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In recent years, hashing learning has received increasing attention in supervised video retrieval. However, most existing su-
pervised video hashing approaches design hash functions based on pairwise similarity or triple relationships and focus on local
information, which results in low retrieval accuracy. In this work, we propose a novel supervised framework called discriminative
codebook hashing (DCH) for large-scale video retrieval. .e proposed DCH encourages samples within the same category to
converge to the same code word and maximizes the mutual distances among different categories. Specifically, we first propose the
discriminative codebook via a predefined distance among intercode words and Bernoulli distributions to handle each hash bit.
.en, we use the composite Kullback–Leibler (KL) divergence to align the neighborhood structures between the high-dimensional
space and the Hamming space. .e proposed DCH is optimized via the gradient descent algorithm. Experimental results on three
widely used video datasets verify that our proposed DCH performs better than several state-of-the-art methods.

1. Introduction

Under the condition of the increase in smartphones, the
amount of video data has shown an explosive growth trend
[1–3]. For example, TikTok has over 400 million daily active
users who upload approximately 2,000 videos every minute.
YouTube receives a total of 100 hours of videos per minute
[4–6]. Due to the economic storage and efficiency of binary
codes, hash-based methods have been widely applied to
visual retrieval tasks [7–13].

Previous hash-related work [14] mainly focused on
image hashing and can be divided into data-independent
and data-dependent methods. Data-independent ap-
proaches learn binary codes without data information but
through random space projection. .e most representative
algorithm is local sensitive hashing (LSH) [15], which
generates huge redundant information using random
mapping and obtains satisfactory performance with long
hash codes. Data-dependent hash methods [16–18], which
can also be divided into unsupervised hashing and super-
vised hashing, are proposed to generate more efficient hash

codes by maintaining the neighborhood structure between
data. For example, Gong et al. [19] proposed iterative
quantization hashing (ITQ), which minimizes quantization
error by rotating principal component analysis (PCA)
projection data. Spectral hashing (SH) [20] assumes that
data obey a uniform distribution and divides the data
according to the main direction of the data stream. Density
sensitive hashing (DSH) [21] extends LSH by studying
structural information. Zhang et al. [22] developed a con-
vergence-preserving parametric learning algorithm, called
latent factor hashing (LFH), to learn similarity-preserving
binary codes based on latent factor models. Liu et al. [23]
proposed kernel supervised hashing (KSH) by applying
kernel-based formulas to accommodate linearly inseparable
data and designed a greedy algorithm to solve the hash
function optimization problem.

In recent years, hashing methods proposed for video
retrieval have also received extensive attention [24–31] and
are composed of two categories: machine learning methods
and deep hashing. Machine learning methods, resembling
image hashing approaches, learn binary codes of video
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keyframes based on the low-level manual features and then
calculate video hashing codes via averaging. Wu et al. [4]
employed video hashing via using color histograms to obtain
global features. .is is the first application of hash learning
in the video field. Multiple-feature hashing (MFH) [32]
adopts the weight-based method to combine different fea-
tures. Ye et al. [33] used video structural information in the
supervised learning paradigm to obtain the optimal binary
codes. Stochastic multiview hashing (SMVH) [34] attempts
to separately calculate the probability similarity matrices of
video frames in the feature space and the Hamming space,
and then, the difference between the above two probability
matrices is minimized using the KL divergence. Nie et al.
[35] defined joint multiview hashing (JMVH) by maxi-
mizing the interclass distance and minimizing the innerclass
distance to preserve the global structure and local structure
with multiple features. Boosting temporal video hashing
(BTVH) [36] studies the multitable learning problem to
boost the performance and captures the inherent similarity
of video from both visual and temporal perspectives. In
addition, some researchers in recent years have used deep
networks to obtain the temporal and spatial information
between keyframes. For instance, central similarity quan-
tization (CSQ) [37] learns the temporal information by using
3D convolutional neural networks and proposes a view point
called hash center to enhance the central similarity.

However, most existing video hashing approaches may
lead to the following problems. (1) Low discriminability
among different categories: functions based on pairwise
similarity or triple relationships only consider local infor-
mation, which results in good maintenance of the infor-
mation of similar samples but shows poor performance in
distinguishing samples from different categories. (2) Poor
performance in real-world scenarios: in real application
scenarios, similar data often accounts for only a small
proportion, and most samples are not similar, which leads to
low efficiency when the data are imbalanced [37]. (3) Greater
time costs on deep learning: deep learning frameworks are
time-consuming when training models and have no sig-
nificant performance based on the spatiotemporal infor-
mation extracted by the network. Hence, these video hashing
functions cannot learn discriminative hash codes to enhance
the performance.

To solve the above problems, in this work, we propose a
novel framework for supervised video retrieval, called dis-
criminative codebook hashing, which considers the global
structure to construct the hash function. DCH encourages
samples within the same category to converge to the
identical codeword and maximizes the mutual distances
between different categories. Specifically, the discriminative
codebook is first generated based on two characters: the
predefined distance between intercode words and Bernoulli
distributions for ensuring that each hash bit stores more
information..en, to keep the similarity matrix between the
feature space and the Hamming space, the composite KL
divergence is proposed to solve this problem. Finally, the
gradient descent algorithm is utilized to optimize the al-
gorithm. In this way, we can obtain discriminative binary
codes for video retrieval. Figure 1 shows the framework of

DCH, and the method we proposed has the following
innovations:

(i) We proposed the discriminative codebook based on
the predefined distance between intercode words
and Bernoulli distributions for ensuring each hash
bit to store more information

(ii) .e DCHmethod, which canmaximize the distance
of the intercode words generated by the predefined
codebook to learn discriminative binary codes for
supervised video retrieval, is proposed

(iii) We verify our proposed method by experimenting
on three widely used datasets, which shows that
DCH has a significant improvement in contrast
with several state-of-the-art methods

.e other sections are organized as follows. Section 2
introduces some preliminary works. Section 3 introduces the
proposed discriminative codebook hashing in detail. .e
experimental work is presented in Section 4, and the con-
clusion of DCH is shown in Section 5.

2. Preliminary Work

In this section, we briefly introduce the preliminary work,
namely, stochastic multiview hashing [34]. It is a supervised
video retrieval method that aims to preserve the similarity
structure from the original space to the Hamming space.

Let V � vi 
nv

i�1 be the video set, where vi indicates the ith
video of V and nv is the number of videos. H � hi 

nv

i�1 is hash
code of the video set, where hi ∈ 0, 1{ } is l-bit length binary
codes transformed by vi. .e video features are extracted
based on the set of keyframe features X � xi 

n
i�1, where

xi ∈ R1×d, n is the number of keyframes, and d is the di-
mension of each keyframe. Z � zi 

n

i�1 represents the cor-
responding binary codes of the keyframes, where zi ∈ R1×l.
.e conversion relationships between the above variables are
formulated as

Z � XW + b, (1)

Z � sigmoid(Z), (2)

hi � T
1

Indi





j∈Indi

zj·
⎛⎝ ⎞⎠, (3)

where Z ∈ Rn×l is the temporal result of linear projection,
b ∈ Rl is a bias parameter, W ∈ Rd×l is the projectionmatrix,
Indi is the set of frames, and |Indi| is the sum of samples in
the set. .e high-dimensional keyframe feature matrix X is
first projected into the lower matrix Z. .en, the sigmoid
function is used to map the variable between 0 and 1. Finally,
a thresholding function is used to change the data into a
binary code with T(y) � 0 if y< 0.5 and T(y) � 1,
otherwise.

SMVH keeps the similarity matrix between the feature
space and the Hamming space using a composite KL di-
vergence measure. In particular, it separately calculated the
similarity probability matrix P in the original space and the
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pairwise similarity matrix Q among samples in the Ham-
ming space..en, the KL divergence is used to examine how
well the above two probability matrices P and Q match.
.erefore, the objective function of SMVH is defined as
follows:

min
W,b

SKL(W, b) +
μ
2
‖W‖

2
F, (4)

where μ> 0 controls the weight of the regular term to
prevent overfitting and SKL(W, b) is the composite KL di-
vergence. .e latter can be represented as

SKL(W, b) � λKL(P ‖ Q) +(1 − λ)KL(Q ‖ P), (5)

where 0 ≤ λ ≤ 1 controls the influence of the composite KL
divergence, P � pi 

n

i�1 ∈ R
n×n is the similarity structure

based on X, and Q � qi 
n

i�1 ∈ R
n×n is another probability

matrix preserving the similarity information of Z in the
Hamming space. In addition, the KL divergence is defined as
follows:

KL(P ‖ Q) � 
n

i�1


j≠ i

pj|ilog
pj|i

qj|i

, (6)

where pj|i is a conditional probability that reflects the
similarity between xi and xj, and another conditional
probability qj|i represents the probability of returning zj

given the query zi.

3. Discriminative Codebook Hashing

In this section, we present the proposed DCH in detail
through four parts, including the proposed discriminative
codebook, the objective function, algorithmic optimization,
and complexity analysis.

3.1. Discriminative Codebook. Motivated by CSQ [37], we
propose a novel and discriminative codebook C � ci 

m

i�1 for
supervised video retrieval, where ci ∈ 0, 1{ }1×l is the code
word of the ith category. .e proposed codebook is defined
according to two characters. .e first is that the value in the
same bit of different code words obeys a Bernoulli distri-
bution. Specifically, the proportions of 0 and 1 of the same
bit in different categories are both 50%, that is, c·i has a 50%
probability of being 0 or 1, which will maximize the entropy
and store more information in each bit. .e other is that the
mutual distances among intercode words are defined as
follows:

DH ci, cj ≥
l

2
− f, (7)

where DH is the Hamming distance between code words ci

and cj, l is the length of binary codes, and f represents the
fault tolerance. .e mutual distance between intercode
words will be the largest constrained by equation (7).

Overall, the proposed codebook encourages samples
within the same category to converge to the same codeword
and maximizes the mutual distance between different cat-
egories. .erefore, the proposed codebook can preserve
global structures and help generate discriminative binary
codes for video retrieval. .e scheme of the proposed dis-
criminative codebook is presented in Algorithm 1.

3.2. Objective Function. According to the proposed dis-
criminative codebook C, we expand each row of the
codebook matrix C into R � ri 

n

i�1 according to the number
of samples, where ri ∈ R1×l. .e detailed generation process
of R is shown in Algorithm 2. We minimize the error be-
tween the binary codes and the predefined codebook as

DCH 
Function

Hash Codes
0 1 1 … 1 0 1 1
1 1 0 … 1 0 0 1

…
0 1 0 … 0 0 1 0 

Codebook
0 1 0 …1 0 1 1
1 0 0 …1 1 0 1

…
0 0 0 …1 1 1 0

Feature
1 2 3 … d
1 2 3 … d

…
1 2 3 … d

Training Set

Hash Code
Generation

Feature
Extraction

Keyframe
Extraction

Keyframe Set

Feature
1 2 3 … d
1 2 3 … d

…
1 2 3 … d

Query Hash 
Codes

1 1 0 … 1 0 11

Video Retrieval 
Results

Keyframe
Extraction

Feature
Extraction

Hash Code
Generation Retrieval

Query Video
Keyframe Set

Offline Learning

Online Retrieval

Figure 1: .e framework of DCH. We divide the entire experiment into two steps, namely, offline learning and online retrieval. In the
offline phase, we join keyframe features and predefined codebook to learn hash functions. In the online phrase, we map the query video into
a set of binary codes through hash functions. Next, we use the exclusive or (XOR) operation to obtain the Hamming distance between the
query video and samples in the database. Finally, we take videos with the shortest Hamming distance as the video retrieval results.
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min
W,b

‖Z − R‖
2
F. (8)

Specifically, for each zi ∈ Z, we take ri as the codebook of
zi ∈ Z to make samples in the same category share the same
codebook and samples in different categories have dis-
criminative binary codes.

To keep the similarity matrix between the feature space
and the Hamming space, we join the composite KL diver-
gence and our proposed codebook to construct the overall
objective function of DCH as follows:

min
W,b

SKL(W, b) +
c

2
‖Z − R‖

2
F +

μ
2
‖W‖

2
F, (9)

where c controls the weight of the error loss between the
codebook and the learned hash codes, and the second term
of equation (9) aligns values between binary codes and their
corresponding code word.

In this way, our proposed DCH can solve the problem
that other algorithms only consider the pairwise relation-
ships and ensure that samples in the same category share the

same code word. Furthermore, DCH maximizes the mutual
distances between different categories and then obtains
discriminative binary codes.

3.3. Algorithmic Optimization. .e optimization problem
has two main variables: W and b. Our solution is to use the
gradient descent algorithm to find good solutions. To fa-
cilitate the writing, we split the objective function equation
(9) into three parts:

Φ1(W, b) � SKL(W, b),

Φ2(W, b) �
c

2
‖Z − R‖

2
F,

Φ3(W) �
μ
2
‖W‖

2
F.

(10)

.e detailed optimization procedure is presented as
follows.

W-Step: the corresponding problem is to minimize the
following loss function:

Input: the number of categories m; the number of samples per category ni; code length l; maximum number of iterations Tc; fault
tolerance rate f.
Output: codebook C ∈ Rm×l

(1) for iteration tc � 1 : Tc

(2) for category i � 1 : m

(3) c·i[random half coordinate] � 1
(4) c·i[the rest coordinate] � 0
(5) end
(6) if any two rows of C satisfy equation (7)
(7) break
(8) end
(9) end

ALGORITHM 1: Discriminative codebook.

Input: training data X ∈ Rn×d; codebook C ∈ Rm×l; maximum number of iterations T; code length l; parameters λ, μ, c; learning rate α;
Output: hash codes H ∈ 0, 1{ }nv×l.
(1) Initialization: initialize the projection matrix W and bias matrix b as a random matrix and vector.
(2) Generating R according to the number of samples:
(3) for category i � 1 :m
(4) R � [R; repmat(C(i, : ), ni, 1)]

(5) end
(6) Gradient descent:
(7) for iteration i � 1 :T
(8) W-Step: W(i+1) � W(i) + αdW

(9) b-Step: b(i+1) � b(i) + αdb

(10) end
(11) Video binary code computation: video hash codes are obtained by equations (1)–(3).

ALGORITHM 2: Discriminative codebook hashing.
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min
W

SKL(W, b) +
c

2
‖Z − R‖

2
F +

μ
2
‖W‖

2
F. (11)

To compute the optimal W, the relevant deviation
formula can be expressed as

dW �
zΦ1(W, b)

zW
+

zΦ2(W, b)

zW
+

zΦ3(W)

zW
. (12)

.e derivative of zΦ1(W, b) w.r.t. W can be computed as
follows:

zΦ1(W, b)

zW
�

zΦ1(W, b)

zzik

zzik

zwkj

 
d×l

, (13)

where zΦ1(W, b)/zzik and zzik/zwkj are represented as

zΦ1(W, b)

zzik

� 2 λ pi|t − qi|t + pt|i − qt|i  +(1 − λ)∗ qt|i 
g≠i

qg|ilog
qg|i

pg|i

+ qi|t 
g≠t

qg|tlog
qg|t

pg|t

− log
qt|i

pt|i

− log
qi|t

pi|t

⎛⎝ ⎞⎠ zik − ztk( ,

zzik

zwkj

� zik 1 − zik( xji.

(14)

Following the norm derivation law, zΦ2(W, b)/zW can
be optimized as follows:

zΦ2(W, b)

zW
�

zΦ2(W, b)

zZ

zZ

zW
� X

T
((Z − R)⊙ (Z⊙ (1 − Z))),

(15)

where ⊙ indicates that the elements in the same position of
two matrices are multiplied.

For zΦ3(W)/zW, we have the derivative that

zΦ3(W)

zW
� μW. (16)

b-Step: the subproblem of b is given by

min
b

SKL(W, b) +
c

2
‖Z − R‖

2
F. (17)

.e deviation w.r.t. b can be expressed as

db �
zΦ1(W, b)

zb
+

zΦ2(W, b)

zb
. (18)

.e derivative of zΦ1(W, b)/zb is described as follows:

zΦ1(W, b)

zb
�

zΦ1(W, b)

zzik

zzik

zbk

 
1×l

, (19)

where

zzik

zbk

� zik 1 − zik( . (20)

.e second term of equation (18) is described as follows:

zΦ2(W, b)

zb
�

zΦ2(W, b)

zZ

zZ

zb
� (Z − R)⊙ (Z⊙ (1 − Z)).

(21)

Algorithm 2 describes the overall algorithm optimiza-
tion process of the proposed DCH.

3.4. Complexity Analysis. .e time complexity of the entire
training process of SMVH [34] is approximately
O(Tn3 + n2), and the proposed DCH algorithm adds two
parts time-consuming on this basis. .e first part is the
learning process of C, and the time complexity isO(Tcl)..e
second part is that the time complexity of optimizing
equations (15) and (21) together is O(dnl) in each iteration.
.erefore, the overall time complexity of DCH is
O(n2 + Tcl + T(n3 + dnl)). In this work, time complexities
O(Tcl) and O(dnl) can be ignored due to Tc, l, d≪ n so that
our complexity is nearly O(Tn3 + n2). Additionally, the
calculation of the hash codes is a linear projection with a
time complexity of approximately O(1), and the online
search can be performed by XOR operations. Although the
algorithm proposed in this paper adds a constraint on
SMVH, the maximum number of iterations T directly affects
the time complexity of the algorithm. It can be proven in
subsequent experiments that DCH can converge in fewer
iterations. .us, the time complexity of DCH is in a rea-
sonable range.

4. Experiments

In this section, we first introduce the datasets used in this
paper, and then, the baselines and some experimental details
will be introduced. Finally, we present the experimental
results.

4.1. Datasets. CC_WEB_VIDEO [4] is the most useful
dataset in near-duplicate video retrieval (NDVR) research,
which contains data from YouTube, Google, and Yahoo.
.ere are 12,877 videos that are divided into 24 sets, and
keyframes are extracted by a uniform sampling method to
represent the video. Since some videos do not have label
information, we take 3,482 videos with labels as the ex-
perimental dataset. In each category, we select 70% of the
video data as the training set and the remainder as the testing
set. We extract 10 keyframes for each video uniformly and
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extract 4096-dimensional features to represent keyframes by
using the pretrained VGG-19 network.

HMDB51 [38] contains 6,766 human action videos
selected from movies and some other public sources such as
YouTube. .e dataset is divided into 51 categories, and each
of them includes approximately 100 clips. In each category,
we randomly select 45 video samples. Of these, 25 videos are
added to the training set and the rest are select to the testing
set. We uniformly extract 10 keyframes for each video, and
the VGG-19 pretraining network is used to extract the 4096-
dimensional deep features.

UCF101 [39] contains 13,320 videos which has been
divided into 101 human behavior categories, such as
sports, instruments, character interactions, and others
used for action recognition. We randomly select 70 videos
in each category to join the training set, and 30 videos to
join the testing set. For each video, 10 keyframes are
uniformly selected to represent the video. We use VGG-19
to extract the 4096-dimensional features for each
keyframe.

4.2. Experimental Setting

4.2.1. Baselines. Several state-of-the-art hash functions,
including ITQ [19], SH [20], DSH [21], LFH [22], KSH [23],
JMVH [35], and SMVH [34], are used for comparison.
Among these methods, ITQ, SH, and DSH are unsuper-
vised hashing methods, while LFH, KSH, JMVH, and
SMVH are supervised hashing methods. For the com-
parative test, we use the source codes published to conduct
the experiment. JMVH and SMVH can also be used for
multiview video retrieval, but in this paper, we only test
these methods as a single view method. It is worth noting
that all the experimental results are obtained in MATLAB
R2016a on the same computer with an Intel Core i7-6700
CPU @ 3.40 GHz, 72 GB RAM and the 64 bit Windows 10
operating system.

4.2.2. Evaluation Metrics. We use four popular evaluation
metrics to comprehensively evaluate experimental results.
.e mean average precision (mAP) is widely used in the
retrieval field. .e higher the mAP score is, the better the
retrieval performance of the method is. .e precision@K
curve represents the precision accuracy versus the first K

retrieved samples, where precision represents the pro-
portion of the number of retrieved correct videos to the
total number of retrieved videos. .e recall@K curve
represents the average recall rate versus the first K retrieved
samples, where recall represents the proportion of the
correct video volume retrieved in all near-duplicate video
samples. .e precision-recall (PR) curve is an index used to
evaluate reliability and is widely used in the fields of
medicine and machine learning.

4.2.3. Parameter Selection. We have three model param-
eters, including λ, μ, and c, and the number of iterations
T. According to SMVH [34], we set λ � 0.9 and μ � 0.01.

As shown in Figure 2(a), when c is in the range of 0.05 to
1, the results are stable across three different datasets.
.erefore, we empirically choose c � 1 in our proposed
model. .e maximum number of iterations T determines
the training time cost and the performance, so it is worth
discussing. Figure 2(b) shows the effect of the
maximum iterations T in the range of 100 to 1400 on
mAP performance. For HMDB51, it can be seen that the
best mAP is generated with T � 800 before decreasing.
However, in the other two datasets, T � 800 is not an
optimal experimental result. .erefore, after compre-
hensive consideration, T � 1000 is set as the final pa-
rameter setting.

4.3. Results and Discussion. Table 1 shows the mAP results
for different lengths of hash codes on the three datasets, and
the results of other evaluation metrics are shown in
Figures 3–5. We will give the detailed analysis of all results of
the three datasets in the following parts.

According to Table 1, for the CC_WEB_VIDEO
dataset, the mAPs are very high because the dataset is
movie clips, and videos of the same category are near-
duplicate videos. As shown in Table 1, the performance of
the proposed DCH is at least 1.85% better than that of the
other methods from 32 to 64 bits. When the code length is
96 bits, the mAP of DCH is slightly lower than that of LFH.
As shown in Figure 3, the experimental results of our
method in precision@K and recall@K are equal to or
slightly higher than those of most other methods. Besides,
as the code length increases, the performance of our
proposed DCH gradually surpasses that of other methods.
Figures 3(i)–3(l) show that the area surrounded by DCH is
gradually increasing.

Table 1 shows that our proposed DCH performs better
than other hash methods in most cases in the HMDB51
dataset. Although the mAP performance of the JMVH
method surpasses 2.39% over that of DCH with 32 bits, the
mAPs of our proposed DCH are better than those of the
other comparison methods in the subsequent experi-
ments. Figure 4 shows that when the length of hash codes
is larger than 32 bits, regardless of whether precision@K
curve, recall@K curve, or PR curve is used, DCH has
excellent performance compared with other methods in
all metrics for the precision@K curve, recall@K curve, and
PR curve.

For the UCF101 dataset, DCH obtained the optimal
experimental results in the range of [32, 48, 64] bits. It is
worth noting that the size of the UCF101 dataset is rel-
atively large, and SMVH cannot obtain discriminative
video hash when the hash code length is very small.
.erefore, SMVH has no experimental results available
for l � 32 and l � 48. As shown in Figure 5, the perfor-
mance of DCH is much higher than those of some of the
methods except JMVH. We can see that the recall rate of
DCH for positive samples is slightly lower than that of
JMVH based on Figures 5(e)–5(h). Figures 5(i)–5(k)
show that the performance of DCH for 32 to 48 bits is
better than those of all other methods for the PR curve.
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Figure 2: Parameter analysis on the CC_WEB_VIDEO, HMDB51, and UCF101 datasets. (a) mAP vs. c (weight parameter c) and (b) mAP
vs. T (iteration parameter T).

Table 1: .e mAP of different hash code lengths on three datasets, where the best experimental results are given in bold.

Method
CC_WEB_VIDEO HMDB51 UCF101

32 bits 48 bits 64 bits 96 bits 32 bits 48 bits 64 bits 96 bits 32 bits 48 bits 64 bits 96 bits
ITQ [19] 0.6877 0.7725 0.8099 0.7700 0.0697 0.0749 0.0793 0.0885 0.1383 0.1620 0.1801 0.2119
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Figure 3: Continued.
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Figure 3: Precision@K (a–d), recall@K (e–h), and PR (i–l) curves on the CC_WEB_VIDEO dataset.
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Figure 4: Continued.
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Figure 5: Precision@K (a–d), recall@K (e–h), and PR (i–l) curves on the UCF101 dataset.
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Figure 4: Precision@K (a–d), recall@K (e–h), and PR (i)–(l) curves on the HMDB51 dataset.
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5. Conclusion

In this paper, we propose a novel supervised video hashing
framework, termed discriminative codebook hashing,
which can generate discriminative binary codes for video
retrieval. .e proposed DCH encourages samples within
the same category to converge to the same code word and
maximizes the mutual distances between different cate-
gories. Specifically, we generate a discriminative codebook
to distinguish between samples of different categories more
accurately. Extensive experimental results prove that the
performance of DCH is significantly improved compared
to several state-of-the-art methods. In future work, we will
use a smaller matrix storing the similarity information
between samples to avoid consuming considerable training
time and space when the amount of data is large. .is will
improve the performance of the model while reducing the
time complexity.

Data Availability

CC_WEB_VIDEO dataset can be downloaded from http://
vireo.cs.cityu.edu.hk/webvideo/, the HMDB51 dataset can be
downloaded from https://serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/#dataset, and the
UCF101 dataset can be downloaded from https://www.crcv.
ucf.edu/data/UCF101.php.
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