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Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work.
Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the
computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on
artificial neural network is presented. /e ANN is trained by these seismic damage and corresponding sample parameters based
on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample
parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of
the neural network method and the finite element method are basically the same. /e method based on ANN can save a lot of
computing time.

1. Introduction

Concrete-filled steel tubular arch bridge is themost common
type of highway bridge, which plays an important role in the
traffic network. When earthquakes struck, they are most
likely to be damaged, and once they are damaged, they will
seriously affect the transportation network in the area [1].
/e dynamic response of CFST arch bridge under earth-
quake is very complex [2]. /e seismic performance of the
CFST arch bridge is influenced by various parameters
(material and geometric parameters) [3, 4]. /erefore, it is
very difficult to consider both efficiency and accuracy in
seismic damage analysis of CFST arch bridges. /e seismic
damage prediction model based on finite element method
will face huge computational complexity, and the amount of
calculation increases exponentially with the increase of
parameters./e introduction of some new technologies may
lead to new solutions. /e artificial neural network (ANN)
may be the most useful method [5]. An ANN can be
regarded as an organic combination of a large number of
artificial neurons; it can be used to learn the inherent laws of
data. Because this method is based on experiential data,

ANNs can solve complex and nonlinear problems then
replace traditional time-consuming and low-efficiency
seismic damage analysis methods [6, 7]. A large number of
studies have been made over the last ten years and ANNs
have been used by many researchers in earthquake engi-
neering. Some studies focus on seismic damage of highway
bridges [8], considering material and geometric uncer-
tainties. Some focus to predict the seismic performance of
structures [9]. Furthermore, ANNs have estimated inelastic
response of structures [10]. With the development of
computer technology, ANNs are more widely used in
earthquake damage prediction of bridges. However, the
earthquake damage mechanism of CFST bridge is very
complex, and there are many influencing factors. At present,
there are few studies on seismic damage prediction of CFST
bridges using ANNs.

Aiming at the difficulty of efficiency and accuracy in
seismic analysis of CFST, an ANN-based seismic damage
prediction method for CFST is proposed in this paper. /e
balance between the efficiency and accuracy of seismic
evaluation can be found in this method to solve the seismic
difficulty faced by CFST at this stage. /is method takes the
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calculated seismic damage data of CFSTas training samples.
/e ANN is used to analyze samples in order to obtain the
relationship between seismic damage and parameters of
bridge-earthquake samples. /e corresponding relationship
is established in the ANN, and then the relationship can be
used to predict the seismic damage of unknown bridge-
earthquake samples.

2. Artificial Neural Network

/e ANN can be used to predict the nonlinear systems of
complex systems, and it is especially suitable for seismic
damage identification of complex structures. /e ANN
composed of a large number of interconnected basic
computing elements is similar to the working mechanism of
the human brain. /e network is composed of several layers:
an input layer, hidden layers, and an output layer. ANNs can
be divided into several types according to their structures.
/e multilayer radial basis function neural network
(RBFNN), the multilayer perceptron (MLP), the probabi-
listic neural network (PNN), the learning vector quantiza-
tion (LVQ), and the cascade correlation neural network
(Cascor) are some useful neural network architectures [11].

In this paper, the RBFNN is used to predict earthquake
damage. /e Gaussian function is chosen as the activation
function. Because of this function, RBFNN has better ability
to deal with nonlinear data. /e RBFNN has three layers as
shown in Figure 1.

x � [x1, x2, . . . , xn] T ∈ Rn is the input vector,
W ∈ Rp.m is the output weight matrix, y � [y1, y2,

. . . ym] T ∈ Rm is the output vector, ci is the data center
value for the ith hidden node, bi is the bias for the ith node, φi
is the activation function for the ith hidden node, and ‖•‖ is
the Euclidean distance for the input vector and the central
vector. Due to space limits, the RBFNN would not be in-
troduced detailed in this paper. More knowledge about the
RBFNN can be found in neural network design [12].

/e goal of the ANN is to build a historical data-based
model in order to predict the output within a certain accuracy
when the real output is unavailable. After training, the rela-
tionship between the input and the output data will be defined.
In order to evaluate the prediction error of artificial neural
network, the prediction error is defined as follows:
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where Yij and Tij are the predicted value and the real value of
the output, respectively; k is the number of patterns in the
test data and m is the number of dimensions of the output
vector.

3. Uniform Design Method

For the training of neural network, how to make the sample
more representative is a very important problem. /e

methods of producing samples include traditional design,
orthogonal design, and uniform design. When using the
traditional design method, the number of design points will
increase exponentially with the number of factors and the
level of factors. Using the orthogonal design method, the
computation time can be controlled in an acceptable range
[13]. It is based on orthogonality to select some represen-
tative points from the comprehensive test. /ese repre-
sentative points have the characteristics of “uniform
dispersion and comparability.” A problem contains 2 factors
and 10 factor levels, which requires 102 �100 design points,
less than the traditional design method. However, when
there are many factors involved in the actual project, this
method is not applicable.

/e uniform design method (UDM) is especially suitable
for the analysis of complex engineering problems, especially
multifactor and multifactor engineering problems. Com-
pared with the orthogonal design, the number of test points
can be further reduced. Each level of each factor can only be
done once. /e UDM can significantly reduce the com-
puting time. /e uniform design is especially suitable for
multifactor and multilevel experiments, and the system
model is completely unknown.When a problem consists of 2
factors and 10 factor levels for each factor, only 10 design
points are needed to use the UDM. /e key of the UDM is
the rules to ensure the uniformity [14]. Many discrepancy
rules are used to estimate the uniformity of the UDM, such
as discrete discrepancy and star discrepancy. /e uniform
design table (UDT) which makes the UDM easy to use is
established based on construction rules, such as the Latin
square rule. /e UDT is regarded as a matrix which the
number of the row is equal to the number of experiments
and the number of the columns is equal to the number of
factors. If the number of columns is more than the number
of current factors, the accessional table which guides the
selection of columns will be included in the UDT. /e
criterion of minimum discrepancy can be get using this
selection rule. For example, 4-factor and 7-factor levels for
each factor (74) are shown in Table 1 and its accessional table
is shown in Table 2. In Table 2, the discrepancy is given
according to the column and it can be found that the selected
columns can be 1 and 3, but not the others when the number
of current factors is 2. /e minimum discrepancy can be
obtained following this rule.

In this chapter, the key part is to determine the suitable
samples according the UDM and the UDT.

Firstly, the factors should be determined. In this paper,
only the material parameters are involved and no geometric
parameters are involved due to the limitation of the number
of samples. /e distribution of uncertainty parameters is
determined according to the related research [15, 16]. /e
probability distributions are assumed for each factor and the
parameter ranges are corresponding to cumulative distri-
butions from 0.05 to 0.95. /e involved material parameters
and their probability distributions are shown in Table 3.

Table 3 shows themeans, coefficients of variation (COV),
and ranges of material parameters. EQ345, Ec40, and Ec50 are
the elastic modulus of Q345 steel, C50 concrete, and C40
concrete, respectively; fQ345, fc40, and fc50 are the
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reinforcement yield strength of Q345 steel, C40 concrete,
and C50 concrete, respectively; εc40 and εc50 are the ultimate
compressive strain of C40 concrete and C50 concrete,
respectively.

/e level number of each factor is assumed according to
the expected number of samples. In this work, the level
number is determined to be 20. /en, the range of each level
can be calculated according to the parameter range and the
level number of each factor. /e 208 UDT is used to design
the sample according to the abovementioned analysis.

Once the 208 UDT is determined, every column is a
rearrangement of {1,2,3, . . .. . ., 20} which stands for the level of
factor and every row is a true subset of {1,2,3, . . .. . ., 20} which
corresponds to a sampling value of the factor. For example, if
the number is 4, it represents that this parameter belongs to the
fourth level and the value of this parameter is the average of
maximum and minimum values of this level range.

4. Seismic Damage

In order to evaluate the seismic damage of the samples, an
internal force and energy-based damage model which comes
from Park-Ang, the double parameter failure criterion
[17, 18], is used to quantify the seismic damage. /e Park-
Ang, the double parameter failure criterion, can be expressed
as

D �
δM

δu

+
β

Qyδu

􏽚 dE, (3)

whereD is a damage index according to the Park-Ang failure
criterion; δu is the ultimate deformation of the component;
δM is the maximum deformation under finite element
analysis; Qy is the calculated yield strength; dE is the in-
cremental hysteretic energy.

In order to reflect the characteristics of CFSTarch bridge,
some modifications are made according to Park-Ang failure
criterion. /e adjusted seismic damage model is shown as
follows:

Arch rib:
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Figure 1: /e structure of the RBFNN.

Table 2: Accessional table for 74.

k Column number Discrepancy
2 1 3 0.2398
3 1 2 3 0.3721
4 1 2 3 4 0.4760

Table 3: Material parameter uncertainties in bridge models.

Probability
distribution μ COV Range of

variations
EQ345 Normal distribution 206GPa 0.05 189–223GPa
fQ345 Normal distribution 345MPa 0.12 277–413MPa
Ec50 Normal distribution 34.5GPa 0.05 31.7–37.3GPa
fc50 Normal distribution 32.4MPa 0.16 23.9–40.9MPa
εc50 Uniform distribution 3.48e− 3 0.20 3.17–3.79e− 3
Ec40 Normal distribution 32.5GPa 0.05 29.8–35.2GPa
fc40 Normal distribution 26.8MPa 0.16 19.7–33.9MPa
εc40 Uniform distribution 3.53e− 3 0.20 3.21–3.85e− 3

Table 1: Uniform design table for 74.

Point
Factor

1 2 3 4
1 1 2 3 6
2 2 4 6 5
3 3 6 2 4
4 4 1 5 3
5 5 3 1 2
6 6 5 4 1
7 7 7 7 7
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Suspender:
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εm

εu

+ α
􏽒 Ehdl

􏽒 Nuεudl
. (5)

Beam:
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where Iar, Isu, and Ibe are the damage index of arch rib
member, suspender member, and beam member; λm is
the maximum ratio of axial force and bending moment
of arch rib member cross-section in earthquake; λu is
the ultimate ratio of the axial force and bending mo-
ment of the cross-section of the arch rib member.; εm is
the maximum strain of one member cross-section in
earthquake; εu is the ultimate strain of one member
cross-section; Nu is the force bearing capacity of one
member; Mu is the ultimate bending moment of one
member; φu is the curvature of one member in the
ultimate state; Eh is the accumulated hysteretic energy
of one member cross-section under the earthquake; l is
the length of one member; α is a coefficient; According
to the suggestion of the paper [17], α is 0.139.

/e seismic damage of each member of the bridge is
different. One member contribution to the whole damage
index is estimated by the accumulated hysteretic energy of
the member under the earthquake and the contribution is
expressed by the coefficient w. For example, the damage
index of the whole suspender (Isu) is defined as follows:

Isu � 􏽘 wi( 􏼁su Ij􏼐 􏼑
su

wj􏼐 􏼑
su

� Ej􏼐 􏼑
su
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⎧⎪⎨

⎪⎩
, (7)

where (wj)su is the weight value of one suspender member;
(Ij)su is the damage index of the suspender member; (Ej)su is
the accumulated hysteretic energy of the suspender member
under earthquake; 􏽐(Ej)su is the accumulated hysteretic
energy of the whole suspender members under earthquake.

According to the same rule, the damage index of the
whole bridge can be defined as

I � Iarwar + Isuwsu + Ibewbe. (8)

/e whole suspenders contribution to the whole bridge
damage index can be defined as

wsu �
Esu

Ear + Esu + Ebe( 􏼁
, (9)

where Iar, Isu, and Ibe are the damage indexes of the whole
arch ribs, suspenders, and beams; War, Wsu, and Wbe are
the weight values of the whole arch ribs, suspenders, and
beams; Ear, Esu, and Ebe are the accumulated hysteretic
energy of the whole arch ribs, suspenders, and beams
under earthquake.

/rough the analysis of internal force and displacement,
the seismic damage model quantifies the seismic damage.
/e different seismic damage levels can be described and

divided by the index damage. According to the paper [19],
the range of each damage level can be determined as Table 4:

5. Bridge Samples and Ground Motion Samples

In order to predict the damage of CFST arch bridge by the
ANN, a certain amount of training data is needed to train the
ANN. To obtain these data, one CFST arch bridge case is
needed. /e detailed dimensions of the CFST arch bridges
are shown in Figures 2 and 3. /e material parameters of
CFST arch bridge are determined by using the UDT and
material parameter table. Using this method, 20 models of
CFST arch bridge are established. /e CFST main arch
section is modeled using a fiber model. /e beam element is
used to simulate the main arch, the column, the longitudinal
beam, and the beam./e link element is used to simulate the
suspender. /e 3-D FEA models are modeled in the ANSYS
program and the model of the bridges is shown in Figure 4.

To obtain the response of the bridges, a set of 50 ground
motion records are selected as samples. From the Pacific
Earthquake Engineering Research Center (http://peer.
berkeley.edu/), a sufficient number of strong ground mo-
tion records are available. In order to simulate the moderate
and severe earthquakes, the records are selected from the
ground motions with magnitudes in the range between 6.0
and 7.7. To make it more efficient, the near field effects are
not considered and source to site distances of the records
range from 10 to 200 km.

/e magnitudes and distances distribution of the se-
lected records is given in Figure 5. From Figure 5, it can be
observed that the magnitudes and distances distribution of
the records is relatively uniform in the selected range. /e
representativeness of records is very important for the ac-
curacy of ANNs.

1000 groups of bridge-earthquake samples are formed by
50 groups of earthquake samples and 20 CFST arch bridge
model samples./e results of the first ten samples are shown
as Table 5. Due to space limitations, all calculations are not
shown.

6. Numerical Tests

In order to test the efficiency and accuracy of the ANN-based
method, the comparison between the results based on the
FEA program and the results based on the ANN model is
made in this chapter. To train the ANNmodel, a set of data is
obtained from the FEA program.

Based on the nonlinear time history analysis, the results
of every bridge components are obtained. /en, the damage
indexes of every bridge can be calculated based on the re-
sults. After getting the damage indexes, a well-trained ANN
model will be developed to predict the damage index based
on the input data. /e ANN model used in this paper is
RBFNN. /is ANN is especially suitable for complex
nonlinear problems. /e RBFNN is consisted of three dif-
ferent layers: the input layer, the hidden layer, and the
output layer. /e input layer is made up of 11 nodes which
input 8 material parameters and 3 ground motion param-
eters. /e output layer has only 1 node which outputs the
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damage index. /e number of nodes in the hidden layer is
variable. It is because the creating process of the multilayer
RBFNN needs several attempts. /e number of the nodes in
the hidden layer is increased after each calculation, until the

error of the multilayer RBFNN can meet the requirement
which is set before calculation. /e number of initial nodes
of the hidden layer is 200. /e default error is 1/1000. If the
precision is not required, the number of nodes in the hidden

Table 4: Damage index range of bridge structure under different damage degrees.

Damage level Damage index range
No damage state 0.00∼0.10
Slight damage state 0.10∼0.30
Moderate damage state 0.30∼0.50
Extensive damage state 0.50∼0.70
Collapse damage state 0.70∼1.00
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Figure 2: Elevation of the CFST arch bridge.
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Figure 3: Transverse cross-section of the CFST arch bridge.

Figure 4: /ree-dimensional finite element model of the CFST arch bridge using ANSYS.

Computational Intelligence and Neuroscience 5



layer will be increased until the number of hidden layer
nodes is 1000. Because of this, the multilayer RBFNN ar-
chitecture is different between each calculation. In order to
train and test the multilayer RBFNN, the abovementioned
method is used to regenerate 100 bridge samples and match
them randomly with earthquake samples. /e obtained
earthquake-bridge samples are input into the FEA program
to calculate seismic damage. /en, this part of the data is
used to calculate MEA of the ANN prediction.

In order to optimize the input of ANN, the repre-
sentation method of ground motion is discussed. Each
ground motion sample can be defined in many ways, such
as earthquake information and peak information. One is
that earthquakes are defined by magnitude (M), fault
distance (D), and shear wave velocity (V), and the other is
that earthquakes are defined by the peak ground accel-
eration (PGA) of components in three directions of
seismic waves. /e two sets of data are used to train the
ANN and the prediction error is obtained./eMEA of the
PGA group is 0.010 and the MEA of the MDV group is
0.023. /e conclusion that using PGA information as
input is better than the MDV information can be ob-
tained. Because of the low accuracy of prediction, the
MDV-based RBFNN will not be involved in the following
research.

/e relationship between earthquake-bridge sample
parameters and corresponding seismic damage index is very

complex, and the corresponding structure of ANN used to
predict seismic damage should also have a certain degree of
complexity. But if the structure of ANN is too complex, it
will lead to “over-fitting” of its prediction. In order to find
the suitable structure of the ANN, different structures are
discussed by using MDV group data. /e difference between
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Figure 5: Moment magnitude and distance distribution for the selected 50 records.

Table 5: /e damage index result.

Magnitude Rjb (km) Vs30 (m/sec) PGAx (g) PGAy (g) PGAz (g) I
6.610 89.370 813.480 0.020 0.015 0.010 0.184
6.190 53.890 116.350 0.043 0.065 0.016 0.186
6.930 43.060 133.110 0.274 0.220 0.083 0.241
6.930 24.520 215.540 0.084 0.072 0.027 0.186
6.930 74.040 873.100 0.079 0.079 0.029 0.183
7.620 24.960 235.130 0.147 0.117 0.091 0.203
7.620 19.930 538.690 0.173 0.227 0.125 0.201
7.620 19.070 277.500 0.159 0.153 0.165 0.248
7.620 19.370 492.260 0.302 0.639 0.123 0.337
7.620 24.100 442.150 0.142 0.182 0.079 0.220

MDV
PGA
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M
EA

1000100
Number of samples

Figure 6: /e relationship between MEA and the number of nodes
in the hidden layer.

6 Computational Intelligence and Neuroscience



each ANN is only the number of neurons in the hidden layer.
/e number of neurons in the hidden layer and the pre-
diction error (MEA) are shown as Figure 6.

From Figure 6, it can be found that with the increase of
the number of neurons in the hidden layer, the prediction
error of the ANN has been declining, and there is no obvious
“over-fitting” problem. When the number of neurons
reached 1000, the convergence speed of ANN and the

decline trend of MEA slow down obviously. So, 1000 is
defined as the maximum number of neurons in the hidden
layer.

After determining the optimal ANN structure of the
prediction model, it is necessary to systematically evaluate
the prediction error and prediction speed of this model.
Another 50 groups of ground motions are selected randomly
from the PEER database as ground motion samples. From

Table 6: /e relationship between seismic damage and earthquake intensity.

Direction Interception Slope β

FEA calculation
Along the bridge −2.235 0.519 0.732

Transverse the bridge −2.258 0.411 0.714
Vertical −2.190 0.905 0.785

Predicted value
Along the bridge −2.254 0.542 0.803

Transverse the bridge −2.247 0.435 0.788
Vertical −2.217 0.877 0.871
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Figure 7: Fragility curves with PGA based on true values. (a) Along the bridge. (b) Transverse the bridge. (c) Vertical.
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the bridge sample space in Table 3, 1000 samples are
randomly generated. Because this group of samples is test
samples, UDM method is not used to generate them. In
order to form a bridge earthquake sample, the bridge
sample and the earthquake sample are randomly paired.
/en, the 1000 samples are input into the ANN-based
model and the FEA program to calculate the seismic
damage. /e average relative error between the predicted
value and the FEA calculation value is 3.21%, and the
standard deviation is 0.0799. /e relationships between
earthquake intensity and seismic damage are obtained by
using predicted values and FEA calculation values, re-
spectively, and the relationship is shown in Table 6. /en,
the corresponding seismic fragility curves can be obtained
by using these relationships and these seismic fragility
curves are shown in Figures 7 and 8.

Based on fragility curves, it is found that the difference
between the predicted value and true value is very small. In
order to quantitatively analyze this error, the earthquake is

divided into four intensity levels, and the damage probability
of the bridge under the four intensity levels is obtained by
using the seismic vulnerability curve. Damage probabilities
of predicted and true groups are listed in Table 7, and the
maximum absolute error between the two groups is 3.99%.
/is shows that the model based on ANN can predict
earthquake damage very accurately.

After the prediction accuracy of ANNmodel is obtained,
the prediction speed of the model will be analyzed. On Intel
(R) Core (TM) PC with 2.80GHz i7CPU processor and 4GB
RAM, it takes 300 seconds to complete an RBFNN training.
On the same PC, it takes more than 30 days to get these
damage indexes by FEA program. It can be seen that the
prediction model based on ANN can greatly reduce the
calculation time of FEA program. /rough the above-
mentioned analysis of the accuracy and efficiency of the
model, it can be concluded that the seismic damage pre-
diction model based on ANN can effectively predict the
seismic damage of the bridge.
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Figure 8: Fragility curves with PGA based on prediction values. (a) Along the bridge. (b) Transverse the bridge. (c) Vertical.
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Based on the calculation of a certain number of earth-
quake damage samples, the ANN model can effectively
predict the earthquake damage of the bridge. When the
seismic damage samples are enough, this method can well
predict the seismic damage, thus to a certain extent, it can
replace the finite element analysis and then quickly evaluate
the seismic damage.

7. Conclusions

In this paper, a method of earthquake damage prediction
based on artificial neural network is proposed, which re-
places the time-consuming FEA method to a certain extent.
/is method can greatly reduce the amount of FEA calcu-
lation on the premise of ensuring the accuracy. /rough
certain training, the relationship between seismic parame-
ters and seismic damage index of bridge is established. /e
average relative error is less than 3.21%. /e seismic fragility

curves show that there is no obvious difference between the
predicted fragility curves and the fragility curves of the finite
element program. /rough the comparison of the earth-
quake damage probability of different intensities, it is found
that the difference between the predicted earthquake damage
probability and the FEA calculation earthquake damage
probability is only less than 3.99%./is method only needs a
small number of known samples and then can quickly and
effectively predict the seismic damage of bridges.
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Table 7: Damage probabilities of the predicted and true groups.

Direction Earthquake
intensity (g)

Probability of damage state exceedance (%)
Slight damage

state
Moderate

damage state Extensive damage state Collapse damage state

True value

Along the bridge

E1 (0.12) 58.23 9.79 2.32 0.71
E2 (0.20) 71.58 17.60 5.17 1.84
E3 (0.26) 77.54 22.82 7.46 2.86
E4 (0.34) 82.82 28.97 10.52 4.34

Transverse the bridge

E1 (0.12) 56.17 8.31 1.79 0.51
E2 (0.20) 67.34 13.78 3.54 1.14
E3 (0.26) 72.58 17.38 4.89 1.67
E4 (0.34) 77.48 21.62 6.67 2.43

Vertical

E1 (0.12) 39.78 4.86 1.05 0.31
E2 (0.20) 62.93 14.25 4.27 1.58
E3 (0.26) 73.64 22.16 7.82 3.25
E4 (0.34) 82.68 32.37 13.39 6.22

Predicted value

Along the bridge

E1 (0.12) 56.75 11.54 3.33 1.21
E2 (0.20) 69.66 19.67 6.82 2.82
E3 (0.26) 75.55 24.94 9.47 4.17
E4 (0.34) 80.86 31.02 12.89 6.05

Transverse the bridge

E1 (0.12) 56.36 10.86 2.99 1.05
E2 (0.20) 67.08 17.05 5.48 2.13
E3 (0.26) 72.14 20.97 7.28 2.99
E4 (0.34) 76.88 25.49 9.55 4.14

Vertical

E1 (0.12) 40.02 6.50 1.78 0.64
E2 (0.20) 60.31 15.87 5.63 2.43
E3 (0.26) 70.04 23.10 9.310 4.38
E4 (0.34) 78.69 32.08 14.64 7.52

Absolute error

Along the bridge

E1 (0.12) −1.48 1.75 1.01 0.50
E2 (0.20) −1.92 2.07 1.65 0.98
E3 (0.26) −1.99 2.12 2.01 1.31
E4 (0.34) −1.96 2.05 2.37 1.71

Transverse the bridge

E1 (0.12) 0.19 2.55 1.20 0.54
E2 (0.20) −0.26 3.27 1.94 0.99
E3 (0.26) −0.44 3.59 2.39 1.32
E4 (0.34) −0.60 3.87 2.88 1.71

Vertical

E1 (0.12) 0.24 1.64 0.73 0.33
E2 (0.20) −2.62 1.62 1.36 0.85
E3 (0.26) −3.60 0.94 1.49 1.13
E4 (0.34) −3.99 −0.29 1.25 1.30
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