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Building energy efficiency is important because buildings consume a significant energy amount. )e study proposed additive
artificial neural networks (AANNs) for predicting energy use in residential buildings. A dataset in hourly resolution was used to
evaluate the AANNs model, which was collected from a residential building with a solar photovoltaic system. )e proposed
AANNs model achieved good predictive accuracy with 14.04% in mean absolute percentage error (MAPE) and 111.98 Watt-hour
in the mean absolute error (MAE). Compared to the support vector regression (SVR), the AANNs model can significantly
improve the accuracy which was 103.75% in MAPE. Compared to the ANNs model, accuracy improvement percentage by the
AANNsmodel was 4.6% inMAPE.)e AANNsmodel was the most effective forecasting model among the investigated models in
predicting energy consumption, which provides building managers with a useful tool to improve energy efficiency in buildings.

1. Introduction

National development, urbanization, and population growth
require a growing energy demand. Buildings account for re-
markable energy consumption during their operational stages
and are responsible for carbon emissions and global warming.
Energy performance in buildings is of prime importance all
over the world. Buildings should be designed for occupant’s
comfort while consuming less energy.)us, energy efficiency is
one of themost concerning topics among academic researchers
and decision-makers in the energy sector. It plays a remarkable
role in targeting a low-carbon economy [1]. National gov-
ernments have also recognized the benefits of efficient uses of
energy in the building sector. )e efficient use of energy in
buildings strongly affects the building’s capability to meet the
building green certificates in the green building rating system to
reduce carbon emission and greenhouse effects. )us, energy
usage prediction in buildings is necessary for energy planning,
management, and conservation.

Various studies have been conducted to improve
building energy performance [2–5]. An accurate forecast of
the building energy use is a vital issue in smart building
applications. Building energy prediction is typically per-
formed by using engineering-based methods and artificial
intelligence (AI) approaches. Because the engineering ap-
proach applies thermodynamic equations to predict energy
consumption in buildings, they are time-consuming and
require a high level of expertise to customize and set thermal
parameters for energy performance analysis. To perform
energy prediction, the engineering method requires detailed
information on the building envelope, thermal properties of
construction layers and windows, and the heating, venti-
lation, air-conditioning system.

)e AI-based method infers future energy consumption
profiles in buildings using historical data [6]. )e advantage
of the AI-based approach lies in its learning capability to
model the relationship between historical data and future
data. )e AI-based prediction model requires historical data
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instead of much detailed building information like the
engineering methods. It does not require users to poses a
deep knowledge of the thermodynamic behavior of build-
ings. Some studies have proposed AI models for solving the
prediction of building energy performance. For example,
Song et al. (2020) presented the evolutionary model con-
struction for predicting electricity data in smart buildings
[7]. Wang and Srinivasan (2017) presented an in-deep re-
view of AI-based prediction models for predicting energy
use in buildings with special attention on ensemble [6].
Huang et al. (2021) applied a deep learning method in
developing an energy management system [8]. Jahani et al.
(2020) developed a prediction model by integrating a genetic
algorithm and numerical moment matching method to
predict energy consumption in residential buildings [9].

Analyzing energy structure and electricity use behavior
is important to propose an energy-efficient policy in nations
[10]. Forecasting results of energy consumption in buildings
is the basis for optimizing building performance and re-
ducing energy costs [11]. AI and machine learning (ML)
models have been used in the building energy domain
[11–15]. A model can predict future data or generate new
insights based on learning from historical data. ML models
have been used to forecast thermal demands using skin
temperatures [12]. Chou and Ngo (2016) analyzed time-
series energy data by integrating an ML and an optimization
algorithm to identify building energy data patterns [4].

Among various ML models, artificial neural networks
(ANNs), support vector regression (SVR), and multiple
linear regression are popular [6]. Ganguly et al. (2020)
applied the ANNs model to forecast building energy use in a
historical art gallery [16]. Saleh et al. (2019) evaluated the
performance of ML models in predicting heating and
cooling loads in buildings [17]. )eir investigated ML
models included ANNs, support vector regression (SVR),
Gaussian process (GP), random forest, and gradient boosted
regression trees (GBRT). )eir experimental result revealed
that the GBRTobtained the best performance in terms of the
root-mean-square error (RMSE) value. )ey also concluded
that the ANNs model was the best fit for complex datasets.
)e computing time of the ANNs model is faster than other
investigated ML modes in their study [17]. Najafzadeh and
Oliveto (2020) applied the support vector machine (SVM),
multivariate adaptive regression splines (MARS), and ran-
dom forest (RF) to predict the approach densimetric Froude
number at the incipient motion of riprap stones that can
protect rivers from erosion problems [18].

)e various ML models were used in [19] to infer data of
CO2, TVOC, and HCHO in buildings, which include the
SVM, GP, M5P, and backpropagation neural network. )e
ANNs have been widely used in the energy domain. Sharifa
and Hammad (2019) applied ANNs models to select energy
renovation methods in buildings concerning energy usage,
life cycle cost, and life cycle assessment [20]. )e ANNs
model was applied to forecast short-term load in buildings
[21].

)ough these methods can yield a significant proven
forecasting accuracy improvement in some cases, they have
usually focused on the improvement of the accuracy without

paying special attention to the interpretability. Recently,
expert systems, mainly developed by means of linguistic
fuzzy rule-based systems, allow us to deal with the system
modeling with good interpretability [14]. However, these
models have strong dependency on an expert and often
cannot generate good accuracy. )erefore, combination
models, based on the popular methods, expert systems, and
other techniques, are proposed to satisfy both high accurate
level and interpretability.

Although ML models have been applied in the building
energy domain and yielded good forecasting accuracy, the
improvement of their performance in energy prediction is
still necessary. In addition, the energy consumption in the
residential buildings equipped with the solar photovoltaic
system has not been investigated in the literature. )erefore,
this study proposed the additive artificial neural networks
(AANNs) that can accurately predict energy consumption in
residential buildings with the renewable energy system. )e
contributions of this study include (1) collection of building
energy consumption profiles in hourly resolution and their
associated weather data, (2) investigation of the potential
power of artificial intelligence techniques in predicting fu-
ture building energy consumption, and (3) development of
the effectiveness and capability of the AANNs in the pre-
diction of building energy consumption.

)e rest of the study is organized as follows. Section 2
contains the literature review. Section 3 presents the
methodology. Section 4 contains the results and discussion.
Section 5 shows the conclusions.

2. Literature Review

Buildings are responsible for about 30% of the total energy
consumption. Energy consumption prediction in buildings
is imperative in energy management and conservation be-
cause it facilitates a process to assess energy efficiency,
perform commissioning, and detect and diagnose building
system anomalies [6]. Energy performance in buildings is
affected by various uncertainty factors such as heating
ventilation air-conditioning (HVAC) systems, building
envelops characteristics, and building operating schedules.
Uncertainty analysis has been used widely in assessing
building energy performance [22–24] since the inherent
uncertainty of occupant behavior, the building thermal
property, HVAC system, and weather conditions. Four
perspectives for assessing building performance have been
presented in [22] including uncertainty data sources, for-
ward and inverse methods, application of uncertainty
analysis, and available software.

Forward and inverse uncertainty analyses are common
ways in energy assessment in buildings [22]. )e former
analysis mainly purposes on quantifying the variation of
outputs propagated from the uncertainty from inputs via
mathematical models as visualized in Figure 1. )is ap-
proach can be used to predict energy consumption or en-
ergy-efficient design using building energy models (e.g.,
EnergyPlus or DOE). In contrast, the later analysis aims to
determine unknown variables throughmathematical models
from the measurement and verification process. )is
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approach is also called model calibration that is often used
for retrofitting and maintaining buildings. Literature reveals
that the forward uncertainty analysis has been used in
assessing the building energy performance more than the
inverse uncertainty analysis [22].

Building energy efficiency is extremely important in the
sustainability of energy and the environment. Chou et al.
(2016) presented a smart decision system based on big data
analytics and cloud computing for energy efficiency in
buildings [4]. Hartono et al. (2020) analyzed modern energy
projects in Indonesia and confirmed that modern energy
access is one of the main factors of energy spending, especially
for low-income households and rural areas [25]. Shaikh et al.
(2017) presented a comprehensive review of building energy
scenarios, the policy perspectives, and building energy effi-
ciency programs along with landmark buildings and their
characteristics in Malaysia [26]. )eir study found that there
were inadequate incentives for motivating demand-side
management, awareness, ineffective management of quality
services, and inadequate legal and regulatory frameworks.
)ey suggested that energy-efficient building designs should
be considered to reduce energy use over the building life cycle.

Tian et al. (2019) applied the Bayesian network model to
identify the most energy-efficient primary cooling systems
[27]. )e Bayesian network model was trained using high
energy-efficient data in buildings. )e trained model was
then used to decide the primary cooling systems in build-
ings. )eir findings confirmed the applicability of data-
driven building design. Zeng et al. (2019) applied the GP
regression [11] for predicting electricity consumption in
buildings. )eir conclusions were those complex buildings
such as hotels and shopping malls, and the GP regression
was not better than those of simple models because of the
inherent complex energy use patterns.

Chen et al. (2016) developed the electric load prediction
model by integrating the fuzzy time series and global har-
mony search algorithm and SVM that can produce reliable
prediction results [28]. Wei et al. (2018) reviewed the data-
driven approaches for assessing building energy [22]. )eir
review confirmed that the data-driven approaches have been
used widely in the energy domain such as load predictions,
energy pattern profiles, and retrofit solutions. )eir investi-
gation revealed that the ANNsmodel was the most popular in
applications from energy prediction to retrofit solutions. )e
SVM models were often used for large-scale building energy
analysis due to their simplicity in the training process.

Amasyali and El-Gohary (2018) reviewed data-driven
approaches for predicting building energy consumption
[29]. )eir study focused on investigating the prediction
scopes, the data preprocessing methods, the ML prediction
model, and the performance measures used for evaluation.
In terms of the prediction scopes, there were two types of
buildings which are residential and nonresidential building;
five data resolutions are subhourly, hourly, daily, monthly,
and yearly. Regarding data size, most of the reviewed studies
used a one-month to a one-year dataset. )e review indi-
cated that ANNs (47%) and SVM (25%) were the two most
popular ML models used for building energy prediction.
)ere is no study that applied ML models for dealing with
energy consumption in a residential building that uses a
solar photovoltaic system.)e solar photovoltaic system can
produce energy sources, while buildings are in operation
during the daytime. )us, this study applied the additive
approach to improving the performance of ANNs in pre-
dicting energy use in building with a solar photovoltaic
system.

3. Methodology

Figure 2 shows the overall structure of AI applications for
assessing energy performance in buildings. )is flowchart
consists of three components, including the buildings and
IoT network, database management system, and AI-based
building energy analytics. AI-based building energy ana-
lytics may do some tasks such as predictions, classification,
clustering, alerting, andmonitoring. Results from these tasks
can recommend or suggest building users for doing further
actions for saving energy and reducing energy costs. )is
study focuses on the prediction task in which some AI
techniques were applied. A mathematical theory of AANNs
for energy prediction models in this study is presented in the
following.

3.1. Artificial Neural Networks. ANNs models have proven
their effectiveness for engineering problems [30]. )e
multilayer perceptron is a feedforward neural network that
reflects inputs onto a set of appropriate outputs. )e schema
of ANN models includes a layer for inputs with sensory
input nodes, hidden layers of computation nodes, and an
output layer with a computation node. Equation (1) ex-
presses an activated neuron in a hidden layer.
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Figure 1: Forward uncertainty analysis for building energy assessment.
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netj �  wjixi andyj � f netj , (1)

where netj represents an activation of jth neuron, i represents
a neuron in the preceding layer, wji represents a weight of the
relationship between neuron j and neuron i, xi represents the
output of neuron i, and yj represents the transferring
function as

f netj  �
1

1 + e
λnetj

, (2)

where λ adjusts the function gradient.
Weights wjiwere updated during the training process of

ANNmodels as equation (3). Δji(h) is the difference between
two iterations as equation (4).

wji(h) � wji(h − 1) + Δji(h), (3)

Δji(h) � ηδpiχpi + αΔwji(h − 1), (4)

where η represents a learning rate parameter; δpi represents a
propagated error; χpi represents a output of neuron i for
record p; α represents a momentum parameter; and Δwji(h-
1) is a change in wji in the previous cycle.

3.2. Additive Artificial Neural Networks. )e AANNs model
is a meta-model that can improve the effectiveness of a
classical ANNs model [31]. Gradient boosting was used to
construct the additive regression model by sequentially
fitting the base learner such as an ANNsmodel to the current
pseudoresiduals by least-squares at each generation. )e
pseudoresiduals were gradients of the loss functional being

minimized. Each generation fits a model to the residuals left
by the ANNs on the previous generation. Predictive results
are built by adding the predictions of each model. Reducing
the shrinkage parameter helps prevent overfitting and has a
smoothing effect. Details of the AANNmodels are present in
[31].

Figure 3 shows the schema of an ANNs model for
building energy use prediction in this study. )e input layer
contains the historical energy consumption data, temporal
data, insolation data, and weather data (e.g., outdoor tem-
perature). )e hidden layer was used to perform the
transforming computation between inputs and the output.
)e output layer includes prediction results of energy
consumption in buildings.

In a classical ANNs model, a neuron is presented by the
activating function as

f(xW + b). (5)

For the AANNs model, a neuron is presented by the
activating function, where the affine transform is modified
by using the efficient operator in

f(a•(x◇W) + b), (6)

where • denotes the elementwise multiplication operator.
)e neural network (NN) in each neuron represented by

the activating function (equation (6) is called an additive
NN. With regards to the training process of the AANNs
model, the calculation of the argument derivative
f(a•(x◇W) + b) of the activating function is with pa-
rameters W, a, b, and inputs x.

z(a•(x◇W) + b)

za
� Diag(x◇W), (7)

z(a•(x◇W) + b)

zb
� IM, (8)

z(a•(x◇W) + b)

zxi

�
a1 sign Wi,1  + 2Wi,1δ xi(  

aM sign Wi,M  + 2Wi,Mδ xi(  

⎡⎢⎢⎣ ⎤⎥⎥⎦ ≈ a•sign wi( , (9)
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Figure 2: AI techniques for building energy performance assessment.
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z(a•(x◇W) + b)

zWi,j

� aj sign xi(  + 2xiδ Wi,j   ej ≈ ajxiej, (10)

where a, b ∈ RM and W ∈ RdxMare the parameters of the
hidden layer, x ∈ Rdis the input of the hidden layer,
ei ∈ RMrepresents the ith component of the standard basis of
RM, wirepresents the ith column of W, sign(wi) � 

M
j�1

sign(Wi,j)ej,for i� 1,..., M, and δ represents the function of
the Dirac delta.

)e mentioned derivative was quickly computed using
the following equation that was proposed in [32].

d

dx
sign(x) � 2δ(x). (11)

In this study, the performance of AANNs was compared
with baseline models that include the SVR models and
ANNs model in predicting energy use in residential
buildings. For the SVR model, the radial basis function
(RBF) kernel and the polynomial (PL) kernel were used as
kernel functions. )e settings of these models were pre-
sented in the following section.

3.3. Model Settings and Implementation of the Proposed
Model. Table 1 summarizes parameter information of the AI
models used in this study. )e investigated AI models in-
clude the SVR model with the PL kernel (SVR-PL), the SVR
model with RBF (SVR-RBF), the ANNs model, and the
AANNs model. )ese AI models were performed in the
Weka platform [33] that is an open-source machine learning
platform. )e parameter settings of the AI models were
implemented in the Weka [33].

Figure 4 shows the implementation of the AANNmodel.
To develop the AI models and evaluate their performance,
the original dataset has been divided into two subsets which
are the training dataset (i.e., the first 90% of the dataset) and
the test dataset (i.e., the last 10% of the dataset). )e eval-
uation process consists of two steps that are the training
phase and the test phase. )e AI models were built using the
training data which is accounting for 90% of the original data
in the first phase. )e test data, which is considered as the

unseen data, are then fed into the trained AI model in the
second phase to evaluate the effectiveness of the investigated
AI models (i.e., the SVR, ANNs, and AANNs models).

During the evaluation process, the accuracy of the
models was measured using common statistical indices that
are mean absolute error (MAE), mean absolute percentage
error (MAPE), RMSE, and correlation coefficient (R). )ese
statistical indices were selected because they have been used
to evaluate machine learning models in various studies [34].
)e MAE is a measure of the difference between two
continuous variables. In this study, the MAE is an average of
the absolute errors between the hourly actual energy con-
sumption values and the hourly predicted energy con-
sumption values obtained by the AI models. Its formulation
is presented as

MAE �
1
n



n

i�1
y − y′


, (12)

where y represents the hourly actual net energy consump-
tion data, y’ is the hourly predicted net energy consumption
data obtained by the AI models, and n is the number of data
points in the sample.

)e MAPE presents accuracy as a percentage. )is index
is commonly used for prediction problems, and in the
proposed model, evaluation is due to its intuitive inter-
pretation in terms of relative error. Equation (13) defines the
MAPE calculation. )e RMSE is a frequently used index of
the differences between values forecasted by a prediction
model and values measured. Its calculation is presented in
equation (14).

MAPE �
1
n



n

i�1

y − y′
y




, (13)

RMSE �

�������������

1
n



n

i�1
y − y′( 

2
.




(14)
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Figure 3: Schema of artificial neural networks.
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4. Experiment and Results

4.1. Data Source. Data used in this study were derived from
the Net-Zero Energy Residential Test Facility at the National
Institute of Standards and Technology (NIST) Engineering
Lab [35, 36]. A solar photovoltaic system was used in this
building as a renewable energy source. )is data is open and
free. )e one-year dataset in hourly resolution was used to
evaluate the proposed prediction model in this study. Table 2
summarizes the input and output information that was used
for training and testing AI models. Attributes of the dataset
include the net building energy consumption, outdoor dry
bulb temperature, insolation, day of the week, hour of the
day. All data were collected hourly. Figure 5 visualizes the
outdoor dry bulb temperature, net energy consumption in
the experimental building, and insolation profiles in the
hourly resolution for a year. For providing readers with a
clear look, Figure 6 presents the hourly insolation profile and
hourly energy consumption profile in the building for a
week.

4.2. Results and Discussion. )e investigated AI models in
this study include the SVR-PL, SVR-RBF, linear regression
(LR), M5Rules, ANNs, and AANNs models. )eir perfor-
mance was assessed using a dataset that was recorded from a
residential building with renewable energy. After the eval-
uation process, the predictive accuracy of these AI models is
given in Table 3 via MAPE, MAE, RMSE, and R values
regarding the training step and test step.

)e SVR-PL model used the simple polynomial kernel as
a kernel function for the prediction. )erefore, its perfor-
mance did not look good in terms of accuracy indices, which
are 26.18% and 28.60% in terms of the MAPE in the training
phase and test phase, respectively. Similarly, the MAE and
RMSE values obtained by the SVR-PL model were relatively
high, up to 236.83Wh and 430.69Wh, respectively, for
predicting residential building energy use profiles. )e re-
sults of these statistical indices indicated that the SVR-PL
was not effective in energy use prediction in residential
buildings with renewable energy. Figure 7 provides a vi-
sualization of the forecasted and recorded values of the net
energy consumption obtained by the SVR-PL model. )e
diagonal line in Figure 7 indicates an absolute agreement
between the forecasted and recorded values. )e scatter plot
in Figure 7 reveals that although most scatter points locate
around the black, diagonal line, many points, that were in
the three dashed red circles, were far from the absolute
agreement. )is means the SVR-PL model is still limited to
capture an energy use profile.

When the RBF kernel was used as the kernel function in
the SVR model, the performance of the SVR model was
slightly enhanced in the prediction as compared to the SVR-
PL model. )e SVR-RBF model can yield predictive accu-
racy at 26.38% in the MAPE and 225.06Wh in the MAE.
Figure 8 shows the scatter plot that compares the recorded
net energy consumption in the experimental building and
the predicted net energy consumption predicted by the SVR-
RBF model. )e scatter plot in Figure 8 presents that the
SVR-RBF model underestimated energy consumption in the

Table 1: Settings of investigated AI models.

Model Settings
SVR-PL Classifier� SMOreg; c� 1.0; filterType� normalize training data; kernel� PolyKernel; exponent� 1.0
SVR-
RBF Classifier� SMOreg; c� 1.0; filterType� normalize training data; kernel�RBFKernel; gamma� 0.01

LR AttributeSelectionMethod�M5 method; eliminateColinearAttributes� true, ridge� 10−8

M5Rules BuildRegresionTree� false, unpruned� false; useUnsmoothed� false
ANNs HiddenLayers� a; learningRate� 0.3; momentum� 0.2; normalizeAttributes� true; trainingTime� 500

AANNs Classifier�AdditiveRegression_MultilayerPerceptron; numIterations� 10; shrinkage� 1.0; hiddenLayers� a;
learningRate� 0.3; momentum� 0.2; normalizeAttributes� true; trainingTime� 500

Energy consumption data

Weather data

Insolation data

Database

The training phase

Training data

The test phase

10%

Test data

Trained AANNs
model

Training
prediction

model
(AANNs)

Prediction data
accuracy evaluation

90%

Figure 4: Implementation of the AANNs model.
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residential building which is illustrated at scattering points
in the dashed red circle located above the black straight line.
)e scattering points in the dashed red circles located below
the black straight line depicted over-estimated energy
consumption by the SVR-RBF. )e R values obtained by the
SVR-RBF and SVR-PL models were lower than 0.7 in the
training and test steps. Generally, two variants of the SVR
models did not perform well in predicting the profiles of
energy consumed in the experimental building.

Figure 9 shows a comparing result between the observed
net energy consumption data and energy consumption
predicted by the ANNs model in the test phase. In terms of
the MAPE, the ANNs models yielded 12.86% in the training
phase and 14.68% in the test phase. )e findings in Table 3
also revealed that the statistical indices of the ANNs model
were 114.91Wh in the MAE in the test phase. )e R value
achieved by the ANNs model was 0.932 in the test phase
which depicts the good agreement between the actual and

Table 2: Data attributes for model evaluation.

Symbol Parameter Unit Value
Input
X1 Day of the week — Monday, Tuesday, Wednesday, )ursday, Friday, Saturday, Sunday
X2 Hour of the day — 0, 1, 2, . . ., 21, 22, 23
X3 Isolation Wh/m2

X4 Outdoor dry bulb temperature °C
Y_historical Historical building energy consumption Wh

Output
Y Future building energy consumption Wh
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Figure 5: )e hourly data profile for a year. (a) Hourly insolation profile. (b) Hourly profile of outdoor dry bulb temperature for a year.
(c) Net energy consumption profile.
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Figure 6: Hourly data profile of (a) insolation and (b) net energy consumption for a week.

Table 3: Predictive accuracy of the machine learning models for building energy consumption.

ML models
Accuracy measures in the training step. Training data

(N� 7493, 90%)
Accuracy measures in the test step. Test data (N� 835,

10%)
MAPE (%) MAE (Wh) RMSE (Wh) R MAPE (%) MAE (Wh) RMSE (Wh) R

SVR-PL 26.18 240.69 438.45 0.653 28.60 236.83 430.69 0.622
SVR-RBF 24.13 226.58 412.98 0.698 26.38 225.06 412.53 0.659
LR 30.74 265.67 409.80 0.586 36.74 275.68 416.64 0.654
M5Rules 11.96 104.26 172.77 0.953 14.20 112.44 213.43 0.921
ANNs 12.86 106.80 170.28 0.955 14.68 114.91 199.64 0.932
AANNs 12.78 106.88 165.15 0.961 14.04 111.98 188.68 0.940

4000

3500

3000

Pr
ed

ic
te

d 
ne

t e
ne

rg
y 

co
ns

um
pt

io
n 

in
 th

e
bu

ild
in

g 
(W

h) 2500

2000

1500

1000

500

0
40003500300025002000

Actual net energy consumption in the building (Wh)
150010005000

Figure 7: Prediction results by the SVR-PL model.
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Figure 8: Scatter plot of prediction results by the SVR-RBF model.
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predicted data. )ese predictive results by the ANN model
were better than those predicted by the SVR-PL and SVR-
RBF models. As given in Table 3, the M5Rules model
achieved good accuracy. Its accuracy indices were 14.2%,
112.44Wh, 213.43Wh, and 0.921 in the MAPE, MAE,
RSME, and R, respectively. )e LR model was ineffective in
predicting energy patterns in buildings with low predictive
statistical indices.)e inherent linear characteristic of the LR
limits its capability in modeling the nonlinear relationship
between inputs and the predicted energy consumption.

Table 4 provides the performance comparison among
the investigated ML models. )e proposed AANNs model
achieved a good predictive accuracy, in which its statistical
measures were 14.04% in theMAPE, 111.98Wh in theMAE,
188.68 in the RMSE, and 0.940 in the R for predicting hourly
net energy consumption during the test phase. Figure 10
shows the prediction values of energy consumption in the
residential building. Most scatter points were close to the
black line which means the AANNs model was effective in
forecasting the hourly net energy consumption in the
building with the renewable energy source. Besides, Fig-
ure 11 plots actual and predicted values of net energy
consumption by AANNs in the test phase over the time
horizon.

)e performance comparison among the ML models in
Table 4 depicts that the AANNsmodel was the most effective
forecasting model in terms of all performance indices of the
MAPE, MAE, RMSE, and R. )e proposed AANNs model
obtained the lowest MAPE with 14.04%, followed by the
ANNs model with the MAPE of 14.68% and SVR-RBF with
the MAPE of 26.38%. Figure 12 presents the prediction error

histogram produced by the SVR-PL model (Figure 12(a)),
the SVR-RBF model (Figure 12(b)), the ANNs model
(Figure 12(c)), and the proposed AANNs model
(Figure 12(d)). Compared to the predictive performance of
the SVR-PL model, the AANNs model can significantly
improve the predictive accuracy which was about 103.75% in
the MAPE, 111.50% in the MAE, and 128.26% in the RMSE.
Similarly, the AANNs outperformed significantly the SVR-
RBF models in the residential building energy consumption
prediction. Because the AANNs model is an enhanced
version of the ANNs, its performance was better than those
of the ANNmodel. Compared to the ANNs model, accuracy
improvement percentages by the AANNs model were 4.6%
in the MAPE, 2.61% in the MAE, and 5.81% in the RMSE.
)e comparisons in Table 4 confirmed the outperformance
of the AANNs models to other models.

)eWilcoxon signed-rank test is a nonparametric test in
which two paired samples were compared to evaluate a
significant difference between two population means. )is
statistical test has been used in [28, 37, 38] to confirm the
significance of the accuracy enhancement. )us, the Wil-
coxon signed-rank test was used in this study.)eWilcoxon
signed-rank test was used for pair comparison between
prediction results by the AANNs model with those obtained
by the SVR-PL, SVR-RBF, and ANNs models, respectively.
)e statistical test results depicted that the computed p value
was lower than the significance level alpha of 0.05. )us, the
null hypothesis H0 was rejected, and the alternative hy-
pothesis Ha was accepted. )erefore, the significant differ-
ence was confirmed between the performance of the AANNs
models and other compared models.
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Figure 9: Prediction results by the ANNs model.

Table 4: Performance comparison among machine learning models.

ML models
Accuracy measures in the test step Improvement percentage (%)

MAPE (%) MAE (Wh) RMSE (Wh) R MAPE MAE RMSE R
SVR-PL 28.60 236.83 430.69 0.622 103.75 111.50 128.26 33.83
SVR-RBF 26.38 225.06 412.53 0.659 87.96 100.98 118.64 29.89
LR 36.74 275.68 416.64 0.654 161.78 146.19 120.82 30.48
M5Rules 14.20 112.44 213.43 0.921 1.14 0.41 13.12 2.00
ANNs 14.68 114.91 199.64 0.932 4.60 2.61 5.81 0.85
AANNs 14.04 111.98 188.68 0.940
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Figure 10: Scatter plots of actual and predicted net energy consumption in the building in the test step by the AANNs model.
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Figure 12: Continued.
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5. Conclusions

Energy efficiency is one of the most concerning topics within
academic researchers and decision-makers in the energy
sector. An energy consumption prediction in a building is
the basis for optimizing building performance and reducing
energy costs. )is study proposed additive artificial neural
networks (AANNs) that can accurately predict energy
consumption in buildings concerning historical data of
energy use and weather conditions. )is study also com-
pared the performance of the AANNs with other MLmodels
such as the support vector regression with the polynomial
kernel function (SVR-PL), the support vector regression
with the radial basis function kernel function (SVR-RBF),
and the artificial neural networks (ANNs). )eir perfor-
mance was assessed using a one-year dataset in the hourly
resolution that was recorded from a residential building with
renewable energy sources.

)e proposed AANNs model achieved a good predictive
accuracy in which its statistical measures were 14.04% in the
mean absolute percentage error (MAPE) and 111.98 Watt-
hour in themean absolute error (MAE) for predicting hourly
net energy consumption. )e AANNs model was the most
effective forecasting model among the investigated AI
models. Compared to the support vector regression (SVR),
the AANNs model can significantly improve the predictive
accuracy by about 103.75% in the MAPE and 111.50% in the
MAE. Similarly, compared to the ANNs model, accuracy
improvement percentages by the AANNs model were 4.6%
in the MAPE and 2.61% in the MAE. )us, the AANNs
model was recommended as an effective AI-based model for
predicting net energy consumption in residential buildings
with a solar photovoltaic system.

)e contributions of this study include (1) collection of
building energy use profiles in hourly resolution and their
associated weather data, (2) investigation of the potential
power of artificial intelligence techniques in forecasting
future energy consumption in buildings, and (3) develop-
ment of the effectiveness and capability of the AANNs in the
prediction of building energy consumption.
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