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With the daily increase of data production and collection, Hadoop is a platform for processing big data on a distributed system. A
master node globally manages running jobs, whereas worker nodes process partitions of the data locally. Hadoop uses
MapReduce as an effective computing model. However, Hadoop experiences a high level of security vulnerability over hybrid
and public clouds. Specially, several workers can fake results without actually processing their portions of the data. Several
redundancy-based approaches have been proposed to counteract this risk. A replication mechanism is used to duplicate all or
some of the tasks over multiple workers (nodes). A drawback of such approaches is that they generate a high overhead over the
cluster. Additionally, malicious workers can behave well for a long period of time and attack later. *is paper presents a novel
model to enhance the security of the cloud environment against untrusted workers. A new component called malicious
workers’ trap (MWT) is developed to run on the master node to detect malicious (noncollusive and collusive) workers as they
convert and attack the system. An implementation to test the proposed model and to analyze the performance of the system
shows that the proposed model can accurately detect malicious workers with minor processing overhead compared to vanilla
MapReduce and Verifiable MapReduce (V-MR) model [1]. In addition, MWTmaintains a balance between the security and
usability of the Hadoop cluster.

1. Introduction

*e distributed MapReduce (MR) model provides paral-
lelism for large-scale data processing, a Google project in-
troduced by Apache Hadoop [2]. It was developed by Doug
Cutting and Mike Cafarella in 2005, an open-source
implementation of a high-performance computing model. It
is globally used by large-scale companies. For instance,
Amazon implemented the Hadoop cluster with MapReduce
as a public service available for research and/or data analytics
on big data [3]. MR provides applications to work on
thousands of machines and petabytes of information in
parallel and in a cost-effective manner. *is is accomplished
by using commodity hardware to build cluster nodes as core
basic components of Hadoop [4–7]. A Hadoop Cluster

consists of a single master node that hosts the JobTracker
service and a set of workers each hosting a TaskTracker
service. *ere are two components of the Hadoop frame-
work: MapReduce and HDFS. HDFS transfers an amount of
data very rapidly to MapReduce and its components com-
bine to support applications with large data sets as shown in
Figure 1.

Accordingly, such systems face integrity issues since
worker nodes can be on different, possibly untrusted do-
mains [8]. *ose public workers might be malicious or
become malicious over time, sending wrong results as a
main security threat to the whole system. *e common
approach to pick such behavior is redundantly outsourcing
tasks on different workers in different domains and then
comparing results [9].
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For scalability, clusters can be composed of machines on
private and/or public networks. Using machines in the
public cloud hinders the security of the total system [10].
*us, we need to test each node whether it can be trusted by
validating that the node is not malicious.What makes it hard
to detect malicious workers is the fact that they keep acting
normally until they gain trust. *en, they turn malicious, on
the one hand. On the other hand, malicious workers are
detected by replication of given jobs and comparing the
results. As a workaround from malicious workers, such
workers can cooperate to consistently return wrong results,
which makes malicious workers’ detection very hard.
Moreover, replication consumes more resources leading to
higher costs and longer waiting times for other jobs.
Malicious workers are the attackers classified into two
categories based on their behavior, noncollusive and col-
lusive workers [11]. *ey can cheat on a task by giving a
wrong result or tamper with the intermediate outputs to
mess up the final result. Noncollusive ones behave inde-
pendently to destruct the work of the system, whereas
collusive workers cooperate together to deceive the system
until they are trusted and then attack. If trusted workers are
known based on comparing the results returned, then
collusive ones are hard to detect as the comparison of
replicated tasks will be inconclusive with respect to worker
trustworthiness.

Existing solutions for detecting harmful workers in
public MR clouds are not sufficiently effective [12]. In recent
years, many researchers have worked in this area to increase
the security of systems and cloud computing. In order to
ensure the accuracy of the computation, several frameworks
have been designed, including SecureMR [12], VIAF [11],
weighted t-first voting [13], IntegrityMR [14], Accountable
MR [15], TS-TRV [16], and Verifiable MapReduce (V-MR)
[1]. *e goal is to detect malicious workers and mark them

out to guarantee the integrity of the results.*ose techniques
suffer from high overhead costs due to repeated processing.
Moreover, not all types of malicious workers can be detected.

*is paper proposes a novel solution: the Malicious
Worker Trap (MWT). It is both more effective and efficient
compared to the state of the art. *at is, it has a much lower
processing overhead (efficiency) in detecting both collusive
and noncollusive workers (effectiveness). MWT is an added
service on the master node parallel to the NameNode and
JobTracker, communicating with both of them. NameNode
keeps the directory tree of all files in the file system and
tracks data files across the cluster while the JobTracker
schedules jobs submitted for execution.*e new service shall
send extra jobs to the JobTracker interleaving with the
original ones to be assigned to workers for verification. In
this paper, we present a new service on the master node of
Hadoop MapReduce. *e following are the main contri-
butions of this paper:

(i) A lightweight malicious worker detection approach
(MWT) that is capable of detecting both collusive
and noncollusive malicious workers

(ii) Implementation of MWT as a service within
Hadoop’s master node

(iii) An evaluation of the approach with respect to
processing overhead compared to Vanilla Hadoop
and state-of-the-art V-MR model that uses work
replication

2. Background and Related Work

To ensure the integrity of the MR computations, researchers
developed a number of frameworks. *ey concentrated on
improving the functionality of mappers and reducers in
terms of security. As intruders try to hinder the
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2 Computational Intelligence and Neuroscience



computations of the mappers and reducers, they need to be
elicited to ensure the correctness of the results. In open
systems, common collude behavior can be summarized
according to the following attacks [11, 12, 14, 15, 17]. A bad
worker may

(1) Cheat on a task by giving the wrong result without
processing the input or may tamper the intermediate
result to mess up the final result

(2) Launch DoS attacks against other good workers. For
example, it may keep sending requests to a good
worker and ask for intermediate results or it may
impersonate themaster and send fake assignments to
good workers

(3) Initiate replay attacks against good workers by
sending old task assignments to keep them busy

(4) Eavesdrop and tamper the messages exchanged
between the master node and the workers to in-
validate the final results

*e second and third attacks can be solved normally by
common cloud security mechanisms [12, 18–20]. However,
the first and the fourth are the ones that are hard to detect.

Detecting and preventing passive network eavesdrop-
ping attacks are extremely difficult, if not impossible, as there
are no disruptions or changes to the network. Active attacks
are easier to detect, but often, data is already intercepted by
the time network changes are noticed. *ere are methods to
overcome the exchanged Eavesdropped and tampered
messages between the master node and the workers such as

(1) Encryption: first and foremost, encrypt e-mail,
networks, and communications, as well as data at
rest between the master node and slave nodes, in use
and in motion. *at way, even if data is intercepted,
the hacker will not be able to decrypt it without the
encryption key.

(2) Authentication: authenticating incoming packets is
key to preventing spoofed packets that are used to
perpetrate IP spoofing or MAC address spoofing
attacks. Use standards and protocols that provide
authentication for master node and DataNodes.

(3) Network monitoring: security teams should con-
stantly monitor networks for abnormal activity by
using intrusion detection systems or endpoint de-
tection and response software. Security teams use the
same sniffer programs that nefarious actors use to
detect vulnerabilities on the network.

Malicious workers can attack as independent workers or
as a group of workers. *ose are called noncollusive and
collusive, respectively, as discussed in Section 1.

Detection approaches include grouping and weighing
[13], replication-based detection [11], quiz and testing [11],
voting [21], and multiple clouds [14].

2.1. Multiple Clouds’ Technique. *e cluster computing
model of MR is expanded to span multiple public and or
private clouds [22]. Based on such architecture, IntegrityMR

[14] is an integrity assurance framework for analyzing big
data and managing applications. *e IntegrityMR solution
covers the MR framework on a hybrid cloud (public and
private clouds). *is was the first method that provided
multiple public cloud architectures for MR computing. In
addition, it is the first method to ensure the correctness of
the result without much change in MR’s work. In task as-
signment, instead of picking a worker from the single public
cloud, IntegrityMR can randomly choose a public cloud and
pick a worker from the chosen cloud. Randomized task
assignment would bear significant performance overhead
due to the existence of the shuffle phase, where the mappers
send their intermediate results to the reducer. It is likely that
the mappers and the reducers are not in the same cloud.*is
means intercluster data transmission, possibly over the
Internet. *is will slow down the overall computation. *ey
solve this problem by having the master assign the original
map tasks and reduce tasks to the same cloud and the
replicated map tasks and reduce tasks to another cloud.
Since the reducer only accepts map results from the same
cloud, shuffle would only happen inside a cloud. For this
framework to be effective, a private cloud must be used as a
verifier. *us, this is an expensive solution.

In [14], the authors proposed a Cross-CloudMapReduce
(CCMR) framework that adds integrity checks in the
mapper and reducer phases. In the map phase, an integrity
check is performed on map tasks. In the reduce phase,
CCMR factors each reduce task into multiple subtasks and
apply the integrity check on the subtasks. To achieve high
integrity, reduce tasks are executed on the private cloud to
detect infringements. Again, this incurs high data trans-
mission costs and the unavoidable dependency on private
clouds for verification.

Yoon and Liu [1] presented a solution called Verifiable
MapReduce (V-MR) that verifies the integrity of MapReduce
computations via partial reexecutions. *e approach is
composed of two stages: online tracing and offline verifi-
cation. Online tracing is to record execution traces of the
user-defined MapReduce application on every worker node
during normal execution. *e offline verifier analyzes the
execution traces to identify and select the requests to
reexecute and prepare the new code and the input data for
partial reexecution. Compared to the two previous ap-
proaches, it is more efficient as it does not require heavy data
transfers and it can decide about integrity via partial results
on carefully selected subsets of the data.

2.2. Quiz and Testing Technique. In this type of approaches,
one or more tasks are sent to the workers with known results
to quiz their output. If the output is different, then the
worker is malicious; otherwise, it is trusted [11]. VIAF [11]
sends multiple quizzes and ranks them or accumulates the
score. *e approach takes into account the overall com-
puting behavior of each node expressed through a node
weight.

Bendahmane et al. [13] proposed a technique based on
the weighted t-first voting method. *e approach replicates
each task so that replicas are executed over multiple nodes.
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*en, the results are grouped according to their values. *e
replicated task is repeated until the result group reaches a
predefined threshold (t). After that, workers in this group are
marked as trusted. As a limitation, this technique assumes
that the attacker has no knowledge about the result integrity
scheme and the number of malicious workers attacking is no
more than half of all available workers in the cluster. Ad-
ditionally, due to the repeated computations, the approach
suffers from the same high processing overhead. Moreover,
it is sensitive to the choice of the threshold value (t).

Zhu and Lee [23] proposed a framework consisting of
task replication and verification. *e noncollusive workers
can be detected immediately by result comparison.
*erefore, they only consider collusive workers. *e
framework is based on defining the probability of com-
mitting cheating between colluders and/or noncolluders. If
a replicated task is assigned to two collusive workers and
either of them fails to pass k quizzes, the master will not
release their results to the reducer. If a replicated task is
assigned to a collusive worker and a noncollusive worker
and the noncollusive worker commits a cheat, the master
will not release their results to the reducer too. *e master
will release an incorrect result to the reducer when the two
collusive map workers pass k quizzes and cheat in a col-
lusive manner. *e framework defines δ as the probability
that a collusive worker will pass all of the k quizzes. Using δ,
the cheat probability can be derived. Malicious workers can
behave well for a long period of time to gain the trust of the
master process and may attack only after that. By that time,
malicious workers can pass δ and deceive the system. *is
technique still cannot guarantee the detection of all
malicious mappers and reducers.

2.3. Replication-Based Technique. In this group of malicious
worker(s) detection approaches, a task is replicated or
decomposed into pieces and the pieces are replicated [24].
Whenever the task queue is not empty, the master will pick
one task and send it to any two workers. After getting the two
results from the two workers, the master can compare them.
If the results are different, it means that at least one worker is
a noncollusive worker. However, it is hard to tell which one
is the noncollusive worker, but they can detect and pick the
noncollusive worker later. Task replication is useless in
identifying collusive workers. For detecting collusive
workers, they improved the replicated task so that it is a
credit-based replicated task, and they added a ` (trusted
worker) to verify the intermediate results. In replication-
based techniques, due to the task performed by multiple
workers, system performance decreases [24, 25].

SecureMR [11] is another replication mechanism that
prevents repudiation, DoS, and replay attacks. It decen-
tralizes the integrity verification process among different
distributed computing nodes which participate in the
MapReduce computation. SecureMR replicates some map
and reduce tasks and assigns them to different mappers and
reducers; i.e., a map (or reduce) task is executed by more
than one worker. SecureMR suffers from excessive pro-
cessing overhead due to task replication. Moreover, this

causes an overall higher latency. Additionally, it is not
possible to detect collusive malicious workers.

Xiao and Xiao [15] proposed an approach that verifies
every map and reduces tasks through reexecuting these tasks
in a group of trusted nodes. A limitation is to have a suf-
ficient number of trusted nodes to reperform some of the
maps and reduce tasks.

2.4. Majority-Based Techniques. *e voting-based method
for identifying malicious workers sends several copies of the
task to several workers [21].*emajority of voting is applied
to the set of returned results to decide in favor of the result
that appears most often. *is approach tolerates a certain
number of incorrect results in a vote. However, it does not
resist a majority of colluding workers that collectively return
the same incorrect result. Even though workers are ran-
domly selected for each vote, with the possibility of massive
attacks, the probability for a majority of colluders becomes
significant. Ren and Tang [26] created a security module in
the master node to manage the mappers based on different
security levels. *ese levels include ordinary domain, se-
curity domain (highest level), and isolated domain (lowest
level). In the beginning, mappers are in the ordinary domain.
*e data flow is in the ordinary domain.*e execution of the
task is repeated and carried out by two mappers (step 1).*e
verifier verifies the returned results (step 2). Upon successful
verification, mappers receive a credit (step 3). Finally, the
mapper’s results are sent to the reducer (step 4). *e mapper
gains a security score when all its results are published for the
reducer. Eventually, if the mapper’s score reaches the se-
curity threshold, it will be promoted to the next security
level. In general, tasks do not need to be replicated. Leveling
out mappers has somehow contributed to enhancing se-
curity. *is approach adds a number of modules in the
master node and complicates the execution process. More
importantly, collusive workers are not proved to be detected.

As we have explored the state of the art regarding the
detection of malicious workers for MR computations, we
have developed a model that guarantees the detection of
colluders as well as noncolluders. In addition, we reduce the
processing overhead.

3. Proposed Solution: MWT

In order to identify malicious workers, either collusive or
noncollusive, efficiently, the proposed model is based on two
facts: (1) there is no replication by quizzing with unknown
solutions, and (2) the testing task shall be with small HDFS
files of just one partition.*is serves two objectives. First, we
make sure that the mapping task will go to only one worker.
Second, the resources of the cluster are not overconsumed.

3.1. Solution Structure. *e proposed model is based on
implementing a small service to be deployed in the master
node calledMaliciousWorker Trap (MWT). It could run as a
daemon program or as an integrated service with the Job-
Tracker (see Figure 2). Our service acts as a protection layer
for the cluster; it periodically performs routine checks on
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every worker node in the cluster in a round-robin manner. It
schedules the workers one by one and repeats the checking
when finished. To reduce the overhead needed for this type
of checking, the service hardly requires any calculations to be
performed on the master node. Instead, a list of jobs with
predefined solutions is stored in the memory and used for
the checking process. *e frequency of the periodic check is
a percentage of the workload. For example, after processing
three client tasks, a checking task is sent to a worker node.
Our proposed model provides a solution for a serious type of
attacks when a worker behaves correctly for more than one
job and then turns into a malicious worker; it periodically
performs routine checks over every worker node in the
whole cluster in a round-robin manner. It schedules
checking the workers’ nodes one by one and repeats vali-
dating them when finished in the cluster.

A list of testing tasks is defined containing the single-
partition HDFS file, the program or the function, and the
end result. Another list for worker nodes is required, i.e., a
queue that is used to keep track of checked worker nodes. A
worker node is chosen from the queue, assigned with the
task and pointed to the input file. After completion by the
worker node, the worker’s result is compared with the stored
result. Upon a match, the worker node is enqueued again for
a future recheck. Otherwise, MWT sends an alert that this
worker node has been infiltrated.

MWT is efficient in detecting both noncollusive and
collusive malicious workers. *e difficulty with detecting
collusive workers is that all of them are complicit to give the
wrong answer, which makes any defense technique based on
the duplication of tasks ineffective. On the other hand, since
our service uses a set of MapReduce jobs with predefined
results, the collusion of malicious workers is detectable.

Furthermore, for the case of malicious workers that act
authentically for a long period of time, MWTis not only able
to detect this kind of threat but also can determine the
period, interval through which the cluster is endangered.
*is is achieved by recalling the last known right result
computed by this worker, due to periodic checking. All these
benefits outweigh the overhead of MWT over the workload
of the cluster. MWT maintains a balance between the se-
curity and usability of the Hadoop cluster where increasing
the usability of Hadoop cluster might cause risk over the
system. We overcome the problem of balancing security and
usability by lowering the overhead of worker validation,
which can be configured as required in the system. *e
process of configuration helps obtain a balance between
security and usability. For extra security, we use MWT
service continuously, and for usability, we use MWTservice
only when necessary. Considering scalability, clusters can be
composed on any machine in the private and/or public
networks. Using machines in the public cloud hinders the
security of the total system.*us, we test each node if trusted
or not by validating that the node is not malicious. When
using MWT service, whether on a public or private cloud,
noncollusive and collusive workers are detected, with no
difference when executing the service over public cloud,
private cloud, or hybrid cloud.

As stated earlier, MWT works by means of periodic
checks. *e frequency of these checks is a percentage of the
workload, where the JobTracker is set to perform a task for
the trap. *is percentage is the workload occupation con-
figuration (WOC) parameter. Based on the threats facing the
system, this parameter can be altered. A list of worker nodes
is required; i.e., a queue is used to log the verification process
of the worker nodes.
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Next, we describe how to think about the choice ofWOC
we build on the work in [27].

4. Formalization

It is clear that the available computing capabilities of dif-
ferent workers change over time. With high workloads, the
available computing capacity goes down and new jobs start
to queue up, whereas, with lower workloads, the system can
accept newer jobs more frequently. So, for verification
purposes, it is better to spot the time intervals with a lower
workload to run the verification tasks, on the one hand. On
the other hand, to reduce the risk of malicious workers, we
need to detect them earlier. *at is, we need to run the
verification tasks more frequently. Here, the adjustment of
the WOC parameter can strike a balance between the two
extremes of not overloading the cluster and detecting
malicious workers early enough.

In MapReduce, every map step is divided into a number
of parallel tasks. Each task is assigned to a worker and is fed a
partition of the input HDFS file.

Let fi(t) represent the processing speed of ith mapper.
*erefore, the total computing speed at time t, p(t), of the
cluster using a number of n mappers can be represented by
[27]

p(t) � 
n

i�1
fi(t). (1)

Let D represent the total amount of data for a Hadoop
MapReduce job.*erefore, the computing time to process D

can be represented through equations (2) and (3) where a

and b are the endpoints of the job processing interval by the
cluster:


b

a
p(t)dt � D, (2)

t � b − a. (3)

Let w characterize the variety of waves of mappers in the
cluster to operate the whole quantity of facts D. In the time
interval t, there are a wide variety of two kinds of tendencies
of the processing velocity p(t). *e first one is an increasing
trend. We outline it as follows: from time point ta to tb, the
average processing velocity at some point of this time in-
terval continues increasing till it gets decreased. *e second
one is decreasing trend. It is described as follows: from time
factor ta to tb, the average processing velocity, Pab, at any
point during this time interval keeps reducing until it will
become expanded as

Pab �


tb

ta
p(t) dt

tb − ta

. (4)

*us, the algorithm selects a number for w that is the
greatest for Pabt:

pg � pa1b1
, pa2b2

, pa3b3
, . . . , pawbw

 . (5)

After the best values have been selected, the algorithm
starts off for evolving the different two tendencies which are
on the left and the proper sides of the biggest values pri-
marily based on Pabi

which is the wave sample in the fol-
lowing equation:

pai−1bi+1
�


bi−1

ai−1
p(t)dt + 

bi

ai
p(t)dt + 

bi+1

ai+1
p(t)dt

bi+1 − ai−1
. (6)

Consequently, a number of w new common values
Pai−1bi+1

are generated. At the same time, the wide variety of n
tendencies decreases to the number of n− 2w. *en, in these
n-2w trends, we pick out a variety of w best Pabi once more
and merge the different two tendencies which are on the left
and proper sides of them, till there is a range of w tendencies
left. *erefore, the time intervals may additionally have the
higher common performing capacities in the following
equation:

T � a1b1( , a2b2( , a3b3( , . . . , awbw(  . (7)

*us, the amount of data that is executed in the time
interval t � b1 − a1 can be transmitted to the cluster to be
virtually executed. It can be predicted to be executed within a
higher computing capacity interval of the cluster. *e
amount of data D1 can be represented by

D1 � 
b1

a1

p(t)dt. (8)

Nevertheless, because of the uncertainties and IO fea-
tures of the genuine processing in the total cluster, when the
quantity of facts D1 for the first wave is completed, the
deviations of b1 are necessary. Hence, the expectation for the
next wave is corrected. *e correction method is developed
as follows. In the subsequent wave, the algorithm reruns the
time interval computation as defined above with modifi-
cations of values of the parameters in

w � w − 1, (9)

D � D − D1. (10)

*us, with new values of w and D, a new Df can be
calculated and the amount of data can be allocated to the
second wave in processing. Finally, until w � 1, the rest of the
data are allocated to the last processing wave. In a Mapper
(processing unit), for processing one data block of a Hadoop
MapReduce job, the total processing time could be con-
sidered through

T � tc + tp + te + tm, (11)

where tc represents the copying time, tp represents the
processor’s processing time, te represents the emptying time
when the buffer of the Map instance is filled up, and tm

represents the merging time.
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5. Experimental Evaluation

In this section, we designed experiments to study the
computation overhead of MWT. We compare the perfor-
mance of MWT against Vanilla Hadoop (benchmark) and
V-MR [1]. *e latter has been chosen due to its recency and
its superiority to the state of the art as it makes partial
reexecution of some of the tasks. Our experiment solves the
problems of balancing balance security and usability of the
Hadoop cluster. In this experiment, we can control the use of
either of the two features usability and security as desired by
the system administrator. When higher security is required,
then the MWT service shall send more validation tasks, i.e.,
before each real task. On the other hand, when the system
requires more usability, the MWT service shall send vali-
dation tasks with a lower percentage between the original
tasks, i.e., one-third of the time or less. *erefore, the goal is
to achieve the required balance according to the system
requirements.

For evaluation, and to mimic usual workloads on the
Hadoop cluster, we decided to use different jobs with
different complexities. *ese are both map-and-reduce-
input heavy jobs (i.e., word count, sorting, etc.) that
process enormous amounts of input data and also generate
big intermediate data [27], on one side. On the other side,
we will run our experiments with a different number of
nodes running concurrently in the system (cluster size).
*is is to test the system with a different range of task
loads.

5.1. Experiments’ Setup. We performed a set of experiments
analyzing the job completion time in terms of the following
parameters:

(i) *e number of nodes: 1, 10, 25, and 100
(ii) *e volume of input data: 2 GB
(iii) *e number of jobs that are executed simulta-

neously in the cluster: 1, 2, 3, and 4

Every node in the cluster has the same technical char-
acteristics: 2x Intel Xeon E5-2630L v2 a 2.40GHz, 4GB
Memory RAM, Hard disk 100GB SATA-3, Network Intel
Gigabit Ethernet.

For every experiment, we record the job completion
time, fixing parameters one at a time, with permuting dif-
ferent numbers of workers and different data sizes. *e
workloads are Grep tasks, Selection tasks, and UDF ag-
gregation tasks. *is is to test the system on different vol-
umes of data to experiment with the effect of the trap service
on a system in peak time.

With the Grep task, we test the system providing dif-
ferent weight input user tasks (525MB/node and 1 TB/
cluster). In the Selection task, every node processes a 1GB
ranking table to retrieve the target page URLs with a user-
defined threshold. In the UDF Aggregation Task, each node
processes 1GB of data. Each configuration of each task was
given to MWT, Vanilla Hadoop, and V-MR. Each experi-
ment has been repeated 5 times, and the median of com-
pletion time is recorded for the running jobs in the system.

5.2. Experimental Results

5.2.1. Grep Task. In this type of task, we computed the
execution time when each worker got 525MB of data to
process and the execution time when the whole cluster got 1
TB of data. *e execution times for 525MB per node for the
different numbers of workers are reported in Figure 3. *e
overhead of MWT is very little in most cases. Of course, it
will be higher than the vanilla MapReduce (the benchmark)
but it is lower than V-MR due to the freedom from task
replication and recomputation.

On the contrary, for the 1 TB of data distributed over the
cluster, the execution time is plotted in Figure 4.When the load
is heavy on a limited number of nodes, MWTis close to Native
Hadoop while V-MR has a higher overhead, while with a large
number of nodes and a highly distributed load, MWT and
V-MR have comparable performance that is close to Native
Hadoop.

In both scenarios, the values of the outputs are small in time
intervals (in the range of 0 to 2.6 seconds in the first scenario
and in the range of 4.2 to 7.5 seconds in the second scenario).

5.2.2. Selection Task. *e Selection task is more complex
than the Grep task. In this task, in order to retrieve the target
page, every node processes 1GB ranking table. *e execu-
tion time of the task for the different configurations is shown
in Figure 5. *e performance of MWT is close to the
benchmark and faster than V-MR. *e time intervals are
small in the range of 2.3 and 5.3 seconds. According to this
comparison between MWT, the benchmark, and V-MR
results, it is clear that MWTwas done at an appropriate time,
taking into consideration the new service added to the
JobTracker.

5.2.3. UDF Aggregation Task. *e UDF Aggregation Task
reads the generated document files and searches for all the
URLs which appeared in the contents. After that, for every
unique URL, the number of unique pages will be marked to
refer to a particular URL across the entire set of files. Figure 6
shows the completion time for the job under the different
configurations. It is clear that MWT overhead is very little
and the overall time is close to the benchmark results, taking
into consideration the complexities of the task. Still, MWT
outperforms V-MR.

*e experimental results show great stability of MWT
outputs for the task; similar to the Grep and Search tasks,
MWT results have a faster throughput than V-MR.

In conclusion, MWT result overhead is minimal com-
pared to V-MR and close to benchmark in time. *e heavier
the load of the system and the higher the complexity of the
load balance, the better MWT performance than V-MR.

5.2.4. Discussion. Checking nodes one by one detects col-
luding workers to prevent them from sending false outputs to
the JobTracker. For example, if there is a job requesting 20
nodes, MWTwill check the 20 nodes one by one to detect the
malicious workers. Commonly, a job is distributed on a
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number of nodes. If one of the nodes is malicious, then the job
fails and the whole job has to be repeated. In MWT, the de-
tected node task onlywill be repeated and not thewhole work is
failed and reexecuted. *is is because MWT is able to check
tasks per node not the whole system as a unit. If a node fails, the
master can redundantly execute the same task to other nodes to
avoid slow-running nodes.

In the previous approaches, trusted workers were
checked before the execution of MapReduce computations,
which leads to overhead, in addition to the replication
overhead. With MWT, malicious workers that behave well
for a long period of time to gain the trust of the master are
still detectable through periodical checking of nodes one by
one in a round-robin fashion.
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Figure 3: Grep task evaluation (525MB/node).
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Figure 5: Selection task evaluation.
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6. Conclusion

Hadoop is the most common and widespread use of open-
source software on a wide range of MapReduce clusters for
processing huge amounts of data. *ere are many security
issues of Hadoop MapReduce such as malicious nodes in
the system. In this paper, we proposed a new model to
enhance the security of Hadoop MapReduce. *is model
checks the workers periodically, e.g., one-third of the
execution tasks of MapReduce computation, causing
minimal overhead. *e periodical checking model over-
comes the issue of malicious workers which behave well
for a long period of time to gain the trust of the master
process and may attack only after that. Finally, the pro-
posed model is able to enhance cloud security to prevent
malicious and collusive workers. We evaluated the per-
formance (i.e., overhead) on data-intensive MapReduce
applications. MWT was evaluated against V-MR, a state-
of-the-art malicious worker detection approach, and
against Vanilla Hadoop as a benchmark. *e experiments
empirically prove that MWT has a lower overhead than
V-MR. MWT can also be used to detect collusive and
noncollusive workers in the system which improves the
efficiency and effectiveness of a security module in a
Hadoop MapReduce system. In future work, machine
learning clustering methods will be utilized to detect the
behavior of the noncollusive workers and collusive
workers. Such analysis shall improve the performance of
the Hadoop cluster.
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