
imum time to finish the test. �erefore, Chandrasekar et al.
[2] proposed an efficient and new censoring scheme which
known as the generalized hybrid censoring schemes (gen-
eralized HCSs) to overcome drawbacks of HCSs. �ese
schemes are considered as an extension of Type-I and Type-
II HCSs.�erefore, we can notice that two types of censoring
schemes are defined along these lines.

Generalized Type-I HCS: let k, r ∈ 1, 2, . . . , n{ } be inte-
gers and k< r< n, with time point T ∈ (0,∞). In this
scheme, the test is ended at min Xr:n, T  when the k-th
failure happens before T. If the k-th failure is occurred next
to T, the experiment is terminated at Xk:n. Generalized Type-
II HCS: set r ∈ 1, 2, . . . , n{ } with time points T1, T2 ∈ (0,∞)
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where T1 <T2. If the r-th failure occurs sooner than time T1,
the experiment is finished at T1. If the r-th failure is obtained
between T1 and T2, the experiment is terminated at Xr:n. In
the end, if the r-th failure occurs after time T2, the test is
terminated at T2. �ese schemes are studied by many au-
thors such as Huang and Yang [3]; Rabie, and Li [4]; and
Rabie and Li [5].

Due to the continuous enhancement in industrial design,
it is difficult to get enough information of the products in the
reliability tests under normal use conditions. �erefore, the
accelerated life test (ALT) and partially accelerated life test
(PALT) are used for this purpose. In these tests, a sample is
subjected to more severe operating conditions than normal
use conditions to obtain rapid failures. ALT items are al-
located only in accelerated condition, while PALT is applied
with normal and accelerated use conditions. �is technique
of tests results in shorter lifetimes than under normal use
conditions. Extreme stress can be applied in several ways; the
most common methods are step-stress and constant-stress
as designated in Nelson [6]. In step-stress PALT, units first
run at normal use condition; if units do not fail at a specified
time, they allocated at accelerated use condition. Under
constant stress, test items are divided into two groups: one of
them runs at normal use conditions and the other is sub-
jected to accelerated use conditions. We focus on the
CSPALTmodel with generalized Type-I HCS in this paper.

1.1. 8e Model Description and Test Procedures. �e expo-
nentiated gamma distribution (EGD) was suggested by
Gupta et al. [7] as an alternative to Weibull and gamma
distributions. �is study suggested that the EGD can present
a better fit to the real data set than the GD. �e cumulative
distribution function (CDF), probability density function
(PDF), and the reliability function (R(t)) of the EGD are
written, respectively, in the forms as follows:

F(x; θ) � 1 − e
−x

(x + 1)( 
θ
, x> 0, (θ> 0), (1)

f(x; θ) � θxe
−x 1 − e

−x
(x + 1)( 

θ−1
, x> 0, (θ> 0), (2)

R(x; θ) � 1 − 1 − e
−x

(x + 1)( 
θ
, x> 0, (θ> 0), (3)

where θ is the shape parameter. It is noted that when θ � 1,
the EGD turns into G(2, 1); for more details, one can refer to
Shawky and Bakoban [8–10], Singh et al. [11]; Khan and
Kumar [12]; Ghanizadeh et al. [13]; and Feroze and Aslam
[14].

Figure 1 shows the plots of the shape of the PDF and
CDF of the EGD distribution; it can be seen that the PDF has
a unique mode as the parameter θ decreases. �e distance
between the shape of CDF increases as the parameter θ
increases.

In CSPALT, a sample of size n of test items is divided into
two groups n1 and n2 chosen randomly among n items. n1
items run at normal use conditions, while n2 items are al-
located at accelerated use conditions at the same time. �e
experiment is planned to continue at most until time T in
both normal use and accelerated use conditions. We desire

to obtain r1and r2 failures out of n1 and n2, respectively. And
a bare minimum acceptable number of failures are k1 and k2
from n1 and n2, respectively. According to the CSPALT
model under generalized Type-I HCS, one can note the
following three cases of censored data. For normal use
conditions, we observe

Case I: X1:n1
<X2:n1
< · · · <Xk1:n1

  if Xk1:n1
>T

Case II: X1:n1
< · · · <Xk1:n1

< · · · <Xr1:n1
  if Xr1:n1

<T

Case III: X1:n1
< · · · <Xk1:n1

< · · · <Xd1:n1
  if

Xr1:n1
>T

where d1 denotes the number of failures occurring up to
time T in the case of normal use conditions.

Also, for accelerated use conditions, we observe the
following three cases:

Case 1: Y1:n2
<Y2:n2
< · · · <Yk1:n2

  if Yk2:n2
>T

Case 2: Y1:n2
< · · · <Yk2:n2

< · · · <Yr2:n2
  if Yr2:n2

<T

Case 3: Y1:n2
< · · · <Yk2:n2

< · · · <Yd2:n2
  if Yr2:n2

>T

where Y � λ−1X, λ is the acceleration factor, and d2 stands
for the number of failures occurring up to T in the case of
accelerated use conditions.

�e remainder of this article is organised as follows: In
Section 2, the maximum likelihood based on CSPALT
generalized Type-I HCS is discussed. In Section 3, the
Bayesian estimation is studied under the SEL and LINEX
loss functions by using the MCMCmethod. In Section 4, we
present the Bayesian estimates based on theMCMCmethod.
In Section 5, we present the E-Bayesian estimates based on
the SEL and LINEX loss functions. In Section 6, we present
the simulation study of the algorithm. We examine the
flexibility of the distribution to fit the accelerated data in
Section 7, so we provided a real data example, and the
numerical results concluded are presented to asses the
performance of the distribution.

2. The Likelihood Function Based on Constant-
Stress Generalized Type-I Hybrid
Censoring Scheme

We assume that X1, X2, . . . , Xn1
are n1 observations of

failure lifetimes under typical usage conditions that follows
the generalized Type-I HCS, and Y1, Y2, . . . , Yn2

are n2
observations of breakdown lifetimes under accelerated usage
conditions that follows the generalized Type-I HCS. �e
lifespan of test items is determined by EGD. So we can refer
to the PDF under typical usage situation as in equation (2),
and the following PDF is presented for a product in an
accelerated consumption stage which can be written as the
following:

f(y; θ, λ) � θλ2ye
− λy 1 − e

− λy
(λy + 1) 

θ−1
,

y, θ> 0, λ> 1,
(4)

where Y � λ−1X. �erefore, if d1 denotes failures number
obtained before T, so we can write the likelihood equation
under generalized Type-I HCS for (xj; θ), j � 1, 2, . . . , n1,
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without the multiplicative constant in usual usage is pro-
vided as

L(θ) �

θk1 1 − φθ
k1

 
n1−k1



k1

i�1
xie

−xiφθ−1
i ,

d1 � 0, 1, . . . , k1 − 1,

θd1 1 − φθ
T 

n1−d1


d1

i�1
xie

− xiφθ−1
i ,

d1 � k1, k1 + 1, . . . , r1 − 1,

θr1 1 − φθ
r1

 
n1−r1



r1

i�1
xie

− xiφθ−1
i ,

d1 � r1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where φt � 1 − e−t(t + 1), and for (yj; θ, λ); j � 1, 2, . . . , n2, if
d2 indicates the number of failures that occur prior to the
specified period T, we can refer to the likelihood equations

without the multiplicative constant in accelerated usage which
is provided as

L(θ, λ) �

θk2λ2k2 1 − ψθ
k2

 
n2− k2



k2

j�1
yje

− λyjψθ−1
j ,

d2 � 0, 1, . . . , k2 − 1,

θd2λ2d2 1 − ψθ
T 

n2− d2


d2

j�1
yje

− λyjψθ−1
j ,

d2 � k2, k2 + 1, . . . , r2 − 1,

θr2λ2r2 1 − ψθ
r2

 
n2− r2



r2

j�1
yje

− λyjψθ−1
j ,

d2 � r2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where ψt � 1 − e−λt(λt + 1). By combining equations (5) and
(6), the total likelihood function for (xi; θ), (yj; θ, λ): i � 1,

. . . , n1; j � 1, . . . , n2} can be written as follows:
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Figure 1: Plots the shapes of the PDF (a) and CDF (b) of the EGD.
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L(θ, λ) �

θk1+k2λ2k2 1 − φθ
k1

 
n1−k1 1 − ψθ

k2
 

n2− k2


k1

i�1
xie

−xiφθ−1
i

× 

k2

j�1
yje

− λyjψθ−1
j , d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

θd1+d2λ2d2 1 − φθ
T 

n1−d1 1 − ψθ
T 

n2− d2


d1

i�1
xie

−xiφθ−1
i

× 

d2

j�1
yje

−λyjψθ−1
j , d1 � k1, k1 + 1, . . . , r1 − 1, d2 � k2, k2 + 1, . . . , r2 − 1,

θr1+r2λ2r2 1 − φθ
r1

 
n1− r1 1 − ψθ

r2
 

n2− r2


r1

i�1
xie

− xiφθ−1
i

× 

r2

j�1
yje

− λyjψθ−1
j , d1 � r1, d2 � r2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

2.1.MaximumLikelihood EstimationMethod. As it is stated,
the log-likelihood is monotonically increasing so maxi-
mizing the likelihood function is equivalent to maximizing

the log-likelihood. By calculating the log of the expression
(7), as proceeds, we obtain the log-likelihood function:

ℓ � ln L(θ, λ)

�

k1 + k2( ln θ + 2k2 ln λ + n1 − k1( ln 1 − φθ
k1

  + n2 − k2( ln 1 − ψθ
k2

 

+ 

k1

i�1
lnxi − 

k1

i�1
xi + (θ − 1) 

k1

i�1
ln φi(  + 

k2

j�1
lnyj − 

k2

j�1
λyj + (θ − 1) 

k2

j�1
ln ψj ,

d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

d1 + d2( ln θ + 2d2 ln λ + n1 − d1( ln 1 − φθ
T  + n2 − d2( ln 1 − ψθ

T 

+ 

d1

i�1
lnxi − 

d1

i�1
xi + (θ − 1) 

d1

i�1
ln φi(  + 

d2

j�1
lnyj − λ

d2

j�1
yj + (θ − 1) 

d2

j�1
ln ψj ,

d1 � k1, k1 + 1, . . . , r1 − 1, d2 � k2, k2 + 1, . . . , r2 − 1,

r1 + r2( ln θ + 2r2 ln λ + n1 − r1( ln 1 − φθ
r1

  + n2 − r2( ln 1 − ψθ
r2

 

+ 

r1

i�1
lnxi − 

r1

i�1
xi + (θ − 1) 

r1

i�1
ln φi(  + 

r2

j�1
lnyj − λ

r2

j�1
yj + (θ − 1) 

r2

j�1
ln ψj ,

d1 � r1, d2 � r2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Set the first derivatives of equation (8) regarding θ and λ
to zero and solve the following equations numerically:

zℓ
zθ

� 0,

zℓ
zλ

� 0,

(9)

to get maximum likelihood estimates (MLEs) of θ and λ.

3. Bayesian Analysis

In this part of the paper, we made the most important es-
timation technique which is the Bayesian estimation for the
two parametres θ and λ. We made estimation using diffirent
estimation loss functions such as the SEL and LINEX loss
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functions. We assumed that the test follows CSPALT gen-
eralized Type-I hybrid censored sample from EGD.We uesd
gamma prior for the two parameters θ and λ like gamma
(a1, a2) and gamma (b1, b2), respectively. So, we can write
the joint prior PDF equation of the two parameters of the
distribution θ and λ, and it will have the following form:

π(θ, λ) � π1(θ)π2(λ)

∝ θa1−1λb1− 1
e

− a2θ+b2λ( ),
(10)

where

π1(θ)∝ θa1−1 exp −a2θ( , a1, a2 > 0( , θ > 0,

π2(λ)∝ λb1−1 exp −b2λ( , b1, b2 > 0( , λ> 1.
(11)

�en, the joint posterior PDF of θ and λ is written from
(7) and (10) as follows:

π∗ θ, λ ∣ xi, yj  �

1
K
θk1+k2+a1−1λ2k2+b1−1 1 − φθ

k1
 

n1− k1 1 − ψθ
k2

 
n2−k2



k1

i�1
xie

−xiφθ−1
i

× e
− a2θ+b2λ( ) 

k2

j�1
yje

− λyjψθ−1
j , d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

1
K
θd1+d2+a1−1λ2d2+b1−1 1 − φθ

T 
n1−d1 1 − ψθ

T 
n2− d2



d1

i�1
xie

−xiφθ−1
i

× e
− a2θ+b2λ( ) 

d2

j�1
yje

− λyjψθ−1
j , d1 � k1, . . . , r1 − 1, d2 � k2, . . . , r2 − 1,

1
K
θr1+r2+a1− 1λ2r2+b1− 1 1 − φθ

r1
 

n1− r1 1 − ψθ
r2

 
n2− r2



r1

i�1
xie

− xiφθ−1
i

× e
− a2θ+b2λ( ) 

r2

j�1
yje

− λyjψθ−1
j , d1 � r1, d2 � r2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where K is a normalizing constant defined by K � 
∞

1

∞

0
π∗ θ, λ ∣ xi, yj dθdλ. (13)
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Under the SEL function, the Bayesian estimate of any
function u(θ, λ) of θ and λ is given by

uBS � E[u(θ, λ) ∣ x, y]

� 
∞

1

∞

0
u(θ, λ)π∗ θ, λ ∣ xi, yj dθdλ

�

1
K


∞

1

∞

0
u(θ, λ)θk1+k2+a1−1λ2k2+b1−1 1 − φθ

k1
 

n1−k1 1 − ψθ
k2

 
n2− k2



k1

i�1
xie

−xiφθ−1
i

× e
− a2θ+b2λ( ) 

k2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

1
K


∞

1

∞

0
u(θ, λ)θd1+d2+a1−1λ2d2+b1−1 1 − φθ

T 
n1−d1 1 − ψθ

T 
n2− d2



d1

i�1
xie

− xiφθ−1
i

× e
− a2θ+b2λ( ) 

d2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � k1, . . . , r1 − 1, d2 � k2, . . . , r2 − 1,

1
K


∞

1

∞

0
u(θ, λ)θr1+r2+a1− 1λ2r2+b1−1 1 − φθ

r1
 

n1− r1 1 − ψθ
r2

 
n2− r2



r1

i�1
xie

− xiφθ−1
i

× e
− a2θ+b2λ( ) 

r2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � r1, d2 � r2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Based on the LINEX loss function, the Bayesian estimate
of u(θ, λ) is given by

uBL �
−1
h
lnE e

(− hu(θ,λ)) ∣ x, y 

�
−1
h
ln
∞

1

∞

0
e

(−hu(θ,λ))π∗ θ, λ ∣ xi, yj dθdλ

�

−1
Kh

ln
∞

1

∞

0
θk1+k2+a1− 1λ2k2+b1−1 1 − φθ

k1
 

n1− k1 1 − ψθ
k2

 
n2− k2



k1

i�1
xie

− xiφθ−1
i

× e
− hu(θ,λ)+a2θ+b2λ( ) 

k2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

−1
Kh

ln
∞

1

∞

0
θd1+d2+a1− 1λ2d2+b1−1 1 − φθ

T 
n1− d1 1 − ψθ

T 
n2− d2



d1

i�1
xie

− xiφθ−1
i

× e
− hu(θ,λ)+a2θ+b2λ( ) 

d2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � k1, . . . , r1 − 1, d2 � k2, . . . , r2 − 1,

−1
Kh

ln
∞

1

∞

0
θr1+r2+a1− 1λ2r2+b1−1 1 − φθ

r1
 

n1− r1 1 − ψθ
r2

 
n2− r2



r1

i�1
xie

−xiφθ−1
i

× e
− hu(θ,λ)+a2θ+b2λ( ) 

r2

j�1
yje

− λyjψθ−1
j dθdλ, d1 � r1, d2 � r2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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It is clear from (14) and (15) that Bayesian estimates of θ
and λ cannot be directly calculated, so the MCMCmethod is
used for this purpose.

4. Bayesian Estimates Using MCMC Method

Here, we present the MCMC technique to compute and find
the Bayesian estimates of θ and λ. �e conditional posterior
PDF of the parameter θ and the acceleration factor λ is,
respectively, written as follows:

π∗ θ ∣ λ; xi, yj  �

θk1+k2+a1− 1 1 − φθ
k1

 
n1−k1 1 − ψθ

k2
 

n2− k2


k1

i�1
φθ−1

i

× e
− a2θ 

k2

j�1
ψθ−1

j , d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

θd1+d2+a1− 1 1 − φθ
T 

n1−d1 1 − ψθ
T 

n2− d2


d1

i�1
φθ−1

i

× e
− a2θ 

d2

j�1
ψθ−1

j , d1 � k1, . . . , r1 − 1, d2 � k2, . . . , r2 − 1,

θr1+r2+a1− 1 1 − φθ
r1

 
n1− r1 1 − ψθ

r2
 

n2− r2


r1

i�1
φθ−1

i

× e
− a2θ 

r2

j�1
ψθ−1

j , d1 � r1, d2 � r2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

and

π∗ λ ∣ θ; xi, yj  �

λ2k2+b1−1 1 − ψθ
k2

 
n2− k2

e
− b2λ 

k2

j�1
e

−λyjψθ−1
j ,

d1 � 0, 1, . . . , k1 − 1, d2 � 0, 1, . . . , k2 − 1,

λ2d2+b1−1 1 − ψθ
T 

n2− d2
e

− b2λ 

d2

j�1
e

− λyjψθ−1
j ,

d1 � k1, . . . , r1 − 1, d2 � k2, . . . , r2 − 1,

λ2r2+b1−1 1 − ψθ
r2

 
n2− r2

e
− a2θ+b2λ( ) 

r2

j�1
e

− λyjψθ−1
j ,

d1 � r1, d2 � r2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

As it is seen from equations (16) and (17), the conditional
posterior PDF of θ and λ does not look like any well-known
models. �erefore, we use Metropolis-Hastings techinque to
produce samples of θ and λ from the conditional posterior
PDF using normal proposal distribution. Posterior samples
of θ and λ are, respectively, generated from equations (16)
and (17) using the Metropolis-Hastings algorithm.

Step 1: First we initiate with starting values of θ and λ
and let it be the MLE values (θMLE, λMLE).
Step 2: take j � 1.

Step 3: from equation (16), generate θ(j) and produce
samples of θ(∗) from a normal distribution as a pro-
posal distribution.
Step 4: Now we will compute the probability of
accepting or rejecting the generated sample which
callled the acceptance probability by using the fol-
lowing equation:

r θj−1 ∣ θ(∗)
  � min 1,

π∗ θ(∗) ∣ λ(j− 1)
 

π∗ θ(j−1) ∣ λ(j−1)
 

⎡⎢⎢⎣ ⎤⎥⎥⎦. (18)
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Step 5: we will produce samples from the uniform
distribution ranged from zero to one as the following:
U ∼ U(0, 1).
Step 6: if U≤ r(θ(j−1) ∣ θ(∗)), we accept the generated
value and assign θ(∗) � θ(j); else, reject the proposal and
put θ(j−1) � θ(j).
Step 7: by the same way we will produce and generate
λ(j) by using equation (17) and generate λ(∗)using the
normal distribution, and we consider it as the proposal
distribution.
Step 8: Make a repetition for the steps from step 4 to
step 6 for the parameter λ too.
Step 9: Assign j � j + 1.
Step 10: steps 3 − 9 are repeated for N repetitions.
Step 11: We can compute the Bayesian estimate values
of the two parameters θ and λ using SEL function which
are, respectively, as below:

θBS �
1

N − M


N

j�M+1
θ(j)

, (19)

λBS �
1

N − M


N

j�M+1
λ(j)

, (20)

where M is the number of iterations that are not
considerd in the calculation, and sometime we call it
nburn iterations.
Step 12: We can compute the Bayesian estimates values
of the two parameters θ and λ using LINEX loss
function which are, respectively, as below:

θBL �
−1
h
ln

1
N − M



N

j�M+1
e

−hθ(j)
⎡⎢⎢⎣ ⎤⎥⎥⎦, (21)

λBL �
−1
h
ln

1
N − M



N

j�M+1
e

−hλ(j)
⎡⎢⎢⎣ ⎤⎥⎥⎦. (22)

5. E-Bayesian Estimation Method

�e expectation of Bayesian estimation is referred to as “E-
Bayesian estimation” and described as follows.

Definition 1. Let θ(a, b) be continuous, then
δEB � E[δ(a, b)]

� B
Q

δ(a, b)π(a, b)dadb,
(23)

is called the expected Bayesian estimation of δ (briefly
E-Bayesian estimation) where δ(a, b) is the Bayesian esti-
mate of δ with hyperparameters a and b, Q is the domain of
(a, b), and π(a, b) is the prior PDF of a and b over Q.

From Han [15], the prior parameters (a1, a2) and (b1, b2)
must be picked in order to ensure that π1(θ) and π2(λ)are

indeed a pair of declining functions of θ and λ, respectively.
We can get the differentiation of π1(θ) regarding θ and
π2(λ) with respect to λ as the following two equations:

dπ1(θ)

dθ
∝ θa1−2 exp −a2θ(  a1 − 1(  − a2θ ,

dπ2(λ)

dλ
∝ λb1−2 exp −b2λ(  b1 − 1(  − b2λ .

(24)

When 0< a1 < 1 and a2 > 0, (dπ1(θ)/dθ)< 0, and when
0< b1 < 1 and b2 > 0, (dπ2(λ)/dλ)< 0. �us, π1(θ) and π2(λ)

are decreasing functions for θ and λ, respectively. We make
the assumption that the hyperparameters aj and bj, j � 1, 2,
are independent and have the bivariate PDF given by

π a1, a2(  � π1 a1( π2 a2( ,

π b1, b2(  � π1 b1( π2 b2( .
(25)

In order to get the E-Bayesian estimates of the two
parameters θ and λ, we suggest the prior PDFs of (a1, a2) and
(b1, b2) to clarify the impact of them on the E-Bayesian
estimates of θ and λ. �e prior PDFs of (a1, a2) and (b1, b2)
are, respectively, given as follows:

π1 a1, a2(  �
2a1

c1
, 0< a1 < 1, 0< a2 < c1,

π2 a1, a2(  �
2a2

c
2
1

, 0< a1 < 1, 0< a2 < c1,

π3 a1, a2(  �
3a

2
2

c
3
1

, 0< a1 < 1, 0< a2 < c1,

(26)

and

π1 b1, b2(  �
2b1

c2
, 0< b1 < 1, 0< b2 < c2,

π2 b1, b2(  �
2b2

c
2
2

, 0< b1 < 1, 0< b2 < c2,

π3 b1, b2(  �
3b

2
2

c
3
2

, 0< b1 < 1, 0< b2 < c2.

(27)

5.1. E-Bayesian Estimates Based on the Loss Functions. By
substituting from (19) and (26) in (23), the E-Bayesian es-
timate of θ using the SEL function can be easily evaluated
using the following equation:

θEB � E θB a1, a2(   � B
Q

θB a1, a2( πi a1, a2( da1da2, i � 1, 2, 3,

(28)

and the E-Bayesian estimate of λ based on the SEL function
is computed by substituting in (23) from (20) and (27) as
follows:
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λEB � E λB b1, b2(   � B
Q

λB b1, b2( πi b1, b2( db1db2,

i � 1, 2, 3,

(29)

where θB(a1, a2) and λB(b1, b2) are the estimates of the
Bayesian method for θ and λ by applying the SEL function.

Similarly, by substituting from (21) and (26) in (23), we
get the E-Bayesian estimate of θ based on the LINEX loss
function as follows:

θEB � E θBL a1, a2(   � B
Q

θBL a1, a2( πi a1, a2( da1da2, i � 1, 2, 3,

(30)

and the E-Bayesian estimate of λ based on the LINEX loss
function is obtained by substituting in (23) from (22) and
(27) as follows:

λEB � E λBL b1, b2(   � B
Q

λBL b1, b2( πi b1, b2( db1db2, i � 1, 2, 3,

(31)

where θBL(a1, a2) and λBL(b1, b2) are the estimates of θ and λ
regarding the Bayesian method under the LINEX loss
function. For details, one can see, Han [16]; Jaheen and
Okasha [17]; Okasha [18]; Rabie and Li [19]; Rabie and Li
[20]; and Rabie [21]. Before progressing, we describe pro-
cedures of the simulation study used in this paper.

6. Simulation Study

Here, we provide the simulation results according to the
following steps:

Specify the values of n, r1, r2, k1, k2, h, a1, a2, b1, b2,

c1, c2, andT.
First we use the uniform distribution to genrate a
random sample n from U(0, 1).
We will choose n1 items that are selected randomly,
from n items, and subject them to the normal usage
situations.
Compute n2 � n − n1. �ese units, allocations, are
subjected to stress conditions.
Indicate the initial values used in generating data for
the two paramters θ and λ.
Now we will produce a generalized Type-I hybrid
censored sample from the EGD CSPALT model using
the inverse function method by solving
U � (1 − e−x(x + 1))θ regarding x for a typically use
situations and by solving U � (1 − e− λy(λy + 1))θ with
respect to y, for stress use situations.
We build a Markov chain containing 11,000 data by
using the Metropolis–Hastings algorithm of θ and λ,
and we will not consider the first 1000 values as they are
very affected with the initial values.

θBS and λBS are the Bayesian estimation of the two
parameters using the SEL function which can be easily
computed by using equation (19) and equation (20),
respectively.
θBL and λBL are the E-Bayesian estimation of the two
parameters using the LINEX loss function which can be
easily computed by using equation (21) and equation
(22), respectively.
θEBS and λEBSare the E-Bayesian estimation of the two
parameters using the SEL function which can be easily
computed by using equation (28) and equation (29),
respectively.
θEBL and λEBLare the E-Bayesian estimation of the two
parameters using the LINEX loss function which can be
easily computed by using equation (30) and (31),
equation respectively.
We can compute the mean squared error (MSE) or the
estmiated values of the two parameters θ and λ, which
are, respectively, as follows:

MSE(θ) �
1

1000


1000

j�1

θj − θ 
2
,

MSE(λ) �
1

1000


1000

j�1

λj − λ 
2
,

(32)

where θ is considerd as the estimated values for θ and λ
is considerd as the estimated values for λ.
�e numerical outcomes are obtained using MATH-
EMATICA 8 functions such as FindRoot, NMaximize,
NIntegrate, and RandomReal and displayed in Tables 1
and 2. Table 1 contains the numerical values of the
Bayesian, E-Bayesian estimates, also it contains the
MLEs, beside these values there is MSE of the pa-
rameter θ, using the LINEX and SEL functions. Table 2
contains the numerical values of the Bayesian,
E-Bayesian estimates, also it contains the MLEs, beside
these values there is MSE of the parameter λ using
LINEX and SEL functions. By observing the results in
Tables 1 and 2, we may infer that the E-Bayesian es-
timate outperforms the Bayesian estimator for the SEL
and LINEX loss functions for the two parameters θ and
λ as we can easily see it having small values for theMSE.
Additionally, when the sample size rises, the MSE of
Bayesian and E-Bayesian estimators decreases for a
sample of size n and the censoring time T get increased.

7. Example of Real-Life Data

In this section, an example of real-life data is provided to
investigate the performance of the proposed methods in the
application. �ese data were used by Singh et al. [22],
representing the average monthly rainfall obtained from the
Information System for Management of Water Resources
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Table 1: Average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for θ under LINEX and SEL at
θ � 0.7, λ � 1.2, a1 � b1 � 0.7, a2 � 1.4, b2 � 1.2, h � 1.5, and c1 � c2 � 2.

(n1, n2) T Criteria θMLE

Squared error loss LINEX loss
(r1, r2) (k1, k2)

θBS
θEBS1

θEBS2
θEBS3

θBL
θEBL1

θEBL2
θEBL3

(20, 25) 2 Mean 0.753 997 1.143 54 0.672 402 0.576 345 0.518 71 1.129 74 0.667 409 0.572 641 0.515 693
(15, 20) (10, 15) MSE 0.042 922 0.210 2 0.005 419 0.018 712 0.035 638 0.195 27 0.005 092 0.019 241 0.036 446

2.5 Mean 0.772 42 1.060 93 0.623 824 0.534 706 0.581 199 1.058 55 0.622 986 0.534 088 0.574 801
MSE 0.033 419 0.130 29 0.005 811 0.027 328 0.017 594 0.128 58 0.005 939 0.027 533 0.018 685

(30, 40) 2 Mean 0.92618 1.045 55 0.614 784 0.526 958 0.474 262 1.044 07 0.614 261 0.526 572 0.473 949
(20, 30) (15, 20) MSE 0.086 35 0.119 41 0.007 264 0.029 945 0.050 959 0.118 39 0.007 353 0.030 078 0.051 1

2.5 Mean 0.818 958 1.026 42 0.603 538 0.517 318 0.465 586 1.025 98 0.603 384 0.517 205 0.465 494
MSE 0.019 73 0.106 56 0.009 306 0.033 373 0.054 95 0.106 27 0.009 336 0.033 415 0.054 993

(40, 50) 2 Mean 0.885 694 1.035 89 0.609101 0.522 087 0.469 878 1.034 77 0.608 703 0.521 792 0.469 639
(30, 40) (20, 30) MSE 0.060 416 0.113 04 0.008 338 0.031 708 0.053 001 0.112 26 0.008 405 0.031 81 0.053109

2.5 Mean 0.857 984 1.010 3 0.594 057 0.509192 0.458 273 1.010 23 0.594 031 0.509172 0.458 257
MSE 0.060 304 0.096 29 0.011 225 0.036 408 0.058 433 0.096 24 0.011 23 0.036 416 0.058 44

Table 2: Average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for λ under LINEX and SEL at
θ � 0.7, λ � 1.2, a1 � b1 � 0.7, a2 � 1.4, b2 � 1.2, h � 1.5, and c1 � c2 � 2.

(n1, n2) T Criteria λMLE

Squared error loss LINEX loss
(r1, r2) (k1, k2)

λBS
λEBS1

λEBS2
λEBS3

λBL
λEBL1

λEBL2
λEBL3

(20, 25) 2 Mean 1.011 88 1.559 98 1.07015 1.07015 1.123 65 1.525 09 1.053 51 1.053 51 1.105 34
(15, 20) (10, 15) MSE 0.123 564 0.181 31 0.041 203 0.041 203 0.032 665 0.151 84 0.043 967 0.043 967 0.033 679

2.5 Mean 1.002 44 1.555 65 1.06717 1.06717 1.156 64 1.520 02 1.050 2 1.050 2 1.137 03
MSE 0.051 584 0.133 96 0.021 163 0.021 163 0.015 552 0.108 92 0.025 639 0.025 639 0.016 705

(30, 40) 2 Mean 1.126 31 1.691 17 1.16014 1.16014 1.21815 1.663 99 1.147 25 1.147 25 1.203 95
(20, 30) (15, 20) MSE 0.044112 0.244 34 0.003 043 0.003 043 0.001 933 0.218 26 0.004199 0.004199 0.001 575

2.5 Mean 0.949 765 1.511 48 1.036 87 1.036 87 1.088 72 1.490 4 1.026 89 1.026 89 1.077 72
MSE 0.062 93 0.104 28 0.030 028 0.030 028 0.016152 0.091 08 0.033 216 0.033 216 0.018 525

(40, 50) 2 Mean 1.087 32 1.552 71 1.06516 1.06516 1.118 42 1.534 22 1.056 4 1.056 4 1.108 77
(30, 40) (20, 30) MSE 0.045 626 0.133 46 0.022 442 0.022 442 0.011 353 0.120 31 0.024 734 0.024 734 0.012 851

2.5 Mean 1.034 61 1.4691 1.007 8 1.007 8 1.05819 1.45211 0.999 774 0.999 774 1.049 35
MSE 0.038 813 0.075 08 0.038195 0.038195 0.021 492 0.06612 0.041 312 0.041 312 0.024 042

Table 3: Real data set: average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for θ under LINEX and SEL functions when
θ � 2, λ � 1.24, a1 � 0.8, b1 � 0.7, a2 � 1.6, b2 � 1.4, h � 1.5, and c1 � c2 � 2.

(n1, n2) T Criteria θMLE

Squared error loss LINEX loss
(r1, r2) (k1, k2)

θBS
θEBS1

θEBS2
θEBS3

θBL
θEBL1

θEBL2
θEBL3

(26, 30) 4.8 Mean 2.567 4 2.672 82 1.833 55 1.833 55 1.925 23 2.624 82 1.811 65 1.811 65 1.901
(21, 25) (15, 20) MSE 0.321 945 0.452 72 0.027 722 0.027 722 0.005 609 0.390 45 0.035 495 0.035 495 0.009 824
(26, 30) 5.8 Mean 2.578 21 2.67914 1.837 89 1.837 89 1.929 78 2.632 4 1.816 58 1.816 58 1.906 21
(21, 25) (15, 20) MSE 0.334 329 0.461 27 0.026 299 0.026 299 0.004 951 0.399 98 0.033 665 0.033 665 0.008 821

Table 4: Real data set: average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for λ under LINEX and SEL functions when
θ � 2, λ � 1.24, a1 � 0.8, b1 � 0.7, a2 � 1.6, b2 � 1.4, h � 1.5, and c1 � c2 � 2.

(n1, n2) T Criteria λMLE

Squared error loss LINEX loss
(r1, r2) (k1, k2)

λBS
λEBS1

λEBS2
λEBS3

λBL
λEBL1

λEBL2
λEBL3

(26, 30) 4.8 Mean 1.027 72 1.06214 1.087 63 1.087 63 1.30515 1.059 94 1.085 33 1.085 33 1.301 87
(21, 25) (15, 20) MSE 0.045 063 0.031 64 0.023 226 0.023 226 0.023 226 0.004 258 0.023 932 0.023 932 0.003 84
(26, 30) 5.8 Mean 1.029 65 1.062 48 1.087 98 1.087 98 1.305 58 1.060 27 1.085 66 1.085 66 1.302 27
(21, 25) (15, 20) MSE 0.044 246 0.031 52 0.02312 0.02312 0.004 316 0.032 31 0.023 829 0.023 829 0.003 891
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from the State of So Paulo, including a period of 56 years
from 1947 to 2003. Also, they checked the fitting of the given
data set through different method of estimation and stated
that EGD gives a good fit for these data. �ese data contain
56 observations listed as follows: 0.2, 3.5, 2.8, 3.7,

8.7, 6.9, 7.4, 0.8, 4.8, 2.5,2.9, 3.1, 4.0, 5.0, 3.8, 3.5, 5.4, 3.3, 2.9,

1.7, 7.3, 2.9, 4.6,1.1, 1.4, 3.9, 6.2, 4.1, 10.8, 3.8, 7.3, 1.8, 6.7, 3.5,

3.2, 5.2, 2.8, 5.2, 5.4, 2.2, 9.9,2.1, 4.7, 5.5, 2.6, 4.1, 5.4, 5.5, 2.1,

1.9, 8.8, 1.3, 24.1, 5.4, 6.2, 2.9.
We suppose that values of data set represent lifetime of

failure observations which follow the EGD. Now we will
apply the CSPALT when the sample is genralized Type-I
hybrid censoring scheme. Such that n1 � 26 and n2 � 30,
where the first sample and the second sample were selected
randomly from the complete sample of size n � 56 units. We
desire to obtain r1 � 21 of failures out of n1 � 26 units, and
k1 � 15 is a bare minimum number of failures that can be
accepted out of n1 � 26 units. While we desire to obtain r2 �

25 failures out of n2 � 30 units, k2 � 20 represents a min-
imum number of failures is acceptable from n2 � 30 units.
All estimates of θ and λ are derived based on the same
previous procedures and shown in Tables 3 and 4. Table 3
gives estimates and MSE for the parameter θ of ML,
Bayesian, and E-Bayesian estimation methods based on SEL
and LINEX loss functions. Table 4 gives the previous criteria
for the acceleration factor λ. By observing results listed in
Tables 3 and 4 regarding the real data set, one can note that
the E-Bayesian method is the best compared with both ML
and Bayesian estimation methods because of having less
MSE. Moreover, the proposed methods are easily applied to
the real data and gave good results.

8. Conclusion

In this paper, we studied the exponentiated gammadistribution
(EGD) with generalized Type-I hybrid censored data under the
constant-stress partially accelerated life test (CSPALT) model.
We discussed the Bayesian and E-Bayesian estimation
methods, as well as the maximum likelihood method, for the
distribution parameter and the acceleration factor. �e
E-Bayesian and Bayesian estimates are obtained by the SEL and
the LINEX loss functions. �e MCMC method is used for
deriving the Bayesian estimates, and then we computed the
E-Bayesian estimates. We provided a real data set to clarify the
behavior of the methods in the application.

From the results shown inTables 1–4, wemay conclude that
the E-Bayesian estimation approach is superior to bothML and
Bayesian estimation methods due to its lower MSE. Also, the
E-Bayesian estimation method is easy to be applied and con-
venient to the application. Additionally, by including additional
failure items in the CSPALT model with censoring strategies,
adequate information about test units is obtained. Additionally,
it is shown that the presented methodologies are simply ap-
plicable to the CSPALTmodel and provide acceptable results.
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