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Plant species recognition is a critical step in protecting plant diversity. Leaf-based plant species recognition research is important
and challenging due to the large within-class difference and between-class similarity of leaves and the rich inconsistent leaves with
different sizes, colors, shapes, textures, and venations. Most existing plant leaf recognition methods typically normalize all leaf
images to the same size and then recognize them at one scale, which results in unsatisfactory performances. A novel multiscale
convolutional neural network with attention (AMSCNN) model is constructed for plant species recognition. In AMSCNN,
multiscale convolution is used to learn the low-frequency and high-frequency features of the input images, and an attention
mechanism is utilized to capture rich contextual relationships for better feature extraction and improving network training.
Extensive experiments on the plant leaf dataset demonstrate the remarkable performance of AMSCNN compared with the hand-
crafted feature-based methods and deep-neural network-based methods. .e maximum accuracy attained along with AMSCNN
is 95.28%.

1. Introduction

Plants are the life forms with the largest number of species
and the most extensive distribution on Earth and directly
affect the ecological system on which human beings live.
Plants are also important resources for human survival and
development, essential resources for human production and
life, and the basis for human survival. With the disap-
pearance of a lot of plant species, people have realized the
importance of protecting plant species diversity. To protect
plants, the first step is to identify plant species, which can be
achieved by their leaf, fruit, seed, branch, flower, skin, and so
on. How to quickly recognize an unknown plant without the
related professional knowledge is a huge challenge, because
plant leaves are highly diverse and inconsistent. With the
development of image processing, pattern recognition,
computerization, Internet, and big data, many various ap-
proaches have been presented to implement plant species
classification systems. Plant species have rich leaves in most

of a year, and a leaf has abundant classification features such
as leaf margin, vein, skeleton, and fissure depth, which are
the main basis whether for plant morphology or automatic
methods to recognize plant species. Automatic plant clas-
sification can be achieved by extracting features from its
leaves. However, due to the variation, irregularity and large
within-class difference of the plant leaf shape and texture
comparing to the industrial parts, as shown in Figure 1, the
leaf-based plant species recognition is one of the challenging
researches. From Figure 1, it is seen that the different plants
leaves vary greatly and have different sizes, textures, shapes,
venation, and disorder. Moreover, it is known that in dif-
ferent growth conditions or different shooting distances,
even for the same species, plant leaves still have different
sizes [1, 2], as shown in Figures 1(c) and 1(d).

.e feature extraction of plant leaf image is a crucial step
of a plant recognition method. .ere are many plant species
recognition algorithms [1–5], which can be divided into two
main types of feature representation methods for describing
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leaf images, i.e., hand-crafted features [6, 7] and deep
learning features [8, 9]. In fact, the hand-crafted features are
mainly dependent on the ability of computer vision experts
to encode the morphological characters of the leaves [2–6].
.e classical predefined feature extraction-based approaches
rely mainly on the features and classifier or select certain
leaves within a dataset to achieve high accuracy rates. But it
is very difficult to select the optimal hand-crafted features
due to the various leaves and the different species with
similar shape and texture characteristic [10, 11]. Further-
more, most of the existing plant species recognition systems
rely on a lot image preprocessing steps and human inter-
vention to select certain points of the leaf to help the system
align and normalize the leaf images or to select the best result
among a few candidates after the classification is done. .e
hand-crafted feature extraction is a complex, time-con-
suming process which needs to be altered whenever the
problem or the dataset changes.

.e deep-learning-based methods are able to automat-
ically learn the classification features from the input leaf
images without the complex image preprocessing. AlexNet,
ResNet, and VGG16 are three classical CNN models [12].
AlexNet contains 650,000 neurons, five convolution layer,
three pooling layers, and three fully connected layers. ResNet
has a residual unit to transmit the original input data directly
to the back of the layer. VGG16 improves the relationship
between the depth of CNN and its performance, repeatedly
stacking the small convolutional kernel of 3 × 3 and the
maximum pooling of 2 × 2 to construct the CNN with the
depth of 16–19 layers.

Recently, deep-learning-based plant recognition
methods have gotten more and more attention, and several
deep learning models have been constructed for plant
identification and achieved perfect accuracy [13]. To im-
prove the plant recognition ability in the complex envi-
ronment, Zhu et al. [14] proposed an improved deep
convolutional neural network (CNN) by taking advantage of
the Inception V2 with batch normalization instead of the
convolutional neural layers in faster region-based CNN
(RCNN). .e experimental results show that the proposed
approach has higher recognition accuracy than faster RCNN
in recognizing leaf species in the complex background. Zhu
et al. [15] proposed a deep CNN-(DCNN-) based plant
identification method. DCNN consists of 16 convolutional
layers followed by 5 max pooling layers, 3 fully connected
layers, and a final SoftMax layer. .e experiments on several

plant datasets validated the remarkable performance of the
very deep neural network compared to the hand-crafted
features.

From the above CNN-based plant recognition methods,
it is concluded that the performance of the CNNmodels rely
on several factors including availability of large dataset, more
computing power and new ideas and algorithms. Con-
volutional layers automatically learn the kernel parameters
from the training images to extract local features from the
original images. It is very crucial to choose the size of
convolutional kernels for feature extraction in CNN. .e
kernels with small size can extract short edges or low-fre-
quency feature, while the high-frequency feature or the other
suitable feature of the images cannot be extracted at the same
time. Similarly, the kernels with large scale can extract more
big features but without having low-frequency feature of the
images. If every convolutional layer uses the same filter size
or even alternative size, CNN deeper and complex com-
putations make training slow. Considering multiscale fea-
tures, Du et al. [16] and Rasti et al. [17] proposed two
multiscale CNN (MSCNN) models, which consist of mul-
tiple different scale feature learning modules. .e main
difference between the two models is that the multiscale
features learned by the first model are fused at one inter-
fusion layer, while by the second model are step-by-step
fused. Hu et al. [18] proposed a multiscale fusion CNN
(MSFCNN) for plant leaf recognition at multiple scales.
Along with the depth of MSFCNN, multiscale images are
progressively handled and the corresponding features are
fused.

.e attention mechanism is widely used in a lot of
computer vision, image processing, and deep learning
[19, 20], which can make full use of the local and global
features of the samples, assign higher weight to important
features, highlight the impact of key input information on
the model output, and then teach systems to pay attention to
important information and ignore irrelevant information. Li
et al. [21] developed a multibranch CNN with attention
(MBCNNA) for plant species recognition. MBCNNA con-
sists of 12 convolutional layers, 4 max pooling layers, and 2
fully connected layers. .e first part of MBCNNA is an
attention block to reduce the influence of background, while
the latter part is multibranch CNN to extract the multiview
features through multichannel. Zhu et al. [22] proposed a
plant species recognition method based on DCNNwith two-
way attention model. .e first attention way aims to

(a) (b)

(c) (d)

Figure 1: Plant leaves in different seasons, illuminations, and different attitudes. (a) 10 species leaves with very different shapes, (b) 10
different species leaves with very similar shape, (c) 10 Aesculus leaves with different shapes, and, (d) 10 Fraxinus chinensis leaves with
different sizes and locations.
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recognize the plant species, while the second attention way
focuses on the discriminative features of the input image by
finding the max-sum part of the fully convolutional network
heat map.

Inspired by MSCNN [16–18] and attention mechanism
[19–22], a modified MSCNN with attention (AMSCNN)
model is constructed for plant species recognition. .e
contributions of the proposed method are given as follows:

(1) Multiscale convolution is used to learn the low-
frequency and high-frequency features of the input
images

(2) Attention mechanism is utilized to capture the rich
contextual relationships for better feature extraction
and improvement of the network training

(3) Extensive experiments are conducted to validate
AMSCNN

.e remainder of this paper is organized as follows.
Section 2 overviews the classical CNN and multiscale
convolution. AMSCNN is introduced in Section 3. Section 4
presents experiments and experimental results. Finally,
Section 5 discusses the proposed method and concludes this
paper.

2. Related Works

2.1. Plant Identification by Texture, Shape, and Color Features
(TSC). Plant species can be identified by texture, shape, and
color of its leaf (TSC) [10]. First extract the features of
texture, shape, and color of each leaf. .en combine three
kinds of features as a feature vector. Finally, the SVM
classifier is applied to leaf classification. .is method is a
classical hand-crafted feature extraction-based method.

2.2. CNN and VGG16. CNN stands out from the traditional
neural networks (NN) in two characteristics, sparse con-
nection and weight sharing, which can reduce the number of
parameters and prevent overfitting. .e basic architecture of
CNN consists of four kinds of layers, namely convolutional
layer, pooling layer, fully connected layer, and classification
layer. VGG network can explore the relationship between
the depth of CNNs and their performance [23]. Each block is
made by several consecutive 3 × 3 convolutions and followed
by a max-pooling layer. VGG16 is a classical CNN model
[24], containing 13 convolutional layers, 5 pooling layers, 3
fully connected layers, and a classification layer. It is simple
but contains a large number of model parameters, which
result in a lot of training time to adjust these parameters.
Increasing network depth can improve network classifica-
tion ability, but only deepening the network depth is likely to
cause gradient explosion or gradient vanishing. .e archi-
tectures of CNN and VGG16 are shown in Figure 2.

2.3. Residual Neural Network (ResNet). ResNet is used to
solve the problems of gradient disappearing or explosion
during training very deep CNN model [23]. It outperforms
the classical CNN models at a variety of tasks, such as object

detection and semantic image segmentation. Compared with
the ordinary network block, the ResNet block mainly adds a
path between the input and output, so that the network only
needs to learn the residual of multilevel resolution features.
.e architecture of ResNet block is shown in Figure 3, where
xi and xi+1 are the input and output of the ith layer, F(.) and
f(.) are residual and activation functions, respectively.

2.4. Multiscale Convolution (MSC). MSC can extract the
multiscale features, containing several MSC blocks. Each
block consists of MSC layer and a flat convolutional layer, as
shown in Figure 4(b) [17, 18].

3. Multiscale CNN with Attention

Inspired by MSCNN [17, 18] and attention mechanism
[19, 20], a MSCNN with attention (AMSCNN) based plant
species recognition method is proposed. .e architecture of
AMSCNN is shown in Figure 5. After multiscale convolu-
tions of 3 × 3, 5 × 5 and 7 × 7, attention is employed to make
the spatial variation robustness of the input data stronger.
Different levels of features are fused to improve the model’s
ability to express image semantic features, and SoftMax
classifier is used for plant recognition in the output decision
layer. Different from MSCNN, AMSCNN utilizes the at-
tention mechanism to capture rich contextual relationships
for better feature representations and decrease the size of
training and model parameters. MSC block has three con-
volutional operations with different kernel sizes, as shown in
Figure 5(b). MSC within the same layers of CNN helps the
model to secure low-frequency and high-frequency details of
the original images.

3.1. CNN Part. CNN part uses a single-size convolutional
kernel and single-channel mode to extract feature from the
input image, while extracting and enhancing feature in-
formation in the form of alternating convolution and
pooling operations. Max pooling layer is applied to filter the
extracted features by selecting the maximum value of each
filter and then reduce the dimensionality. .e convolution
operation is output by the feature map of the current layer
after the activation function. .e calculation formula for the
convolution layer is as follows:

x
l
j � f 􏽘

i�Mj

x
l−1
i × k

l
i + b

l
j

⎛⎜⎝ ⎞⎟⎠, (1)

where k is the convolution kernel, Mj is the input feature,
and b is the bias value.

.e pooling operation is a form of nonlinear down-
sampling, which can reduce the size of the feature maps
extracted from the convolutional layers to achieve spatial
invariance. .e operation leads to faster convergence and
improves the generalization performance [8, 9]. When the
feature map xl

j is passed to the pooling layer, the pooling
operation is applied to the feature map xl

j, which produces a
pooled feature map xl+1

j as the output. .e max pooling and
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average-pooling operations are often used, which are cal-
culated respectively as follows:

x
l+1
j � max

i∈Rj

x
l
j,

x
l+1
j � average

i∈Rj

x
l
j,

(2)

where Rj is the j
th pooling region in feature map xl

j and i is
the index of each element within it.

.e convolution operation is used to extract feature
maps, while the pooling operation is to adjust the size of
feature maps without changing the number of the feature
maps.
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Figure 2: .e architectures of CNN and VGG16. (a) CNN and (b) VGG16.
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Figure 3: .e architectures of ResNet.
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In general, the nonlinearity activation function ReLU
(Rectified Linear Units) is used in themiddle full-connection
layer. .e mathematical expression is as follows:

f x
l
j􏼐 􏼑 � max 0, x

l
j􏼐 􏼑, (3)

where xl
j is the feature map in the lth layer.

3.2. MSC Part. .e output feature map of the lth MSC layer
with depth can be calculated as [16–18]

F
l
m � max 0, concat f

l
1, f

l
2, f

l
3􏼐 􏼑􏼐 􏼑, (4)

where fl
1, fl

2, fl
3 are the feature maps obtained after MSC

calculated as fl
1 � wl

1F
1
l− + bl

1, fl
2 � wl

2F
1
l− + bl

2, fl
3 � wl

3
F1

l− + bl
3, wl

i(i � 1, 2, 3) is a convolutional filter, and bl
i(i �

1, 2, 3) is bias.
.ree filters wl

i(i � 1, 2, 3) with sizes 3 × 3, 5 × 5 and 7 ×

7 are utilized to convolve with F1
l− feature map. bl

m is added
to each feature map of the lth MSC layer. Each convolution
operation is output in feature maps and then they are
merged by concatenating along the spectral dimension. .e

next layer of MSC is 3 × 3 convolutional layer to reduce the
spectral dimension of feature maps. To facilitate gradient
flow in the training process of the network, a skip connection
is used after every two layers.

3.3. Attention Part. Attention mechanisms teach systems to
pay attention to focus on important information and ignore
irrelevant information. Suppose that the convolution kernel
that inputs the attention structure is X, and it is retained as one
of the inputs of the residual branch,X ∈ RH×W×C.H,W, andC

represent the length, width, and number of channels of the
feature map. It is then sent to two separate branches for two
different types of pooling operations. Let the global average-
pooling process be Favg and the global maximum pooling
process be Fmax and the outputs of Favg and Fmax be Attavg and
Attmax, the Attavg ∈ R1×1×C, and Attmax ∈ R1×1×C. .e one-
dimensional weight sequence Attmax can filter out the global
background information of the target object, while Attmax can
highlight the saliency of the target object. Let X � [x1,

x2, . . . , xm], where xc represents the parameters of the cth
convolution kernel. .e calculation relation is as follows:

Wi × Wi × Ci
Fi–1 Fi

(a)

Fi–1

Fi

W1 × W1 × m

W2 × W2 × m
c

Wn × Wn × m

(b)

Figure 4: Difference between the basic convolutional layer of CNN and multiscale convolutions. (a) Convolutional layer with one
convolution and (b) convolutional layer with MSCs.
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Figure 5: .e architecture of AMSCNN. (a) .e component modules of AMSCNN and (b) MSC.
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Attavg �
1
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􏽘

H
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􏽘
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xc(i, j) � Favg xc( 􏼁, (5)

Attmax � argmax 􏽘
H

i�1
􏽘

W

j�1
xc(i, j)⎛⎝ ⎞⎠ � Fmax xc( 􏼁. (6)

.ese two kinds of attention maps are input into 1 × 1
convolution and then are fused in a cascade way to generate
attention map of the entire spatial information as follows:

Att � δ Conv1×1 Favg xc( 􏼁; Fmax xc( 􏼁􏽨 􏽩􏼐 􏼑,

F � X⊗Att,
(7)

where δ is Sigmoid activation function, Conv1×1 is to fuse
two pooling operations with the size of 1 × 1 kernel, [] is a
cascading operation, and F is the attention weighted feature
map.

.e attention feature is obtained by adding the channel-
wise representation and space-wise representation:

outputch � outputavg + outputmax, (8)

where outputavg and outputmax are the channel-wise rep-
resentation and space-wise representation, respectively.

3.4.FusionPart. Asmentioned earlier, the multiscale feature
extraction module allows the network to result in a similar
type of feature maps of each input image. In order to fuse the
corresponding level of features from each source image, the
extracted features are merged together by feature fusion
concatenation operation as

FM � Concat f
m
1 , f

m
2( 􏼁, (9)

where fm
1 and fm

2 are the feature maps obtained by feature
extraction from two original images I1 and I2, respectively,
and Fm is the fused feature representation. Later, this fused
image representation is utilized in the reconstruction
module as an input for the restoration of the fused image.

.e simple fusion method is to concatenate the results of
MSC layer and flatten them in order to feed it to the
classification module.

3.5. Activation Part. Two fully connected layers use ReLU to
model the abstract representation of the leaf feature maps,
which is calculated as follows:

fre � ReLU(WX + b). (10)

3.6. Classification Part. .e plant recognition task is
implemented by the SoftMax classifier. Its objective function
is formulated as follows:

J(W) � −
1
N

􏽘

N

n�1
􏽘

C

c�1
ℓ yn �� c( 􏼁log

exp W
T
c Xi􏼐 􏼑

􏽐
C
p�1 exp W

T
pXi􏼐 􏼑

, (11)

where (Xi, yi)(i � 1, 2, . . . , N) is the training set, Xi is an ith
training sample, and yi is a the corresponding label.N and C
are the numbers of training samples and classes, and ℓ(∗ ) is
an indicator function.

Equation (11) is incorporated with the proposed
AMSCNN architecture and is optimized by using the sto-
chastic gradient descent algorithm, and the deep learning
toolbox is MatConvNet.

Gradient descent algorithm is adopted for optimization,
and the weight of gradient descent is updated as

Wnew � Wold − η
zE

zWold
, (12)

where Wold and Wnew are weights before and after updating,
respectively, η is the learning rate, and E is the composite
function of weight W.

4. Experiments and Analysis

AMSCNN is applied to plant recognition, validated on a
public plant leaf image database named ICL, and compared
with three classical CNN models (AlexNet, ResNet, and
VGG16), three CNN-based plant species identification
methods (DCNN [15], MSFCNN [18], and MBCNNA [21]),
and a classical hand-crafted feature extraction-based
method, i.e., plant leaf type detection using texture, shape,
and color features (TSC) [10].

4.1. Dataset and Augmentation. ICL database was con-
structed by the intelligent computing laboratory of Chinese
Academy of Sciences in 2005. It has 17032 plant leaf images
from 220 species and the image number of each class is
unequal. Figure 6 shows some leaf images from ICL dataset.
From Figure 6, it is known that the leaf images of ICL set are
various and complex with large within-class difference and
large between-class similarity, and the sizes and shapes of
leaves are irregular.

For plant species with fewer leaf images, each leaf image
is augmented through some simple extension methods. Each
image is rotated by 45° at each time to generate 4-fold
images, bilinear interpolation is adopted to fix images to the
pixel size of 450 × 750, and salt and pepper noise is also
added to the images to ensure the validity of leaf images,
which randomly changes pixel values in the images, whit-
ening some pixel points and blackening some other pixel
points. From augmentation processing, each original leaf
image can be augmented to more than 50 images. Figure 7
shows 27 augmented images of a leaf image of Flower of
Hedge Glorybind.

4.2. Experiments and Results. .e code environment is
Win10 +CUDA+VS+Anaconda +Keras configuration
GPU, the memory is 96G, and the development environ-
ment is PyChARM. Keras is highly modular, simple, and
scalable, allowing seamless switching between CPU and
GPU. .e experiments are performed on an Ubuntu
workstation equipped with an Intel (R) Xeon (R) CPU E5-
2650 v4 @2.40GHz, NVIDIA 1080ti GPUs with 3,584
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CUDA cores, and 11GB of HBM2 memory. .e core fre-
quency is up to 1,328MHz and the floating point perfor-
mance is 10.6 TFLOPS. .e constructed AMSCNNmodel is
implemented in MatConvNet, Python 3.5.2, and Tensor-
Flow-GPU 1.8.0. .e size of the input image is 224 × 224,
and the value of batch size is set to 50. .e bias vector and
weight matrix are set randomly. .e number of iterations is
set to 30,000. .e momentum is set to 0.9. .e learning rate
is originally set 0.95 and becomes half of the original per 300
iterations. .e overfitting is reduced by using stochastic
gradient descent momentum method with a weight decay
value of 0.0001 and a momentum value of 0.9.

In order to indicate the superiority of AMSCNN, an
image with no background and an image with background
are used as test samples to input AMSCNN. .e feature
maps of the different convolutional layers are shown in
Figure 8. From Figure 8, it is seen that AMSCNN can extract
the deep discrimination features, and the attention mech-
anism enables the network to focus on plants and reduce the
impact of background factors. After attention block, the
background is filtered while the branches and leaves of the
plants are retained, as shown in Figure 8(e).

Several plant species recognition experiments are per-
formed on the original ICL leaf image dataset by 5-fold-cross
validation and the AMSCNN with AlexNet is compared,
ResNet and VGG16. .e numbers of images considered in
the following experiments with the resized dimension are
shown in Table 1.

.e results are shown in Table 2.

From Table 2, it is seen that the recognition rate of
AMSCNN is the highest, but all recognition rates of four
CNN models are very low. .e reason is the serious im-
balance of the number of experimental dataset. In ICL
dataset, the image number of each species is unequal from 26
to 1078.

We augment the original dataset so that each species has
more than 500 leaf images and then obtain an augmented
dataset. In the following experiments on the augmented
dataset of ICL, 5-fold-cross validation is adopted for testing
the effectiveness of the proposed method. Figure 9 is the
accuracy rates of four CNN models versus the number of
iterations. From Figure 9, it is found that in the model
training process the recognition performance of the four
models continues to improve with increasing the iterations,
and AMSCNN outperforms the other models, and after 1500
iterations, the recognition rates of DCNN, MSCNN, and
MCNNA become slower, while the recognition rate of
AMSCNN is still increasing, which indicates that the
training performance of AMSCNN is relatively stable
without fluctuation.

.e plant species recognition rates of five methods are
shown in Table 3.

From Figure 8 and Table 3, it is found that four CNN-
based plant species recognition methods have better training
effect and higher detection accuracy compared to the
classical TSC-based method, and AMSCNN outperforms
consistently. .e possible reason is that CNN can effectively
extract the high-level features from the complex leaf image

(a) (b)

(c)

Figure 6: Plant leaf image samples. (a) Some kinds of plant leaf images with large between-class difference. (b) Some kinds of plant leaf
images with large between-class similarity. (c) 14 original cherry blossom leaf images with at different scales, colors, and shapes.

(a) (b) (c)

Figure 7: One original leaf image and its 27 augmented leaf images. (a) Original leaf image, (b) 18 augmented leaf images with different
angles and shapes, and (c) 9 augmented leaf images with different scales.
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and avoid complex image preprocessing. In CNN, the basic
features are extracted by the lower convolutional layer, and
the more abstract the features extracted by the higher

convolutional kernel are, the more shape characteristic of
the leaf image can be reflected. .e proposed AMSCNN
carries out multiscale convolution on the features extracted
from the fourth convolutional layer and then performs
feature fusion with attention mechanism, so as to improve
the AMSCNN performance to describe the leaf image. In
AMSCNN, more variation in the dataset being considered
could be helpful to enhance the recognition accuracy.

(a) (b)

(c) (d)

(e)

Figure 8: Some examples of feature maps and convolutional kernel. (a) Two original leaf images, one without background and one with
complex background, (b) feature maps of the first convolutional layer, (c) convolutional kernels of the first convolutional layer, (d) feature
maps of the 5th convolutional layer, and (e) feature maps of the attention layer.

Table 1: .e number of images.

Original images Augmented images Training images Test images
Number 17032 861600 691280 170320
Size 450× 750× 3 450× 750× 3 224× 224× 3 224× 224× 3

Table 2: Recognition rates of four CNN models.

Method AlexNet ResNet VGG16 AMSCNN
Accuracy 68.53 71.12 67.48 73.62

8 Computational Intelligence and Neuroscience



AMSCNN combines low-level features with more abstract
high-level features to discover estimable relationships in
mass leaf image dataset.

5. Conclusions

With the development of computer vision, plant species
identification based on deep learning methods can be ef-
fectively carried out. In view of the various shapes and sizes
of the plant leaves and the large number of the weight
parameters of CNN, a multiscale CNN with attention
(AMSCNN) model was constructed for enhancing ability of
the multiscale feature extraction and was applied to the plant
species identification. .e experimental results on the public
leaf image dataset validated that the proposed method is
effective and feasible. By comparing with the existing deep
learning models, AMSCNN uses multiscale convolution and
iteration to capture pairwise feature interactions for image
classification and utilizes the attention mechanism to learn
the critical area and fine-grained feature, which can accel-
erate the convergence of the network. From Tables 2 and 3, it
is found that the unbalance of leaf image number seriously
affects the performance of CNN model. So it is necessary to
respond to the imbalance problem of dataset. Further work
can be done on evaluating deep learning for feature learning,
as well as the use of dissimilarity feature space, since the
number of plant species is huge. We will further develop it to
deeper networks and study its performance on the larger leaf
image dataset.
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