
Research Article
Detection of Pine Cones in Natural Environment Using Improved
YOLOv4 Deep Learning Algorithm

Ze Luo ,1,2 Yizhuo Zhang ,1 Keqi Wang ,1 and Liping Sun 1

1College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2School of Electrical Information Engineering, Hunan Institute of Technology, Hengyang 421010, China

Correspondence should be addressed to Keqi Wang; zdhwkq@163.com and Liping Sun; zdhslp@163.com

Received 13 October 2021; Revised 2 November 2021; Accepted 17 November 2021; Published 16 December 2021

Academic Editor: Qiangyi Li

Copyright © 2021 Ze Luo et al. /is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Achieving the rapid and accurate detection of pine cones in the natural environment is essential for yield estimation and automatic
picking. However, the complex background and tiny target pose a significant challenge to pine cone detection./is paper proposes
a pine cone detection method using the improved You Only Look Once (YOLO) version 4 algorithm to overcome these
challenges. First, the original pine cone image data come from a natural pine forest. Crawler technology is utilized to collect more
pine cone images from the Internet to expand the data set. Second, the densely connected convolution network (DenseNet)
structure is introduced in YOLOv4 to improve feature reuse and network performance. In addition, the backbone network is
pruned to reduce the computational complexity and keep the output dimension unchanged. Finally, for the problem of feature
fusion at different scales, an improved neck network is designed using the scale-equalizing pyramid convolution (SEPC). /e
experimental results show that the improved YOLOv4 model is better than the original YOLOv4 network; the average values of
precision, recall, and AP reach 96.1%, 90.1%, and 95.8%; the calculation amount of the model is reduced by 21.2%; the detection
speed is fast enough tomeet the real-time requirements./is research could serve as a technical reference for estimating yields and
automating the picking of pine cones.

1. Introduction

Pine nuts are commonly used in traditional recipes in many
countries since they have rich flavor and nutritional benefits
[1]. Pine nuts come from pine cones, and farmers are still the
main force of pine cone picking. During the pine cone
harvest, workers need to knock the pine cones off the tree
and collect them on the ground. /is work is time-con-
suming and high-risk. At the same time, workers who lack
knowledge and experience make unnecessary mistakes,
bringing more uncertainties to production. With the de-
velopment of information technology, autonomous robots
have become an essential means for yield estimation and
automatic harvesting and have been widely used in the
agriculture and forestry domains [2–4]. As part of the robot
system, machine vision recognition might be one of the
crucial technologies [5]. /erefore, designing a machine
vision system for detecting pine cones on trees and the

ground in a natural environment can provide technical
support for pine cone yield estimation and the entire au-
tomatic picking process, which is of great significance.

Machine vision technology has been primarily used in
agriculture and forestry for a long time, and many methods
have been developed to detect fruits based on images. Lu
et al. [6] proposed a layered contour analysis method based
on shape features to detect immature citrus. Malik et al. [7]
developed algorithms to detect ripe tomatoes according to
color space and watershed. Li et al. [8] proposed a method of
identifying green apples. /is method combines texture
features, shape features, and color features and is then
segmented using support vector machines. However, the
previously mentioned methods rely on shallow feature ex-
traction and cannot solve the problems caused by overlap
and occlusion. In addition, due to complex backgrounds and
variable lighting, these methods cannot achieve desirable
results in actual production environments [9].

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 5601414, 12 pages
https://doi.org/10.1155/2021/5601414

mailto:zdhwkq@163.com
mailto:zdhslp@163.com
https://orcid.org/0000-0002-6261-6279
https://orcid.org/0000-0003-3827-5870
https://orcid.org/0000-0003-3175-5089
https://orcid.org/0000-0002-5927-2890
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5601414

Deep learning has rapidly evolved in recent years. Due to
its ability to extract high-dimensional features from massive
information, deep learning technology is more accurate than
traditional methods [10]. Based on deep learning technol-
ogy, researchers have developed a series of fruit detection
methods [11]. Tu et al. [12] proposed a method for passion
fruit detection based on multiple scale faster region-based
convolutional neural networks, with the F1 score of 0.909,
which effectively improves small passion fruit detection.
Kirk et al. [13] combined biologically inspired features with
one-stage deep learning networks to detect strawberries and
achieved a detection speed of 30 fps on 1920×1080 pixels
images. Liang et al. [14] considered the impact of light
conditions on fruit recognition. /ey proposed combining
the You Only Look Once (YOLO) network and U-Net,
which can effectively detect litchi in the night environment.
Although the previously mentioned methods have achieved
desirable results in practical application, pine cone detection
still faces many challenges. First, sufficient data is a necessary
condition for using deep learning techniques [15]. However,
the complex pine forest environment makes it challenging to
collect pine cone images, and there is no public dataset of
pine cones available online. On the other hand, the detection
environment of pine cones is more complicated than other
fruits, which leads to unsatisfactory results of existing al-
gorithms. Moreover, the pine cone detection task has unique
and complex features and requires high speed and accuracy.
Since the tiny target is smaller, the algorithm will be less
accurate in predicting location information than the larger
target. In actual production, detection speed is one of the
most critical factors, and pine cone detection requires high
real-time performance. Because of the previously mentioned
reasons, applying deep learning technology in pine cone
detection is still a problem to be solved urgently.

As a current excellent one-stage detection algorithm, the
YOLO [16–18] series algorithm is widely used in various
target detection tasks [19–21]. /e YOLO algorithm directly
uses the regression to detect objects, which effectively im-
proves the detection speed. In addition, due to the excellent
network structure design, the YOLO algorithm also has a
higher detection accuracy. In previous research, we com-
bined boundary equilibrium generative adversarial networks
and YOLOv3 to detect pine cones and achieved certain
results [22]. However, this method is only for pine cones on
the ground, and its accuracy and speed need to be further
improved. Compared with the YOLOv3 algorithm, the
YOLOv4 [23] algorithm owns a more balanced speed and
accuracy and can be better applied to the actual working
environment. However, for the pine cone detection task, the
backbone and neck networks of YOLOv4 have room for
further improvement. /erefore, this paper designs a new
pine cone detection algorithm based on YOLOv4. Its main
contributions are as follows. First, we manually collected
more images of pine cones based on the previous work. All
images were collected in a natural pine forest. At the same
time, we used crawler technology to obtain images from the
Internet to expand the dataset. Second, we introduced the
densely connected convolution network (DenseNet) struc-
ture in the YOLOv4 model, which improves the detection

performance of the model through feature reuse. /en, we
pruned the backbone network to reduce the computational
complexity and keep the output dimension unchanged.
Finally, to improve the performance of small target detec-
tion, we used the idea of scale-equalizing pyramid convo-
lution (SEPC) for reference and designed an improved neck
network to achieve feature fusion between different scales.

/e rest of this article is organized as follows. Section 2
introduces the data set; Section 3 introduces the YOLOv4
model and related improvements methods; Section 4 in-
troduces the experimental configuration, comparative ex-
periment results, and discussion; Section 5 introduces the
conclusions and prospects of this article.

2. Dataset and Data Augmentation

2.1.Dataset. In this research, we first manually collected 961
images of pine cones from a forest farm in Jiamusi City,
Heilongjiang Province, China from 2019 to 2020. /en, to
simulate the complex detection background, we developed a
web crawler program to download pine cone images from
the Internet. /e primary sources of downloaded images are
Google and free gallery websites. After manual screening,
450 images are obtained. Finally, we got a pine cone dataset
containing 1411 images and divided it into training and
validation set according to 8 : 2.

/e dataset of this research had the following charac-
teristics. For target selection, the images collected in the
dataset include pine cones on the ground, pine cones on
trees, mature pine cones, and immature pine cones.
/erefore, the method proposed in this research can provide
a technical reference for the complete pine cone harvesting
process. In addition, we considered the impact of different
light intensities: the images were collected on sunny and
cloudy days, and the collection time included 8 am, 1 pm,
and 3 pm. Moreover, the web crawler technology enriched
the detection background of pine cone images and ensured
the detection method was more robust. Figure 1 illustrates
different pine cone images from the dataset.

2.2. Data Augmentation. A data augmentation strategy can
increase the richness of the experimental data and simulate
the complex scenes of object detection more effectively,
thereby improving the model’s performance [24]. In this
research, in addition to the five standard data augmentation
methods (flipping, rotation, scaling, clipping, and brightness
adjustment), Mosaic was used to augment the data. Mosaic is
a further extension of the CutMix [25] data augmentation
algorithm. It combines four training images into one in
specific ratios, which can improve the model’s recognition
ability under complex backgrounds and the accuracy of
detecting small targets. Figure 2 shows the effect of data
augmentation.

3. Methods

3.1. YOLOv4. YOLOv4 is a high-precision and real-time
one-stage target detection algorithm proposed by Alexey in
April 2020, which has been recognized by the original author

2 Computational Intelligence and Neuroscience

of the YOLO series. As illustrated in Figure 3, the YOLOv4
model mainly consists of three components: backbone
network, neck network, and prediction network.

/e backbone network of YOLOv4 is named CSPDar-
kNet53, which combines the advantages of DarkNet53 [18]
and Cross-Stage Partial Network (CSPNet) [26]. In
YOLOv4, the CSPDarknet53 consists of 5 CSP modules, and
each CSP module contains several residual layers. By using
the cross-stage hierarchy, the CSP module divides the fea-
ture mapping of the foundation layers into two parts. By
integrating gradient change into the feature map from be-
ginning to end, the amount of calculation can be reduced,
and accuracy can be ensured. /erefore, using the CSP
module instead of the ordinary convolution layer can solve
the gradient disappearance problem and overfitting problem
caused by the dense network and make the model more
lightweight and accurate.

/e neck network is a series of feature aggregation layers
that combine image features. YOLOv4 combines Spatial
Pyramid Pooling (SPP) [27] and PAN [28] to form the neck
network. In the SPP structure, the input from backbone
undergoes four different max-pooling operations to further
extract and fuse features. /e PAN fuses the feature layers
input from the SPP and the backbone network and sends
them to the prediction network for detection. As shown in
Figure 4, unlike the feature pyramid network (FPN) in
YOLOv3, YOLOv4 builds a bottom-up feature transfer path

by adding two PAN structures, which improves the trans-
mission of low-level features and enhances the detection of
targets of different scales.

3.2. Improved Methods. /e main improvements presented
in this paper based on YOLOv4 are as follows: introduce the
DenseNet structure, prune the backbone network, and de-
sign an improved neck network.

3.2.1. Backbone Network. /e CSP module in the YOLOv4
backbone network uses ResNet [29] structure to solve the
problem of overfitting and gradient disappearance. But, for
the pine cone detection task, most of the targets that need to
be detected are tiny targets, and the feature semantic in-
formation extraction by shallow networks is more critical.
Similar to the ResNet structure, the DenseNet [30] structure
optimizes the network by linking the front and rear layers.
/e difference is that the ResNet structure only establishes
links between part of the front and rear layers, while
DenseNet structure establishes links between all the front
and rear layers. /erefore, the DenseNet can better transfer
the feature semantic information to the depths of the net-
work. /e principle of DenseNet is shown in (1). Assuming
the input is X0, i represents the i th layer; each layer im-
plements a nonlinear transformation Hi(.) and then the
output of i th layer as Xi.

(a) (b)

(c) (d)

Figure 1: Different images of pine cones in the data set. (a) Pine cones on trees; (b) pine cones on ground; (c) mature pine cones;
(d) immature pine cones.

Computational Intelligence and Neuroscience 3

Xi � Hi X0, X1, . . . , Xi−1 (. (1)

/e original YOLOv4 model has 5 CSP modules.
Replacing them with the CSPDenseNet module can fur-
ther strengthen the transmission of shallow feature

information in the network. However, when the structure
composition is the same, the CSPDenseNet module has
more parameters than the CSP module. Using the
CSPDenseNet module to replace all CSP modules will
significantly increase the amount of calculation, reduce

CBM

CSP1

CSP2

CSP8

CSP8

BackBone

Input

CSP4 3×
CBL

SPP

3×
CBL

CBL

upsam
le

Concat

CBL

5×
CBL

CBL

upsam
le

CBL

Concat 5×
CBL

CBL

Concat 5×
CBL

CBL

Concat

Neck

CBL CON
V

OUTP
UT

CON
V

OUTP
UTCBL

CBL CON
V

OUTP
UT

Prediction

CBM CON
V BN Mish

CBL CON
V BN Leaky-ReLU

SPP
Maxpool
Maxpool
Maxpool

Concat

=

=

=

= CBM CBM Res
Block CBM

CBM

CBMConcat = CBM CBM ADD

CSPX
Res

Block

Residual Layer

X Residual Layer

5×
CBL

Figure 3: /e YOLOv4 model structure.

Figure 2: /e effect of data augmentation.

4 Computational Intelligence and Neuroscience

the detection speed of the model, and cannot guarantee to
improve the detection accuracy. /e 3rd, 4th, and 5th CSP
modules are located at a deeper level of the network.
Replacing them with CSPDenseNet modules can better
solve the problem of gradient disappearance and achieve
the balance between performance and speed. /erefore,
this paper used the CSPDenseNet module to replace the
3rd, 4th, and 5th CSP modules. As shown in Figure 5, the
CSPDenseNet module divides the input into two parts,
one part is calculated by the dense block, and the other
part is connected through a cross-stage hierarchy. /e
dense block consists of several dense layers, and each
dense layer contains two convolutional operations, 1 × 1
and 3 × 3. /e 1 × 1 convolution operation is used to adjust
the input dimension and reduce computational com-
plexity, and the 3 × 3 convolution operation is used to
enhance feature extraction. /en, any two dense layers are
connected by a shortcut link.

In the original YOLOv4, the CSP module uses Mish as
the activation function, and other modules use Leaky-ReLU
as the activation function. Mish nonlinearity improves the
accuracy, but in the embedded environment, its computing
cost is more expensive than the Leaky-ReLU. Compared
with Mish, SiLU [31] has similar performance and lower
computational cost. In order to reduce the computational
complexity, the Mish activation function in the model has
been changed to SiLU, and the Leaky-ReLU remains
unchanged.

/e number of filters in the dense layer will affect the
performance of the network. Too many filters will result in
complicated calculations, and too few filters will result in
insufficient feature extraction. Referring to the original re-
sidual block in YOLOv4, we set the number of filters for 1
× 1 convolution to 64, 128, and 256 and the number of filters
for 3× 3 convolution to 32, 64, and 128. In addition, the five
original CSP modules contain 1, 2, 8, 8, and 4 residual layers,
respectively. To reduce the computational complexity and
keep the output dimension unchanged, we pruned the
network structure by setting the number of dense layers in
each CSPDenseNet structure to 4. Table 1 shows the original
backbone structure and the improved backbone network
structure.

3.2.2. Neck Network. Neck network is a key link in the target
detection framework. It reprocesses the features extracted by
backbone to generate a feature pyramid, which will enhance
the model’s detection of objects at different scales. Before the
emergence of path aggregation network (PAN), feature
aggregation in the target detection framework was generally
implemented using FPN. FPN only has a top-down feature
transfer path, and PAN has added a bottom-up feature
transfer path to enhance the effect of feature fusion.

Although PAN enhances the fusion of features, it does
not consider the intrinsic properties of the feature pyramid
and can be further improved. Wang et al. [32] proposed the
SEPC to explore the interaction between different scales of
the feature pyramid. /e SPEC is a 3D convolution com-
posed of N 2D convolutions, which include scale and spatial
dimensions. /e difference between SPEC, FPN, and PAN is
shown in Figure 6. For each feature fusion calculation, SEPC
adds shallower and deeper features, which is equivalent to
combining the advantages of FPN and PAN. When multiple
SEPC modules are combined, its advantages in spatial di-
mensions will be more obvious.

/e calculation process of SEPC is shown in (2): y is the
output, X is the input feature map of different scales, ω1, ω0,
and ω−1 are three independent 2D convolutional kernels,
and Sn represents the stride of the convolution kernel n.
When calculating the top level of the feature pyramid, the
first item is unnecessary, and when calculating the bottom
level, the last item is unnecessary.

y
l

� ω1 ∗ S0.5X
l+1

+ ω0 ∗ S1X
l
+ ω−1 ∗ S2X

l− 1
. (2)

When the stride of the convolution kernel n is 0.5, the
input feature map will first use bilinear upsampling and then
use a convolution kernel with a stride of one for calculation,
so (2) can be transformed into

y
l

� Upsample ω1 ∗ S1X
l+1

 + ω0 ∗ S1X
l
+ ω−1 ∗ S2X

l− 1
.

(3)

To improve performance, integrated batch normaliza-
tion (iBN) and deformable convolution networks (DCN)
[33] are used in the SEPC./e calculation of iBN is based on
all feature maps in the feature pyramid, rather than a single

DarkNet53

Feature fusion

Feature fusion

Feature fusion

Shallow
features

Intermediate
features

Deep features

Upsampling

Upsampling

Detection

Detection

Detection

Input

(a)

CSPDarkNet53

Input

Feature fusion

Feature fusion

Feature fusion

Shallow
features

Intermediate
features

Deep features
Feature fusion

Feature fusion

Feature fusion

Upsampling

Upsampling

Detection

Detection

Detection

Downampling

Downampling

SPP

(b)

Figure 4: Comparison of YOLOv3 with YOLOv4. (a) YOLOv3 with FPN; (b) YOLOv4 with PAN.

Computational Intelligence and Neuroscience 5

feature map, which makes the variance smaller, so that a
better training effect can be achieved under a smaller batch
size. DCN can maintain the scale balance between feature
maps, thereby extracting features with constant scale.

In this research, we used SEPC to improve the neck net-
work./e original neck network input consists of the output of
the 3rd, 4th, and 5th CSPmodules in the backbone network. To
make better use of low-level features, we added the output of

the second CSP module as an additional input. /en, we used
two SEPC modules for feature fusion. /e first SEPC module
has four inputs, and the second has only three inputs. Since the
DenseNet structure in the backbone network enhances the
transfer of the low-level features, and considering the scale of
the calculation, the additional input is only used when the first
SEPCmodule calculates the top layer of the feature pyramid. In
addition, we modified the location of DCN layer to optimize

Table 1: Structure of the original backbone network and the improved backbone network.

Module
Number of layers Number of filters

Output channels
Original Improved Original Improved

1 Residual∗1 Residual∗1 1× 1 Conv∗32 1× 1 Conv∗32 643× 3 Conv∗64 3× 3 Conv∗64

2 Residual∗2 Residual∗2 1× 1 Conv∗64 1× 1 Conv∗64 643× 3 Conv∗64 3× 3 Conv∗64

3 Residual∗8 Dense∗4 1× 1 Conv∗128 1× 1 Conv∗64 1283× 3 Conv∗128 3× 3 Conv∗32

4 Residual∗8 Dense∗4 1× 1 Conv∗256 1× 1 Conv∗128 2563× 3 Conv∗256 3× 3 Conv∗64

5 Residual∗4 Dense∗4 1× 1 Conv∗512 1× 1 Conv∗256 5123× 3 Conv∗512 3× 3 Conv∗128

Shallow
features

Intermediate
features

Deep
features

(a)

Shallow
features

Intermediate
features

Deep
features

(b)

Shallow
features

Intermediate
features

Deep
features

(c)

Figure 6: Comparison of SEPC with FPN and PAN. (a) FPN; (b) PAN; (c) SEPC.

=
Dense
Block

CBS
(1x1)

CBS
(3x3)

CBS
(1x1)

CBS
(3x3)

CBS
(1x1)

CBS
(3x3)

CBS
(1x1)

CBS
(3x3)

= CBS
(1x1)

CBS
(1x1)

Dense
Block

CBS
(1x1)

CBS
(1x1)

CBS
(1x1)Concat

CSPDenseNet

CBS
(1x1)

CONV
(1x1) BN SiLU=

CBS
(3x3)

CONV
(3x3) BN SiLU=

Dense Layer

Figure 5: /e CSPDenseNet structure.

6 Computational Intelligence and Neuroscience

the network structure. Compared with the ordinary convo-
lution layer, the advantage of DCN is that it can extract features
with the same scale from the feature maps of different levels.
However, the calculation of theDCN layer ismore complicated
than the ordinary convolutional layer. In the original SEPC, the
DCN layer was used when calculating feature fusion. Each
DCN layer will be used multiple times when calculating the
feature fusion, which will bring about a substantial increase in
the amount of calculation. /e primary function of the SEPC
module is to realize feature fusion better, and feature extraction
has been completed before. /erefore, using DCN in SEPC
feature fusion will only increase the amount of calculation and
cannot reflect the advantages of DCN. We added DCN layers
to extract features from the feature pyramid before computing
the feature fusion and replaced the DCN layers in SEPC with
ordinary convolutional layers. In this way, the computational
complexity is reduced while retaining the advantages of DCN.
Finally, Figure 7 shows our improved neck network structure.

In summary, Figure 8 shows our improved YOLOv4
model, and our main contributions are as follows. On the
basis of retaining the advantages of original YOLOv4 model,
we introduced the DenseNet structure to improve the
performance of the backbone network, pruned the network
structure to reduce the computation and keep the output
dimension unchanged, and designed a new neck network to
improve feature fusion effect.

4. Experiment and Analysis

4.1. Experimental Platform and Parameters. /is research
used Python to write the program code, and the system en-
vironment is as follows: Intel Core i9 10885H CPU, 64G RAM,
Nvidia Quadro RTX 5000 Max-Q GPU, and Windows 10
operating system. All models were trained with an epoch of
300, a batch size of 16 and, an input image size of 512× 512./e
training environment is Python 3.7; the deep learning
framework is PyTorch 1.8; the GPU software environment is
Cuda11.0 and cudnn8.0./e initial value of the learning rate is
0.01. Cosine annealing is used as the change strategy, and the
change curve of the learning rate is shown in Figure 9.

In addition, the image augmentation parameters used in
the training process are shown in Table 2:

4.2. Evaluation Indicators of the Model. In this paper, we
used precision, recall, and average precision (AP) as per-
formance evaluation metrics. Precision is the probability of
being correct in all detected targets; recall is the probability
that all positive samples correctly identified; AP is the
weighted mean of precision achieved at each recall value.
/eir calculation method is shown as follows:

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

AP �
n

Rn − Rn−1(Pn,

(4)

where TP is the number of positive samples that have been
correctly identified; FP is the number of negative samples
that have been incorrectly identified; FN is the number of
positive samples that have been incorrectly identified; and Pn

and Rn are the precision and recall at the nth threshold.

4.3. Experimental Results and Analysis

4.3.1. Impact of the Improved Backbone Network. /e
purpose of this experiment is to verify the impact of the
introduction of DenseNet structure and pruning networks
on the performance of the model. Figure 10 shows the
comparative experimental results of the YOLOv4 with
improved backbone network and the original YOLOv4.

Based on these measurements, the precision, recall, and
AP of the model remain basically unchanged before and
after modification. /is means that, for the pine cone de-
tection task, using CSPdarknet53 as the backbone network
has redundancy, and the introduction of DenseNet structure
or pruning the network will not affect the accuracy. How-
ever, after modifying the backbone network, the compu-
tational cost of the model dropped from 95.6 GFLOPs to
84.8 GFLOPs, an 11.3% reduction, which will increase the
detection speed. In addition, Figure 11 shows the loss change
process during training. After about 20 epochs, the loss value
of the modified model drops faster. So, the introduction of
the DenseNet structure is conducive to the feature extraction
process and can make the model have better convergence
effect and faster convergence speed.

4.3.2. Impact of the Improved Neck Network. /e purpose of
this experiment is to verify the performance of the neck
network designed in this paper. We trained the original
YOLOv4 and the YOLOv4 with improved neck. /e ex-
perimental results are shown in Figure 12.

After using the neck network we designed, the precision
of the model rose from 92.8% to 94.2%; the recall rose from
83.6% to 88.1%; the AP@0.5 rose from 88.4% to 93.7%.
Although precision has only a small improvement, recall and
AP have significantly improved. /is shows that the im-
proved neck network can effectively enhance the effect of
feature fusion. In addition, compared with the original neck
network, the improved neck network removes some extra
convolutional layers, so its computational complexity is
smaller.

4.3.3. Overall Performance Comparison. In this experiment,
we tested the performance of the overall improved YOLOv4.
As shown in Figure 13, the precision of our improved
YOLOv4 is 96.1%, the recall is 90.1%, the AP@0.5 is 95.8%,
and the AP@0.5 : 0.95 is 68.3%. For the pine cone detection
task, our improved backbone network and neck network
produced a coupled response. Compared with using the
improved backbone network or the improved neck network
alone, combining them can better improve the performance
of the model. In addition, the computational cost of our
improved YOLOv4 is 75.3 GFLOPs, which is 21.2% less than

Computational Intelligence and Neuroscience 7

SPP DCN

DCN

DCN

DCN

Feature fusion

Feature fusion

Feature fusion Feature fusion

Feature fusion

Feature fusion

Detection

Detection

Detection

Neck

BackBone

Figure 7: /e improved neck network.

CBS

CSP1

CSP2

CSPDens
eNet4

CSPDens
eNet4

BackBone

Input

CSPDens
eNet4

3×
CBL

SPP

3×
CBL

CBL

CBL

Prediction

Residual Layer

CBL

DBL

DBL

DBL

DBL

CIBL

CIBL

CIBL

CIBL

CIBL

CIBL

CBL

CBL

CBL

CON
V

OUTP
UTCBL

CBL CON
V

OUTP
UT

CBL CON
V

OUTP
UT

= CBS CBS Res
Block CBS

CBS

CBSConcat = CBS CBS ADD

CSPX
Res

Block

X Residual Layer

CSPDens
eNet4 =

Dense
Layer

Dense
Layer

Dense
Layer

Dense
Layer

CONV
(1x1) BN SiLU CONV

(3x3) BN SiLUDense
Layer =

SPP
Maxpool
Maxpool
Maxpool

Concat=

Neck

CBS CON
V BN SiLU=

CBL CON
V BN Leaky-ReLU=

DBL DCO
NV BN Leaky-ReLU=

CIBL CON
V iBN Leaky-ReLU=

Figure 8: /e improved YOLOv4 model.

8 Computational Intelligence and Neuroscience

the original YOLOv4, but our improved model has higher
accuracy. /erefore, our improvement method is effective.

Additionally, the test results of the whole picture are
compared in Figure 14. When the target is blocked or the
target is tiny, the original YOLOv4 has many missed and
false. /e effect of the improved YOLOv4 is significantly
better than the unimproved method. /e red mark in the
figure is the test result of the same area. /rough the
comparison, it can be clearly seen that the improved model

has detected the target that was missed by the original
YOLOv4, and the improved model has a higher confidence.

4.3.4. Comparison with OtherModels. /e existing detection
models are generally designed for multiclass target detection
tasks, and their detection objects include large, medium, and
small targets, so they may not be effective for specific de-
tection tasks. Our improved model is only for pine cone

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
Step

learning rate

Figure 9: /e change curve of learning rate.

Table 2: Hyperparameters.

Hsv_h Hsv_s Hsv_v Translate Scale Fliplr Mosaic
0.015 0.4 0.4 0.1 0.4 0.5 1.0

Step

precision

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

original YOLOv4
YOLOv4 with improved backbone network

(a)

Step

recall

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

original YOLOv4
YOLOv4 with improved backbone network

(b)

Step

AP@0.5

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

original YOLOv4
YOLOv4 with improved backbone network

(c)

Figure 10: Comparison of the YOLOv4 with improved backbone network and the original YOLOv4. (a) Precision; (b) recall; (c) AP@0.5.

Computational Intelligence and Neuroscience 9

Step

precision

original YOLOv4
YOLOv4 with improved neck network

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

(a)

Step

recall

original YOLOv4
YOLOv4 with improved neck network

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

(b)

Step

AP@0.5

original YOLOv4
YOLOv4 with improved neck network

0

0.2

0.4

0.6

0.8

1

50 100 150 200 2500

(c)

Figure 12: Performance verification experiment of the neck network: (a) precision; (b) recall; (c) AP@0.5.

92.8%

83.6%
88.4%

60.4%

93.1%

84.2%
89.4%

61.5%

94.2%
88.1%

93.7%

65.3%

96.1%
90.1%

95.8%

68.3%

Precision Recall AP@0.5 AP@0.5:0.95

Original YOLOv4
YOLOv4 with improved backbone

YOLOv4 with neck backbone
Our improved YOLOv4

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

(%
)

Figure 13: Overall performance comparison.

Step

loss

0

0.02

0.04

0.06

0.08

0.1

0.12

50 100 150 200 2500

original YOLOv4
YOLOv4 with improved backbone network

Figure 11: Loss changes during training.

10 Computational Intelligence and Neuroscience

detection tasks, and all the improved methods are based on
improving the detection accuracy of small target pine cones.
In order to verify the superiority of our improved model, we
compared it with RetinaNet, Faster R-CNN, YOLOv3, and
original YOLOv4, and the results are shown in the Table 3. It
can be seen that the AP value of our model is 12.1% higher
than RetinaNet, 10.6% higher than Faster R-CNN, 10.1%
higher than YOLOv3, and 7.4% higher than original
YOLOv4. /e detection speed of our model is 4.6ms faster
than RetinaNet, 31.2ms faster than Faster R-CNN, 1.2ms
slower than YOLOv3, and 1.1ms faster than original
YOLOv4. Overall, our model has the highest AP value, far
exceeding other models. Although the detection speed is
slightly lower than the YOLOv3, it can satisfy the require-
ments of real-time pine cone detection.

5. Conclusions

/is paper proposes a detection method for pine cone based
on an improved YOLOv4 model. In the improved design of
the network architecture, in order to make better use of the
shallow feature information, we replaced the CSP module in
the original YOLOv4 network with the CSPDenseNet
module. To reduce the computational complexity and keep
the output dimension unchanged, the backbone network
was appropriately pruned. To improve the recognition ac-
curacy of the pine cone target, we changed the feature map
fusion mode in the original YOLOv4 and designed a new
neck network based on SEPC.

/rough manual collection and use of crawling tech-
nology, we created a pine cone data set containing 1411
images. /e test results on this dataset show that the pro-
posed improved network model can effectively identify the

pine cone target in a complex background. /e precision,
recall, and AP of the model are 96.1%, 90.1%, and 95.8%,
respectively, and the average detection speed of each image is
7.1ms. Compared with RetinaNet, Faster R-CNN, and
original YOLOv4, the AP value of the proposed improved
YOLOv4 model increased by 12.1%, 10.6%, and 7.4%, re-
spectively, and the detection time was reduced by 4.6ms,
31.2ms, and 1.1ms, respectively. Although the improved
model detection speed is 1.2ms slower than YOLOv3, the
accuracy is 10.1% higher than it. In general, the performance
of the improved model is better than the existing model.

/e method proposed in this paper can effectively detect
pine cones and can provide technical references for pine
cone yield estimation and automatic picking. However, it
still has room for improvement. Future work will focus on
collecting images of more miniature pine cones, collecting
different kinds of pine cone images, and optimizing low-
performance computing boards. In addition, the combi-
nation of cameras with infrared detectors, LiDAR, and the
crewless aerial vehicle is also worth researching.

Data Availability

/e dataset can be accessed upon request to the corre-
sponding author.

Conflicts of Interest

/e authors declare no conflicts of interest.

Authors’ Contributions

Ze Luo, Yizhuo Zhang, and Keqi Wang, as the primary
contributor, completed the analysis, experiments, and paper
writing. Liping Sun participated in the later revision, polishing,
and editing of the article. In order to thank Liping Sun for his
contribution to the article, the authors unanimously declared
and agreed to add him to the list of the authors of the article.

Acknowledgments

/is research was funded by the Fundamental Research
Funds for the Central Universities (2572019AB21).

(a) (b)

Figure 14: Whole image test comparison. (a) /e original YOLOv4; (b) the improved YOLOv4.

Table 3: Comparison of different models.

Model AP@0.5 (%) Average detection time (ms)
RetinaNet 83.7 11.7
Faster R-CNN 85.2 38.3
YOLOv3 85.7 5.9
YOLOv4 88.4 8.2
Our model 95.8 7.1

Computational Intelligence and Neuroscience 11

References

[1] H. Awan and D. Pettenella, “Pine nuts: a review of recent
sanitary conditions and market development,” Forests, vol. 8,
no. 10, p. 367, 2017.

[2] R. Sparrow andM. Howard, “Robots in agriculture: prospects,
impacts, ethics, and policy,” Precision Agriculture, vol. 22,
pp. 1–16, 2020.

[3] S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann
Santos, and E. Pekkeriet, “Agricultural robotics for field
operations,” Sensors, vol. 20, no. 9, p. 2672, 2020.

[4] M. S. A. Mahmud, M. S. Z. Abidin, A. A. Emmanuel, and
H. S. Hasan, “Robotics and automation in agriculture: present
and future applications,” Applications of Modelling and
Simulation, vol. 4, pp. 130–140, 2020.

[5] Y. Tang, M. Chen, C. Wang et al., “Recognition and locali-
zation methods for vision-based fruit picking robots: a re-
view,” Frontiers in Plant Science, vol. 11, p. 510, 2020.

[6] J. Lu, W. S. Lee, H. Gan, and X. Hu, “Immature citrus fruit
detection based on local binary pattern feature and hierar-
chical contour analysis,” Biosystems Engineering, vol. 171,
pp. 78–90, 2018.

[7] M. H. Malik, T. Zhang, H. Li, M. Zhang, S. Shabbir, and
A. Saeed, “Mature tomato fruit detection algorithm based on
improved HSV and watershed algorithm,” IFAC-Papers
Online, vol. 51, no. 17, pp. 431–436, 2018.

[8] D. Li, M. Shen, D. Li, and X. Yu, “Green apple recognition
method based on the combination of texture and shape
features,” in Proceedings of the 2017 IEEE International
Conference on Mechatronics and Automation (ICMA),
pp. 264–269, IEEE, Takamatsu, Japan, August 2017.

[9] I. K. Witus, C. K. On, R. Alfred et al., “A review of computer
vision methods for fruit recognition,” Advanced Science
Letters, vol. 24, no. 2, pp. 1538–1542, 2018.

[10] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection
with deep learning: a review,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 11, pp. 3212–3232,
2019.

[11] J. P. Vasconez, J. Delpiano, S. Vougioukas, and F. Auat
Cheein, “Comparison of convolutional neural networks in
fruit detection and counting: a comprehensive evaluation,”
Computers and Electronics in Agriculture, vol. 173, Article ID
105348, 2020.

[12] S. Tu, J. Pang, H. Liu et al., “Passion fruit detection and
counting based on multiple scale faster R-CNN using RGB-D
images,” Precision Agriculture, vol. 21, no. 5, pp. 1072–1091,
2020.

[13] R. Kirk, G. Cielniak, and M. Mangan, “L∗a∗b∗ fruits: a rapid
and robust outdoor fruit detection system combining bio-
inspired features with one-stage deep learning networks,”
Sensors, vol. 20, no. 1, p. 275, 2020.

[14] C. Liang, J. Xiong, Z. Zheng et al., “A visual detection method
for nighttime litchi fruits and fruiting stems,” Computers and
Electronics in Agriculture, vol. 169, Article ID 105192, 2020.

[15] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting
unreasonable effectiveness of data in deep learning era,” in
Proceedings of the IEEE International Conference on Computer
Vision, pp. 843–852, Venice, Italy, October 2017.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, Las Vegas, NV, USA, June 2016.

[17] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7263–7271,
Honolulu, HI, USA, July 2017.

[18] J. Redmon and A. Farhadi, “Yolov3: an incremental im-
provement,” 2018, http://arxiv.org/abs/1804.02767.

[19] G. Liu, J. C. Nouaze, P. L. Touko Mbouembe, and J. H. Kim,
“YOLO-tomato: a robust algorithm for tomato detection
based on YOLOv3,” Sensors, vol. 20, no. 7, p. 2145, 2020.

[20] Z.-F. Xu, R.-S. Jia, H.-M. Sun, Q.-M. Liu, and Z. Cui, “Light-
YOLOv3: fast method for detecting green mangoes in com-
plex scenes using picking robots,” Applied Intelligence, vol. 50,
no. 12, pp. 4670–4687, 2020.

[21] R. Shi, T. Li, and Y. Yamaguchi, “An attribution-based
pruning method for real-time mango detection with YOLO
network,” Computers and Electronics in Agriculture, vol. 169,
Article ID 105214, 2020.

[22] Z. Luo, H. Yu, and Y. Zhang, “Pine cone detection using
boundary equilibrium generative adversarial networks and
improved YOLOv3 model,” Sensors, vol. 20, no. 16, p. 4430,
2020.

[23] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4:
optimal speed and accuracy of object detection,” 2020, http://
arxiv.org/abs/2004.10934.

[24] B. Hu, C. Lei, D.Wang, S. Zhang, and Z. Chen, “A preliminary
study on data augmentation of deep learning for image
classification,” 2019, http://arxiv.org/abs/1906.11887.

[25] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. C. Yoo,
“Regularization strategy to train strong classifiers with lo-
calizable features,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 6023–6032, Seoul,
South Korea, October 2019.

[26] C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh,
and I. H. Yeh, “CSPNet: a new backbone that can enhance
learning capability of CNN,” in Proceedings of the 2020 IEEE/
CVF Conference on Computer Vision and Pattern Recognition
Workshops, pp. 390-391, Seattle, WA, USA, June 2020.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 9, pp. 1904–1916, 2015.

[28] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation
network for instance segmentation,” in Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8759–8768, Salt Lake City, UT, USA, June 2018.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, Las Vegas, NV, USA, June 2016.

[30] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, Honolulu, HI, USA, July 2017.

[31] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear
units for neural network function approximation in rein-
forcement learning,” Neural Networks, vol. 107, pp. 3–11,
2018.

[32] X. Wang, S. Zhang, Z. Yu, L. Feng, and W. Zhang, “Scale-
equalizing pyramid convolution for object detection,” in
Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13359–13368, Seattle,
WA, USA, June 2020.

[33] J. Dai, H. Qi, Y. Xiong et al., “Deformable convolutional
networks,” in Proceedings of the 2017 IEEE International
Conference on Computer Vision, pp. 764–773, Venice, Italy,
October 2017.

12 Computational Intelligence and Neuroscience

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1906.11887

