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In this paper, the exponentiated gamma distribution (EGD) with generalized Type-I hybrid censored data under constant-stress
partially accelerated life test (CSPALT) model is considered. The Bayesian and E-Bayesian estimation methods, as well as the
maximum likelihood estimation method, are discussed for the parameter of the distribution and the acceleration factor. The
E-Bayesian and Bayesian estimates are derived by using the squared error loss (SEL) and the LINEX loss functions. The MCMC
method is applied for deriving the Bayesian and then E-Bayesian estimates. Moreover, a real data set is given for the illustrative

purpose. After all, an evaluation is performed for the results of the proposed methods.

1. Introduction

Many types of censoring schemes are used in the last de-
cades. Type-I and Type-II censoring methods are still the
most often used censoring schemes. In Type-I censoring, the
test is terminated at a specified time 7 and the number of
failures is random. In Type-II censoring, the test is ended
after obtaining a prefixed number of failures while the time
of the test is random. In these two types, the experimenter
does not know when he will finish the test (as in Type-II) or
he can get the required number before time 7 (as in Type-I).
To overcome these disadvantages of Type-I and Type-II,
Epstein [1] introduced a mixture of Type-I and Type-II and
referred to as hybrid censoring scheme (HCS) mainly, Type-
I HCS and Type-II HCS. In Type-I HCS, the test is termi-
nated at a random time T, = min{X,,,T}, where
re{l,2,...,n}and T € (0, c0) are fixed from the begining

of the test. Regarding Type-II HCS, the examination is
terminated at a random point of time, and let us say it
T* = max{X,.,, T}. Also, these schemes have drawbacks like
having a few number of failures or not knowing the max-
imum time to finish the test. Therefore, Chandrasekar et al.
[2] proposed an efficient and new censoring scheme which
known as the generalized hybrid censoring schemes (gen-
eralized HCSs) to overcome drawbacks of HCSs. These
schemes are considered as an extension of Type-I and Type-
IT HCSs. Therefore, we can notice that two types of censoring
schemes are defined along these lines.

Generalized Type-I HCS: let k,7 € {1,2,...,n} be inte-
gers and k<r<n, with time point T € (0,00). In this
scheme, the test is ended at min{X,,,, T} when the k-th
failure happens before T If the k-th failure is occurred next
to T, the experiment is terminated at X;.,,. Generalized Type-
ITHCS: setr € {1,2,...,n} with time points T}, T, € (0, 00)
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where T, < T,. If the r-th failure occurs sooner than time T+,
the experiment is finished at T',. If the r-th failure is obtained
between T, and T',, the experiment is terminated at X,.,,. In
the end, if the r-th failure occurs after time T,, the test is
terminated at T',. These schemes are studied by many au-
thors such as Huang and Yang [3]; Rabie, and Li [4]; and
Rabie and Li [5].

Due to the continuous enhancement in industrial design,
it is difficult to get enough information of the products in the
reliability tests under normal use conditions. Therefore, the
accelerated life test (ALT) and partially accelerated life test
(PALT) are used for this purpose. In these tests, a sample is
subjected to more severe operating conditions than normal
use conditions to obtain rapid failures. ALT items are al-
located only in accelerated condition, while PALT is applied
with normal and accelerated use conditions. This technique
of tests results in shorter lifetimes than under normal use
conditions. Extreme stress can be applied in several ways; the
most common methods are step-stress and constant-stress
as designated in Nelson [6]. In step-stress PALT, units first
run at normal use condition; if units do not fail at a specified
time, they allocated at accelerated use condition. Under
constant stress, test items are divided into two groups: one of
them runs at normal use conditions and the other is sub-
jected to accelerated use conditions. We focus on the
CSPALT model with generalized Type-I HCS in this paper.

1.1. The Model Description and Test Procedures. The expo-
nentiated gamma distribution (EGD) was suggested by
Gupta et al. [7] as an alternative to Weibull and gamma
distributions. This study suggested that the EGD can present
a better fit to the real data set than the GD. The cumulative
distribution function (CDF), probability density function
(PDF), and the reliability function (R(t)) of the EGD are
written, respectively, in the forms as follows:

F(x;0)=(1-e*(x+1)’, x>0,(6>0), (1)
fx;0)=0xe ™ (1-e " (x+ 1))0_1, x>0,(0>0), (2)

Rx;0)=1-(1-¢*(x+1))°, x>0,(6>0), (3)

where 6 is the shape parameter. It is noted that when 6 = 1,
the EGD turns into G (2, 1); for more details, one can refer to
Shawky and Bakoban [8-10], Singh et al. [11]; Khan and
Kumar [12]; Ghanizadeh et al. [13]; and Feroze and Aslam
[14].

Figure 1 shows the plots of the shape of the PDF and
CDF of the EGD distribution; it can be seen that the PDF has
a unique mode as the parameter 6 decreases. The distance
between the shape of CDF increases as the parameter 6
increases.

In CSPALT, a sample of size n of test items is divided into
two groups n, and n, chosen randomly among # items. n,
items run at normal use conditions, while #, items are al-
located at accelerated use conditions at the same time. The
experiment is planned to continue at most until time T in
both normal use and accelerated use conditions. We desire
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to obtain r,and r, failures out of n; and n,, respectively. And
a bare minimum acceptable number of failures are k, and k,
from n, and n,, respectively. According to the CSPALT
model under generalized Type-I HCS, one can note the
following three cases of censored data. For normal use
conditions, we observe

Case I: {X,,, <X, <+ <Xp .} if Xp,, >T

Case IL: {X,,, < -+ < Xp, < - <X, } if X, , <T

Case I {Xp, <+ <Xg, < <Xg,} if

X, >T

ryn

1in,

where d, denotes the number of failures occurring up to
time T in the case of normal use conditions.
Also, for accelerated use conditions, we observe the
following three cases:
Case 1: {Y,, <V, < <Y, b if Yy, >T
Case 2: {Yljn2 <o <Y, < <Y,2:n2} ity, .,
Case 3: {Y,,, < -+ <Y, <<V, | ifY,

2<T
2>T

n

where Y = 7' X, A is the acceleration factor, and d, stands
for the number of failures occurring up to T in the case of
accelerated use conditions.

The remainder of this article is organised as follows: In
Section 2, the maximum likelihood based on CSPALT
generalized Type-I HCS is discussed. In Section 3, the
Bayesian estimation is studied under the SEL and LINEX
loss functions by using the MCMC method. In Section 4, we
present the Bayesian estimates based on the MCMC method.
In Section 5, we present the E-Bayesian estimates based on
the SEL and LINEX loss functions. In Section 6, we present
the simulation study of the algorithm. We examine the
flexibility of the distribution to fit the accelerated data in
Section 7, so we provided a real data example, and the
numerical results concluded are presented to asses the
performance of the distribution.

2. The Likelihood Function Based on Constant-
Stress Generalized Type-I Hybrid
Censoring Scheme

We assume that X;,X,,..., X, are n; observations of
failure lifetimes under typical usage conditions that follows
the generalized Type-I HCS, and Y,,Y,,...,Y, are m,
observations of breakdown lifetimes under accelerated usage
conditions that follows the generalized Type-I HCS. The
lifespan of test items is determined by EGD. So we can refer
to the PDF under typical usage situation as in equation (2),
and the following PDF is presented for a product in an
accelerated consumption stage which can be written as the
following:

Fi02) =W ye (1= My D),

y,0>0, 1> 1,

(4)

where Y = A" X. Therefore, if d, denotes failures number
obtained before T, so we can write the likelihood equation
under generalized Type-I HCS for (xj; 0),j=12,...,n,
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FiGure 1: Plots the shapes of the PDF (a) and CDF (b) of the EGD.

without the multiplicative constant in usual usage is pro-
vided as

; ,

k o (K —x; 6-1

O {1 —gp T [ [xie™ 0!
i=1
d=0,1,....k -1,

d
0" 1 g} [[xe o,
i=1

L(6) = 1 (5)
d =k,k +1,...,r, -1,
61‘1{1 _ q)fl}nrrl Hxie—xi(P?—l,
i=1
Ld, =11

where ¢, = 1 — e (t + 1), and for (0,07 =1,2,...,my,if
d, indicates the number of failures that occur prior to the
specified period T, we can refer to the likelihood equations

without the multiplicative constant in accelerated usage which
is provided as

] K
2k g 1k Ay, 61
iyl et
j=1
d,=0,1,...,k, — 1,

d,
- e
j=1

dy=kpky+1,...,ry— 1,

— 1"2
HVZAZrZ{l _ V/fz }”2 £} l—[ yje—)tyj V/?_l>
j=1

L(6B,1) = 1

[ d, =1,

wherey, =1 - e Mt +1). By combining equations (5) and
(6), the total likelihood function for {(xl-; 0), (yj; 0,1):i=1,
...»ny; j=1,...,m,} can be written as follows:



6kl+k2A2k2 {1 _ Z

ky

L(6,)) = - .

Jj=1

§)
-Ay;  6-1 _
xHyje y; hdy =r.d,
=1

2.1. Maximum Likelihood Estimation Method. As it is stated,
the log-likelihood is monotonically increasing so maxi-
mizing the likelihood function is equivalent to maximizing

¢=1n L(6,))

k, K, k,
+ZInxi - in +(0- I)ZIn(%
i=1 i=1 i=1

dy

0,1,....k - 1,d, =0,1,...,

d d, d
+Zlnxi - in + (60— I)Zh‘l((pi

i1 i=1 i1
dy=kpk +1,...,r - 1,d, = ky,

(ry+ry)ln 0+2r,In A+ (n, —ry)

+21nxi—gxi+ (9—1)21n((pi

L dy =71,,d, =71,

Set the first derivatives of equation (8) regarding 0 and A
to zero and solve the following equations numerically:

o,
00

9)
o,
oL

n—k, 9 1k, ky
ot {t-vi ) [ Txe
i=1

Ay, 0-1
x[Tre™vihdi=knki+1,..r = Ldy, =k ky + 1,

0r1+72/12r2{1 _ gor@l }”1”’1{1 _ 1//?2 }”2*r2 lr—II xie_x"

(d, +d,)ln 6+2d,In A+ (n, - d,
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-x; 0-1

K%

<[ Ty d =01,k - 1,d,=0,1,... .k, - 1,
j=1
n—d ny—d ad
d,2d. 01" % 01" % -x; 6-1
6" %) 2{1_(/)T} {I‘V/T} Hxie oy
i=1

(7)

,7'2—1,

0-1
P;

i=1

=71,

the log-likelihood. By calculating the log of the expression
(7), as proceeds, we obtain the log-likelihood function:

(ky +ky)In 6+ 2k, In A+ (ny — ky)In{1 - (p,fl} + (m,— k,)In{1 - w,ﬁz}

k, k, k,

)+ Zlnyj - Z/\yj +(0-1) Zln(y/j),
j=1 j=1 j=1

k, -

)ln{l - q)g} + (n, - dz)ln{l - 1//?}

d, d, d,
)+ Zlnyj —)LZyj + (0 - I)ZIn(l//j),
= = =

1>

1,
(8)

ky+1,...,ry—

ln{l - (pf}} + (n, - rz)ln{l - wfz}

)+Zlnyj—)LZyj+ (G—I)Zln(l//j),
= =

j=1

to get maximum likelihood estimates (MLEs) of 6 and A.

3. Bayesian Analysis

In this part of the paper, we made the most important es-
timation technique which is the Bayesian estimation for the
two parametres 6 and A. We made estimation using diffirent
estimation loss functions such as the SEL and LINEX loss
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functions. We assumed that the test follows CSPALT gen-  where

eralized Type-I hybrid censored sample from EGD. We uesd 7, (6) o< 6 exp (~a6), (ap,a, >0),050,

gamma prior for the two parameters 6 and A like gamma (11)
(a;,a,) and gamma (b,,b,), respectively. So, we can write (M) o\t exp(~byA), (bysby>0),1> 1.

the joint prior PDF equation of the two parameters of the

distribution 0 and A, and it will have the following form: Then, the joint posterior PDF of 0 and A is written from

2(0,1) = 7, (), (\) (7) and (10) as follows:

10
o Qal—l)thl—le—(azmbz)t)) (10)

1‘9k1+k2+al—1)L2k2+bl—1 1 g 1=k 1 g 1k ud —x; 01
! (- P -yt T
i=1

k2
xe (OB Ty e Wiyt d =01,k ~1,dy = 0,1,k — 1,
j=1

d

1 _ _ -d S o S

Eedﬁdﬁal 1A2d2+b1 1{1 _ ¢g}”1 1{1 _ w?}nz 2 l—[xie xi¢i9 1
i=1

4 (12)

7 (6,1 ] x;y;)
d,
x ¢ (@0+0:1) Hyje_”fw?_l,dl =k,...,ry=Ldy,=k,,...,1, -1,

j=1

1 7 1y +a;— 19 2r,+b,— 1 01" "N 911 - —x, 6-1
T S (R L [ § ETT
i=1

"
~(a,64b,1 ~dy;, 6-1
x ¢ (@00, )l |yje Yy dy=r,dy =1y,
j1

K=[ "] " (0115, 7,) 000 (13)

where K is a normalizing constant defined by .
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Under the SEL function, the Bayesian estimate of any
function u(6,1) of 6 and A is given by

iys = E[u(6,1) | x,y]
=[] w011 x,y,)docr
1 0

K]

j-1

E 1 0

4,
xe (SO TT e Wiyt dodh dy = ky,..ory = Lidy = kyrooory = 1,
j=1

K Ju

X e_(u20+bzl) Hyje_ij;g‘_ldgdl’dl =rpdy =1,
j=1

Based on the LINEX loss function, the Bayesian estimate
of u(6,1) is given by

-1 -
ity = - InE[e " | x ]

=L [ Chuony)
_7141 JO e 7 (6,1 ] x, y;)dodA

-1 00 (00
In J J 9k1+kz+ul— 1A2k2+b1—1 1- 0
I . { Pr

— — kl
al ] P e et

j=1

d

-1 e (oo _ _ -d —d, 1+ Cx 6

KhlnL JO girtdrtai=1)2dy4b, 1{1_(/)?}"1 1{1_%{}% znxie x,.(piel
i=1

j=1
-1 o0 [ 1qy2r,4b -1 g ym—n 0 1m-rs T2 . 6-1
EIDJI JO 9r1+r2+a1 /\rZJr1 {1_(Prl} {l_vjrz} Hxie x,(pi
i=1

L§)
x ¢~ (1 (0N)+a;0+5:1) Hyjef}‘yfl//?*dﬂd)t,dl =r,d, =7,
j=1

I (™ ((® d,+d,+a,—142d,+b~1 6 1m=di g1m—d, 4 —x. O-1
j J u(B, 1) BT ey ol Ty ] [ [ e )
i=1

d,
xe (MOt T oDy 040dN,d, = Ky, .ory = Ldy = kyyary

( k
I (™ ((® Kk +ky+a,—142k,+b, -1 o 1Mk g (kT -x; 0-1
J JO TCRN i S L o R P !zllxie 9

kZ
xe (SO TT e Vgt ldoddd, = 0,1,....ky ~ 1,d, =0,1,...,k, — L,

(14)

I (™ ((® 7 +ryta,— 19 2r,+b, -1 01" 02 & -x; 6-1
| e R L S RN S i P

k,
xe (MOt T, iy fd0dh,dy = 0,1,k ~ 1,dy = 0,1, k, 1,

(15)

1)
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It is clear from (14) and (15) that Bayesian estimates of &
and A cannot be directly calculated, so the MCMC method is
used for this purpose.

6k1+k2+u1— 1 {1

9d1+d2+a1— 1 {1

xe “zenyf“d =0,1,...,k

d,
T eI
i=1

4. Bayesian Estimates Using MCMC Method

Here, we present the MCMC technique to compute and find
the Bayesian estimates of 6 and A. The conditional posterior
PDF of the parameter 6 and the acceleration factor A is,
respectively, written as follows:

ky
-9 l}nl_kl{l B wzz}nz—kz 1—[ 901‘9_1

~1,d,=0,1,...,k, - 1,

(9|/\ xl,yj)z ) (16)
2
xe ™ [Tl hd =ky.or - Ldy =k, iy - 1,
j=1
r
-1 n—r 9 1mT2 6-1
A 2 s Et 7 i ) O
i=1
X e “291_[1// ,dy =r1,d, =1y,
and
[ o1 m ks a2 Ay, 6-1
I R |
j=1
d =0,1,...,k, - 1,d, =0,1,...,k, - 1,
Azd2+bl—1{1 _ w@}”z*dze—hzkﬁe—hij(?—l
7' (A 6;x,, ;) = T i j (17)
d=k,...,ry=-1d,=k,...,1, -1,
/\2r2+b1—1{1 _ wfz}nz T’Ze—(u29+bz/\) Heilyfl//?&,

As it is seen from equations (16) and (17), the conditional
posterior PDF of 6 and A does not look like any well-known
models. Therefore, we use Metropolis-Hastings techinque to
produce samples of 0 and A from the conditional posterior
PDF using normal proposal distribution. Posterior samples
of 0 and A are, respectively, generated from equations (16)
and (17) using the Metropolis-Hastings algorithm.

Step 1: First we initiate with starting values of 6 and A
and let it be the MLE values (0,5 Aysrp)-

Step 2: take j = 1.

j=1

L d, =1,,d, =71,

Step 3: from equat10n (16), generate 8 and produce
samples of 8*) from a normal distribution as a pro-
posal distribution.

Step 4: Now we will compute the probability of
accepting or rejecting the generated sample which
callled the acceptance probability by using the fol-
lowing equation:

() (-1
(071607 = min{l,M} (18)

7.[*(9(]'—1) |A(j_l)) ’



Step 5: we will produce samples from the uniform
distribution ranged from zero to one as the following:
U~U(0,1).

Step 6: if U<r (Y7 | 9(* ), we accept the generated
value and asm% n 0" = 09 else, reject the proposal and
put gU-1 N,

Ste)p 7: by the same way we will produce and generate
1Y by using equation (17) and generate A*using the
normal distribution, and we consider it as the proposal
distribution.

Step 8: Make a repetition for the steps from step 4 to
step 6 for the parameter A too.

Step 9: Assign j=j+ 1.
Step 10: steps 3 — 9 are repeated for N repetitions.

Step 11: We can compute the Bayesian estimate values
of the two parameters 6 and A using SEL function which
are, respectively, as below:

1
05 = oY (19)
? N - M]%‘Fl

1
ABS_N o Z A9 (20)

j=M+1

where M is the number of iterations that are not
considerd in the calculation, and sometime we call it
nburn iterations.

Step 12: We can compute the Bayesian estimates values
of the two parameters 6 and A using LINEX loss
function which are, respectively, as below:

=~ -1 1 N —heW
gl 2.6 Oy
Jj=M+1
-1 1 N _p\@
Agr = —ln[ e :| (22)
h [N-M j:]\z/I:H

5. E-Bayesian Estimation Method

The expectation of Bayesian estimation is referred to as “E-
Bayesian estimation” and described as follows.

Definition 1. Let @(a, b) be continuous, then

8z = E[8(a,b)]

_ (23)
_ ”Qa(a, b)7(a, b)dadb,

is called the expected Bayesian estimation of & (briefly
E-Bayesian estimation) where §(a,b) is the Bayesian esti-
mate of § with hyperparameters a and b, Q is the domain of
(a,b), and 7 (a,b) is the prior PDF of a and b over Q.

From Han [15], the prior parameters (a;, a,) and (b;,b,)
must be picked in order to ensure that 7, (0) and 7, (A)are
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indeed a pair of declining functions of 0 and A, respectively.
We can get the differentiation of 7, (6) regarding 6 and
7, (A) with respect to A as the following two equations:

dn'(ig(e) o 62 exp (-a,0){(a, - 1) - a,6},
(24)
dﬂ;)f/l) o A exp (=b,1){(b, - 1) = b,A}.

When 0<a, <1 and a, >0, (dm, (6)/d0) <0, and when
0<b,<landb, >0, (dm,(1)/d)) <0. Thus, 7, (6) and 7, (1)
are decreasing functions for 0 and A, respectively. We make
the assumption that the hyperparameters a; and b;, j = 1,2,

j
are independent and have the bivariate PDF given by

n(ay,a,) = m (ay)m, (ay),
7 (by,by) = my (b)), (by).

In order to get the E-Bayesian estimates of the two
parameters 0 and A, we suggest the prior PDFs of (a,, a,) and
(by,b,) to clarify the impact of them on the E-Bayesian
estimates of 6 and A. The prior PDFs of (a,, a,) and (b,,b,)
are, respectively, given as follows:

(25)

2a
) (“p az) ==,

0<a; <1,0<a,<c,
G

2a,

m(a,a,) =—- 0<a;<1,0<a,<c, (26)

0<a,<1,0<a,<c,

and

zb
(bl’ bz) -

2

0<b;<1,0<b,<cy,

2b
Us) (bl’ bz) = _22’

0<b;<1,0<b,<cy, (27)
)

3b2
15 (b1, by) = 7

Cz

0<b,<1,0<b, <,

5.1. E-Bayesian Estimates Based on the Loss Functions. By
substituting from (19) and (26) in (23), the E-Bayesian es-
timate of 6 using the SEL function can be easily evaluated
using the following equation:

EEB = E[GAB(al’az)] = ”QéB (ap.a))m;(ay, ay)darday,  i=1,2,3,
(28)

and the E-Bayesian estimate of A based on the SEL function
is computed by substituting in (23) from (20) and (27) as
follows:
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Rop = E[Ry (by,by)] = ”QXB (by,b,)7, (b, b,)db, db,

i=1,2,3,
(29)

where @B(al,az) and XB(bl,bz) are the estimates of the
Bayesian method for 6 and A by applying the SEL function.

Similarly, by substituting from (21) and (26) in (23), we
get the E-Bayesian estimate of 0 based on the LINEX loss
function as follows:

aEB = E[aBL (“1’“2)] = ”QGBL (a1ay)m;(ay,a,)dayday,  i=1,2,3,

(30)

and the E-Bayesian estimate of A based on the LINEX loss
function is obtained by substituting in (23) from (22) and
(27) as follows:

App = E[XBL (bl’bZ)] = JJQXBL (b1, by)m; (b1, by)dbydby,  i=1,2,3,
(31)

where 65, (a,,a,) and A (b, b,) are the estimates of § and A
regarding the Bayesian method under the LINEX loss
function. For details, one can see, Han [16]; Jaheen and
Okasha [17]; Okasha [18]; Rabie and Li [19]; Rabie and Li
[20]; and Rabie [21]. Before progressing, we describe pro-
cedures of the simulation study used in this paper.

6. Simulation Study

Here, we provide the simulation results according to the
following steps:

Specify the values of n,r,t,, ki, ky, h,a,a,,b,,b,,
€1>¢5, andT.

First we use the uniform distribution to genrate a
random sample » from U (0, 1).

We will choose n, items that are selected randomly,
from n items, and subject them to the normal usage
situations.

Compute n, =n—mn,. These units, allocations, are
subjected to stress conditions.

Indicate the initial values used in generating data for
the two paramters 6 and A.

Now we will produce a generalized Type-I hybrid
censored sample from the EGD CSPALT model using
the inverse function method by solving
U= (1-e*(x+1))? regarding x for a typically use
situations and by solving U = (1 - eV (Ay +1))” with
respect to y, for stress use situations.

We build a Markov chain containing 11,000 data by
using the Metropolis-Hastings algorithm of 6 and A,
and we will not consider the first 1000 values as they are
very affected with the initial values.

Bps and Ay are the Bayesian estimation of the two
parameters using the SEL function which can be easily
computed by using equation (19) and equation (20),
respectively.

By, and 1, are the E-Bayesian estimation of the two
parameters using the LINEX loss function which can be
easily computed by using equation (21) and equation
(22), respectively.

Bpps and Agpgare the E-Bayesian estimation of the two
parameters using the SEL function which can be easily
computed by using equation (28) and equation (29),
respectively.

@EBL and XEBLare the E-Bayesian estimation of the two
parameters using the LINEX loss function which can be
easily computed by using equation (30) and (31),
equation respectively.

We can compute the mean squared error (MSE) or the
estmiated values of the two parameters 6 and A, which
are, respectively, as follows:

1000

MSE () = Tloo Y (6,-6),

j=1
(32)
. 1 1000 2
MSE() = 1 Zl (X;-1),
=

where 0 is considerd as the estimated values for 6 and 1
is considerd as the estimated values for A.

The numerical outcomes are obtained using MATH-
EMATICA 8 functions such as FindRoot, NMaximize,
Nintegrate, and RandomReal and displayed in Tables 1
and 2. Table 1 contains the numerical values of the
Bayesian, E-Bayesian estimates, also it contains the
MLEs, beside these values there is MSE of the pa-
rameter 6, using the LINEX and SEL functions. Table 2
contains the numerical values of the Bayesian,
E-Bayesian estimates, also it contains the MLEs, beside
these values there is MSE of the parameter A using
LINEX and SEL functions. By observing the results in
Tables 1 and 2, we may infer that the E-Bayesian es-
timate outperforms the Bayesian estimator for the SEL
and LINEX loss functions for the two parameters 6 and
A as we can easily see it having small values for the MSE.
Additionally, when the sample size rises, the MSE of
Bayesian and E-Bayesian estimators decreases for a
sample of size n and the censoring time T get increased.

7. Example of Real-Life Data

In this section, an example of real-life data is provided to
investigate the performance of the proposed methods in the
application. These data were used by Singh et al. [22],
representing the average monthly rainfall obtained from the
Information System for Management of Water Resources
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TaBLE 1: Average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for 6 under LINEX and SEL at
0=0.7,A=12,a,=b, =0.7,a, = 1.4,b, = 1.2,h = 1.5, and ¢, = ¢, = 2.
(n,1,) T Criteria @MLE R §quared error loss R R R LINEX l(iss ~
(riry) (ks ky) BS Ogss1 Ogss2 Ogss3 O, Oesi1 OgsL2 Ops13
(20,25) 2 Mean 0.753997 1.14354 0.672402 0.576345 0.51871 1.12974 0.667409 0.572641 0.515693
(15, 20) (10, 15) MSE 0.042922 0.2102 0.005419 0.018712 0.035638 0.19527 0.005092 0.019241 0.036446
25 Mean 0.77242 1.06093 0.623824 0.534706 0.581199 1.05855 0.622986 0.534088 0.574801
MSE 0.033419 0.13029 0.005811 0.027328 0.017594 0.12858 0.005939 0.027533 0.018 685
(30, 40) 2 Mean 0.92618 1.04555 0.614784 0.526958 0.474262 1.04407 0.614261 0.526572 0.473949
(20, 30) (15, 20) MSE 0.08635 0.11941 0.007264 0.029945 0.050959 0.11839 0.007353 0.030078 0.0511
25 Mean 0.818958 1.02642 0.603538 0.517318 0.465586 1.02598 0.603384 0.517205 0.465494
MSE 0.01973 0.10656 0.009306 0.033373 0.05495 0.10627 0.009336 0.033415 0.054993
(40, 50) 2 Mean 0.885694 1.03589 0.609101 0.522087 0.469878 1.03477 0.608703 0.521792 0.469 639
(30, 40) (20, 30) MSE 0.060416 0.11304 0.008338 0.031708 0.053001 0.11226 0.008405 0.03181 0.053109
25 Mean 0.857984 1.0103 0.594057 0.509192 0.458273 1.01023 0.594031 0.509172 0.458 257
MSE 0.060304 0.09629 0.011225 0.036408 0.058433 0.09624 0.01123 0.036416 0.05844
TaBLE 2: Average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for A under LINEX and SEL at
0=07,A=12,a,=b, =0.7,a, =14,b, =1.2,h = 1.5, and¢c; = ¢, = 2.
(n,,1y) T Criteria XMLE R §quared errcir loss ~ ~ R LINEX ch)ss R
(riry) (ks ky) BS Aggsi Aggs Aggss Agt Agiy Agpra Agpr3
(20,25) 2 Mean 1.011 88 1.55998 1.07015 1.07015 1.12365 1.52509 1.05351 1.053 51 1.105 34
(15, 20) (10, 15) MSE 0.123564 0.18131 0.041203 0.041203 0.032665 0.15184 0.043967 0.043967 0.033679
25 Mean 1.00244 1.55565 1.06717 1.06717 1.15664  1.52002 1.0502 1.0502 1.13703
MSE 0.051584 0.13396 0.021163 0.021163 0.015552 0.10892 0.025639 0.025639 0.016 705
(30, 40) 2 Mean 1.126 31 1.69117 1.160 14 1.160 14 1.21815 1.66399  1.14725 1.147 25 1.203 95
(20, 30) (15, 20) MSE 0.044112 0.24434 0.003043 0.003043 0.001933 0.21826 0.004199 0.004199 0.001575
25 Mean 0.949765 1.51148 1.036 87 1.036 87 1.088 72 1.4904 1.026 89 1.026 89 1.07772
MSE 0.06293 0.10428 0.030028 0.030028 0.016152 0.09108 0.033216 0.033216 0.018525
(40, 50) 2 Mean 1.08732 1.55271 1.06516 1.06516 1.11842  1.53422 1.056 4 1.056 4 1.10877
(30, 40) (20, 30) MSE 0.045626 0.13346 0.022442 0.022442 0.011353 0.12031 0.024734 0.024734 0.012851
25 Mean 1.034 61 1.4691 1.007 8 1.007 8 1.05819 1.45211 0999774 0.999774  1.049 35
MSE 0.038813 0.07508 0.038195 0.038195 0.021492 0.06612 0.041312 0.041312 0.024 042

TaBLE 3: Real data set: average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for 6 under LINEX and SEL functions when
0=2,1=124,a, =08b, =07a,=16b,=14h=15 andc, =c, = 2.

(n,,1y) T Criter - Squared error loss LINEX loss

riteria O - - — — ~ _ ~ -
(riry) (kpky) Os Oess1 Oess2 Oess3 01 Oes11 Ogs12 Ogs13
(26, 30) 4.8 Mean 2.567 4 2.67282 1.83355 1.83355 1.92523  2.62482 1.81165 1.811 65 1.901
(21, 25) (15, 20) MSE 0.321945 0.45272 0.027722 0.027722 0.005609 0.39045 0.035495 0.035495 0.009 824
(26, 30) 5.8 Mean 2.57821 2.67914 1.837 89 1.837 89 1.92978 2.6324 1.816 58 1.816 58 1.906 21
(21, 25) (15, 20) MSE 0.334329 0.46127 0.026299 0.026299 0.004951 0.39998 0.033665 0.033665 0.008 821

TaBLE 4: Real data set: average estimates, MSE of MLEs, Bayesian, and E-Bayesian estimates for A under LINEX and SEL functions when
0=2,A=124,a,=0.8,b, =0.7,a, = 1.6,b, = 1.4,h = 1.5, and ¢, = ¢, = 2.

(n,,1,) T o ~ Squared error loss LINEX loss

Criteria AMiE ~ ~ ~ ~ ~ ~ ~ ~
(r,12) (ky, k) Ags Aggsi Apss: Appss A Agsrr Agra Agprs
(26, 30) 4.8 Mean 1.02772 1.06214 1.08763 1.087 63 1.30515 1.05994  1.08533 1.08533 1.301 87
(21, 25) (15, 20) MSE 0.045063 0.03164 0.023226 0.023226 0.023226 0.004258 0.023932 0.023932 0.003 84
(26,30) 5.8 Mean 1.02965 1.06248 1.08798 1.08798 1.30558 1.06027  1.08566 1.08566  1.30227
(21, 25) (15, 20) MSE 0.044246 0.03152 0.02312  0.02312 0.004316 0.03231 0.023829 0.023829 0.003 891
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from the State of So Paulo, including a period of 56 years
from 1947 to 2003. Also, they checked the fitting of the given
data set through different method of estimation and stated
that EGD gives a good fit for these data. These data contain
56 observations listed as follows: 0.2,3.5,2.8,3.7,
8.7,6.9,7.4,0.8,4.8,2.5,2.9,3.1,4.0, 5.0, 3.8, 3.5, 5.4, 3.3, 2.9,
1.7,7.3,2.9,4.6,1.1,1.4,3.9,6.2,4.1,10.8,3.8,7.3,1.8,6.7, 3.5,
3.2,5.2,2.8,5.2,5.4,2.2,9.9,2.1,4.7,5.5,2.6,4.1,5.4,5.5, 2.1,
1.9,8.8,1.3,24.1, 5.4,6.2,2.9.

We suppose that values of data set represent lifetime of
failure observations which follow the EGD. Now we will
apply the CSPALT when the sample is genralized Type-I
hybrid censoring scheme. Such that n, =26 and n, = 30,
where the first sample and the second sample were selected
randomly from the complete sample of size n = 56 units. We
desire to obtain 7, = 21 of failures out of n, = 26 units, and
k, = 15 is a bare minimum number of failures that can be
accepted out of n; = 26 units. While we desire to obtain r, =
25 failures out of 1, = 30 units, k, = 20 represents a min-
imum number of failures is acceptable from n, = 30 units.
All estimates of 6 and A are derived based on the same
previous procedures and shown in Tables 3 and 4. Table 3
gives estimates and MSE for the parameter 6 of ML,
Bayesian, and E-Bayesian estimation methods based on SEL
and LINEX loss functions. Table 4 gives the previous criteria
for the acceleration factor A. By observing results listed in
Tables 3 and 4 regarding the real data set, one can note that
the E-Bayesian method is the best compared with both ML
and Bayesian estimation methods because of having less
MSE. Moreover, the proposed methods are easily applied to
the real data and gave good results.

8. Conclusion

In this paper, we studied the exponentiated gamma distribution
(EGD) with generalized Type-I hybrid censored data under the
constant-stress partially accelerated life test (CSPALT) model.
We discussed the Bayesian and E-Bayesian estimation
methods, as well as the maximum likelihood method, for the
distribution parameter and the acceleration factor. The
E-Bayesian and Bayesian estimates are obtained by the SEL and
the LINEX loss functions. The MCMC method is used for
deriving the Bayesian estimates, and then we computed the
E-Bayesian estimates. We provided a real data set to clarify the
behavior of the methods in the application.

From the results shown in Tables 1-4, we may conclude that
the E-Bayesian estimation approach is superior to both ML and
Bayesian estimation methods due to its lower MSE. Also, the
E-Bayesian estimation method is easy to be applied and con-
venient to the application. Additionally, by including additional
failure items in the CSPALT model with censoring strategies,
adequate information about test units is obtained. Additionally,
it is shown that the presented methodologies are simply ap-
plicable to the CSPALT model and provide acceptable results.
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