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Fetal movement is an important clinical indicator to assess fetus growth and development status in the uterus. In recent years, a
noninvasive intelligent sensing fetal movement detection system that canmonitor high-risk pregnancies at home has received a lot
of attention in the field of wearable health monitoring. However, recovering fetal movement signals from a continuous low-
amplitude background that is heavily contaminated with noise and recognizing real fetal movements is a challenging task. In this
paper, fetal movement can be efficiently recognized by combining the strength of Kalman filtering, time and frequency domain
and wavelet domain feature extraction, and hyperparameter tuned Light Gradient Boosting Machine (LightGBM) model. Firstly,
the Kalman filtering (KF) algorithm is used to recover the fetal movement signal in a continuous low-amplitude background
contaminated by noise. Secondly, the time domain, frequency domain, and wavelet domain (TFWD) features of the preprocessed
fetal movement signal are extracted. Finally, the Bayesian Optimization algorithm (BOA) is used to optimize the LightGBMmodel
to obtain the optimal hyperparameters. *rough this, the accurate prediction and recognition of fetal movement are successfully
achieved. In the performance analysis of the Zenodo fetal movement dataset, the proposed KF+TFWD+BOA-LGBM approach’s
recognition accuracy and F1-Score reached 94.06% and 96.85%, respectively. Compared with 8 existing advanced methods for
fetal movement signal recognition, the proposed method has better accuracy and robustness, indicating its potential medical
application in wearable smart sensing systems for fetal prenatal health monitoring.

1. Introduction

All over the world, significant public health resources have
been devoted to prenatal health surveillance of high-risk
mothers with the aim of decreasing perinatal mortality.
Despite this, there are 2.6 million stillbirths worldwide each
year [1], most of which occur in low- and middle-income
countries with relatively poor resources [2, 3]. Stillbirth is
often associated with access to appropriate care during
pregnancy and delivery [4], and establishing prenatal
monitoring can be helpful in decreasing stillbirth [5]. Fetal
movement is widely regarded as an important physiological
indicator to assess the health of the fetus [6–9]. Fetal
movement is defined as any irregular kicking, fluttering,
swinging, or rolling and is usually first perceived by the

mother at 18 to 20weeks of pregnancy [10].*e frequency of
fetal movements reaches a plateau at 32weeks of gestation
and remains at this level until birth [11, 12]. *ere is evi-
dence that too little or too much fetal movement in the
uterus during the perinatal period can lead to stillbirth [4].
Continuous quantitative recording of fetal movements al-
lows reliable recognition of fetal impairment and enables
timely intervention to reduce mortality [5]. Maternal per-
ception of altered or decreased fetal movement is associated
with stillbirth [13, 14] and with other adverse outcomes,
including maternal-fetal hemorrhage, growth restriction,
congenital anomalies, and long-term neurodevelopmental
disorders [15–20]. Usually, maternal recurrent perception of
fetal movements is considered a sign of fetal health
[17, 21, 22]. It is established that maternal perception of fetal
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movement varies between women [23–25]. Maternal per-
ception of fetal movement is affected by psychological
factors and the duration of fetal movement [26]. On the
other hand, ultrasound imaging technology, the gold
standard for fetal movement detection [32, 49], can provide
better reference information. However, this is a long-term
electrocardiographic monitoring synchronization process
that requires the involvement of highly qualified medical
personnel [27]. In addition, this technique cannot be used
for a long time for practical and safety reasons [28] and the
interference of the ultrasound transducer may distort the
Doppler signal.

In recent years, with the rapid development of intelligent
sensing devices and the advancement of modern digital
information processing technology, automatic recognition
of fetal movements using microacceleration sensors and
efficient signal processing algorithms has received wide
attention [29–42]. *e accelerometer sensor is embedded in
a wearable device and worn on the abdomen of pregnant
women to detect a series of micromovements on the surface
of the abdomen. Compared with ultrasound instruments,
wearable smart sensing devices have the strength of low
monetary cost, easy operation, and long-term fetal move-
ment monitoring at home [41].

Literature Review of Automatic Fetal Movement Recogni-
tion Based on Acceleration Recording Data. Mesbah et al.
[29] designed an accelerometer-based fetal movement
detector and proposed a root mean square (RMS) detec-
tion method. *e use of accelerometers to detect fetal
movement signals proved to be more effective than ma-
ternal perception and self-counting of fetal movements.
However, the RMS method based on amplitude threshold
is highly sensitive to noise interference and may not
achieve the desired recognition performance. Ryo et al.
[30] used a new capacitive accelerometer to record fetal
movements during a pregnant woman’s nighttime sleep.
*e recorder holds the promise of accurate and long-term
fetal movement health monitoring at home. Layeghy et al.
[31] proposed a time-frequency method to analyze the fetal
movement signal recorded by acceleration. *is method
first uses a band-pass filter (BPF) algorithm with band-
width of 0.5 Hz–45Hz to denoise the fetal movement
signal recorded by acceleration and extract the time-fre-
quency domain (TFD) features of preprocessed signal, and
then Support Vector Machine (SVM) model was used for
fetal movement recognition (BPF + TFD+ SVM). *e
method gets a good accuracy and sensitivity for the
classification of fetal movements. However, the SVM
single classifier solves the support vector with the help of
quadratic programming, which is difficult to implement
for large-scale training samples. Boashash et al. [32] used
time-frequency matching pursuit (TFMP) and time-fre-
quency matching filter (TFMF) methods to detect fetal
movement signals recorded by accelerometers. *e two
proposed time-frequency detection methods have low
computational complexity and can meet the computing
space requirements of most existing microprocessor sys-
tems with excellent recognition accuracy. However, it is

difficult to build a complete dictionary of fetal movement
by empirical observation and does not achieve the desired
performance. Altini et al. [33] used a digital band-pass
filter with a bandwidth of 1 Hz–20Hz to denoise the fetal
movement signals from the abdominal surface of pregnant
women acquired by multiple accelerometers and extract
the preprocessed time domain features (TD), and then
Random Forest (RF) model was used for fetal movement
detection (BPF + TD+RF). *e method weighs the rela-
tionship between the number of sensors and placement
positioning and uses cross validation to achieve realistic
and reliable results. kamata et al. [34] used an acceler-
ometer to recognize the number of fetal hiccups in early
and late pregnancy. Ryo et al. [35] designed a new ac-
celerometer to record the number of gross fetal move-
ments to determine a normal reference value for such
movements. Abeywardhana et al. [36] used time domain
(TD) analysis to isolate fetal movements from the raw
signals recorded by accelerometers. Zhao et al. [37] used an
infinite impulse response (IIR) digital band-pass filter
(BPF) algorithm with a bandwidth of 0.5 Hz–20Hz to
denoise the fetal movement signals acquired by acceler-
ometers, and the features after discrete wavelet transform
(DWT) were extracted, and then the Fuzzy Adaptive
Resonance *eory Mapping (Fuzzy ARTMAP) model was
used for fetal movement recognition (BPF +DWT+ Fuzzy
ARTMAP). *e method combines signal preprocessing,
threshold detection, and lightweight machine learning
algorithms to decrease the computational complexity of
the system while maintaining high classification accuracy.
However, traditional digital band-pass filters have diffi-
culty in filtering out spectrally mixed fetal movement
signals and maternal artifact signals, resulting in a high
level of recognition of false positives. Wasalaarachchi et al.
[38] proposed an automatic fetal movement counting
algorithm based on nonnegative matrix factorization
(NMF) and spectral clustering, combined with a home-
based wearable device. Delay et al. [39, 47] developed a
noninvasive fetal movement recognition system incor-
porating a convolutional neural network (CNN) hybrid
algorithm. Morita et al. [40] used accelerometers to count
fetal movements in small for gestational age (SGA) infants
and determined that SGA was associated with decreased
fetal movements. Zhao et al. [41] used time domain and
discrete wavelet domain (TWD) methods to extract po-
tential fetal movement features. Bobrova et al. [42] used a
band-pass filter (BPF) algorithm with a bandwidth of
0.5 Hz–20Hz for denoising. *is method has a good
suppression effect on the noise outside the frequency band,
but it is difficult to filter out the noise signal that overlaps
with the spectrum of the fetal movement signal. Martinek
et al. [43] used advanced Empirical Mode Decomposition
(EMD), Ensemble Empirical Mode Decomposition
(EEMD), and Adaptive Wavelet Transform (AWT) signal
processing methods for fetal ECG signal denoising. *ese
modern digital signal processing methods provide maxi-
mum suppression of interference under some optimal
criterion based on some statistical properties of random
signals. Lu et al. [44] used the singular spectrum analysis
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(SSA) method for fetal heart rate signal denoising. *e
method maintains the same signal trend as conventional
denoising algorithms and does not cause signal distortion
and attenuation. Du et al. [45] evaluated the relative po-
sition of a wearable fetal movement detection device worn
on the abdomen of the pregnant woman. Liu et al. [46]
used time and frequency domain (TFD) methods to extract
fetal movement signal features acquired by multiple
pressure sensors. *e existing methods for fetal movement
signal feature extraction still have shortcomings and do
not consider some features such as spectral entropy which
indicate the uncertainty and complexity of the signal, so
the ideal recognition performance may not be obtained.
Vican et al. [48] used an empirical mode decomposition
(EMD) algorithm to denoise the signal and extract time
domain (TD) features and then used a machine learning
(ML) model to recognize fetal movements
(EMD+TD+ML). *e method can effectively extract the
key feature information by fully considering the noise
characteristics of the fetal heartbeat signal. Mesbah et al.
[49] used a high-pass filter (HPF) algorithm with a cutoff
frequency of 0.8 Hz to denoise the fetal movement signal
acquired by the accelerometer, and features after inde-
pendent component analysis (ICA) and discrete wavelet
transform (DWT) were extracted, and then Bagging al-
gorithm with Random Forest as its base classifier was used
to recognize fetal movement (HPF + ICA+DWT+RF-
Bagging). *e method uses advanced signal processing
techniques to distinguish between real fetal movement
signals and artifact signals. However, when the fetal
movement signal contains a large noise component, the
Bagging algorithm with Random Forest as its base clas-
sifier will be overfitted. ML algorithms include Random
Forest (RF) [55], Multilayer Perceptron (MLP) [58],
Support Vector Machine (SVM) [59], and Logistic Re-
gression (LR) [60] classification models.

In this study, the strengths of Kalman filtering (KF)
algorithm, time and frequency domain and wavelet domain
(TFWD) feature extraction methods, and Bayesian Opti-
mization algorithm (BOA) for Light Gradient Boosting
Machine (LightGBM) model are combined to recognize
and evaluate fetal movements (KF + TFWD+BOA-
LGBM). *e main contributions of this paper are sum-
marized as follows:

(1) A KF+TFWD+BOA-LGBM fetal movement rec-
ognition framework is developed to effectively solve
the problems of difficult fetal movement signal re-
covery and low recognition accuracy under the
background of continuous low-amplitude noise.

(2) *e KF algorithm is developed for fetal movement
signal preprocessing, which is based on some sta-
tistical properties of random signals, under some
optimal criterion to maximize the suppression of
interference while maximizing the recovery of the
fetal movement signal, thus achieving the purpose of
optimal filtering and solving the problem of spectral
mixing of fetal movement signal and interference
signal that cannot be separated from each other.

(3) A TFWD feature extraction method is developed to
improve the recognition performance of the classi-
fication model and effectively solve the feature re-
dundancy problem.

(4) A BOA-LGBM classification model is developed to
improve the fetal movement recognition accuracy by
combining Bayesian Optimization algorithm to
optimize the hyperparameters of the ensemble
learning LightGBM classifier, solving the problems
of model overfitting and high computational com-
plexity and the inability of a single classifier to obtain
high recognition performance.

(5) Comprehensive experiments are designed and
conducted to comprehensively demonstrate the ef-
ficiency of the KF +TFWD+BOA-LGBM frame-
work by comparing with 8 existing state-of-the-art
fetal movement recognition methods, using accu-
racy, precision, recall, F1-Score, and AUC-ROC as
evaluation metrics.

*e rest of the arrangements are as follows in Section 2.
We first introduce the overall workflow framework of the
proposed fetal movement recognition method and then
introduce the experimental dataset, fetal movement signal
preprocessing algorithm, a feature extraction method, and
Bayesian Optimization of LightGBM for fetal movement
recognition, respectively, in Section 3. *e proposed opti-
mized hyperparameter algorithm, preprocessing algorithm,
a feature extraction method, optimized classification algo-
rithm, and recognition method are analyzed and compared
with the existing methods, respectively, in Section 4. A brief
conclusion is given at the end.

2. Materials and Methods

2.1. ProposedMethodology. *e overall workflow framework
of the proposed fetal movement recognition method is
shown in Figure 1. Accurate recognition and evaluation of
fetal movement are interpreted by combining the strength of
Kalman filtering, time domain and frequency domain and
wavelet domain feature extraction, and hyperparameter
tuned LightGBMmodel using Bayesian Optimization. In the
proposed model, 10-fold cross-validation is used to estimate
fetal movement recognition performance.

2.2. Dataset Descriptions. For comparative analysis, the pro-
posed method was applied to a publicly available fetal move-
ment dataset.*e dataset used throughout this paper is from the
Zenodo fetal movement acceleration dataset [61]. *e dataset
contains fetal movement signals recorded by accelerometers
from 16 different pregnant women.*e dataset contains signals
from an accelerometer positioned on the abdominal wall of the
pregnant woman. *e accelerometer was ADXL355 from
Analog Devices, Inc., with a sampling frequency of 500Hz.

2.3. Preprocessing Using Kalman Filter. In the preprocessing
stage, the original acceleration signal is segmented into 2.56
seconds long epochs and then preprocessed using the

Computational Intelligence and Neuroscience 3



Kalman filter (KF). *e KF is a minimum variance state
estimator and the best linear estimator for Gaussian and
non-Gaussian noise [62].

Consider the discrete-time system model, expressed by
the following equation:

xk � Ak−1xk−1 + Bk−1uk−1 + wk−1,

yk � Ckxk + vk,
(1)

where xk and xk−1 are the states at moments k and k − 1,
respectively, yk ∈ Rm is the measurement at moment k,

uk−1 ∈ Rp is the known control input, Ak ∈ Rn×n is the
known state transfer matrix at moment k − 1, Bk ∈ Rn×p is
the known input matrix, Ck ∈ Rm×n is the known mea-
surement matrix, wk ∈ Rn is the process noise, and vk ∈ Rm

is the measurement noise. State x0 ∈ Rn with estimated x0|0
and error covariance are initialized as follows:

P0|0 ≜E x0 − x0|0  x0 − x0|0 
T

 , (2)

where E(·) indicates the expectation operator.
*e KF equations are shown as follows:

Preprocessing using Kalman filter
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covariance

Estimate the Kalman gain
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Figure 1: Overall workflow framework of the proposed fetal movement recognition method.
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xk|k−1 � Ak−1xk−1|k−1 + Bk−1uk−1,

Pk|k−1 � Ak−1Pk−1|k−1A
T
k−1 + Qk−1,

Kk � Pk|k−1C
T
k CkPk|k− 1C

T
k + Rk 

− 1
,

xk|k � xk|k−1 + Kk yk − Ckxk|k−1 ,

Pk|k � Pk|k−1 − Pk|k−1C
T
k CkPk|k− 1C

T
k + Rk 

− 1
CkPk|k−1

� 1 − KkCk( Pk|k−1,

(3)

where xk|k−1 denotes the a priori estimate of xk, xk|k denotes
the posterior estimate of xk, Kk denotes the Kalman gain,
Pk|k−1 indicates the state prediction, and Pk|k denotes the
updated covariance matrix. Qk−1 and Rk are the state error
covariance matrix and the measurement error covariance
matrix, respectively. Bk and uk−1 are normally initialized to
zero.

When the noise sequences x0, w0, . . . , wk−1, v1, . . . , vk 

are Gaussian, uncorrelated, and white, KF generates a
minimum variance error estimate xk|k of the real state xk for
each time k given the measurement y1, y2, . . . , yk. When
x0, w0, . . . , wk−1, v1, . . . , vk  are non-Gaussian, KF is also
the best performing linear filter. *e detailed steps of fetal
movement signal preprocessing using Kalman filter are
shown in Algorithm 1.

2.4. Feature Extractions. In this step, the time domain,
frequency domain, and wavelet domain (TFWD) features of
the preprocessed signal are extracted for training and testing
of the classificationmodel.*e detailed explanation of TFED
feature extraction is shown in Table 1.

2.5. Fetal Movement Recognition Using BOA-LightGBM.
In this step, the optimal hyperparameters are selected in
LightGBM classification and recognition of fetal movements
using Bayesian Optimization algorithm (BOA). Finally, the
optimal hyperparameter ensemble obtained is used to
construct the LightGBM model for recognition and evalu-
ation of fetal movements.

2.5.1. Bayesian Optimization Based on Hyperparameters.
Bayesian Optimization algorithm (BOA) is an efficient
global optimization method for solving black box functions
with comparatively high expense [63]. *e Bayesian Opti-
mization algorithm consists of two core components:

(1) A Gaussian process (GP) is a combination of a series
of random variables that obey a normal distribution
within an exponential set. Given a set of measure-
ments D1:t � (x1, y1), (x2, y2), . . . , (xt, yt) , the
predicted mean μt(x) and epistemic uncertainty
σt(x) at any point x in the input space are modeled
simultaneously. Here, xt is the process input and yt

is the corresponding output at time t.
(2) An acquisition function finds the most promising

parameter for the next simulation based on the

predicted mean μt(x) and the epistemic uncertainty
σt(x).

A GP is defined by its mean function m: x⟶ Rm and
its covariance function k: x × x⟶ Rm×n, as shown in the
following equation:

f(x) ∼ GP m(x), k x, x′( ( , (4)

where the covariance function k(x, x′), otherwise known as the
“kernel,” is used to represent the “smoothness” of the process. If
the distance between two points x and x′ is closer, then the
corresponding process outputs y and y′ will also be closer, and
the experimental results are more promising. *e squared
exponential function (SEF) is the frequent choice of covariance
function type, also called radial basis function (RBF).

k x, x′(  � exp −
1
2θ2

x − x′
2�����

����� , (5)

where parameter θ is the length scale used to indicate that
the covariance function correlation decreases as the square
of the distance between points. In the experimental pa-
rameter configuration, the observation model also includes a
term representing normally distributed noise
ε ∼ N(0, σ2noise) as follows:

y � f(x) + ε, (6)

where GP regression can be used to predict the value of the
objective function f(·) at time t + 1 for any position x. *e
result is shown in the following equation:

P ft+1|D1:t, x(  � N ut(x), σ2t (x) ,

ut(x) � k
T

K + σ2noiseI 
− 1

y1:t,

δt(x) � k(x, x) − k
T

K + δ2noiseI 
− 1

k,

k � k x, x1( , k x, x2( , . . . , k x, xt(  ,

K �

k x1, x1(  . . . k x1, xt( 

⋮ ⋱ ⋮

k xt, x1(  . . . k xt, xt( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(7)

With the help of the GP process model, an acquisition
function is built to represent the most promising setup for
the next computation.

2.5.2. Light Gradient Boosting Machine (LightGBM).
LightGBM is a new member of the boosting ensemble
model, developed by researchers at Microsoft and Peking
University [53]. LightGBM is an efficient implementation of
Gradient Boosting Decision Tree (GBDT) algorithm [64] by
introducing Leaf-wise tree growth strategy with the depth
limitation and Gradient-based One-side Sampling (GOSS)
and Exclusive Feature Bundling (EFB) techniques.

Suppose that there exist datasets obeying independent
and identical distributions of dimension n, like x1, . . . , xn ,
where each independent xi denotes a vector of dimension s
in space χs. In each gradient iteration sampling, the negative
gradient of the loss function with respect to the model
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output can be indicated as g1, . . . , gn . *e decision tree
model is assigned to each leaf node based on the maximum
information gain value of the segmented feature weights. For
GBDT, the information gain after feature segmentation can
be described by the variance, which is defined as follows.

Set O denotes the training sample with leaf nodes fixed,
and the information gain of split point d from feature
segmentation with j is shown in the following equation:

Vj(d) �
1
n0

xi ∈ Al
gi 

2

n
j

l (d)
+

1
n0

xi ∈ Ar
gi 

2

n
j
r(d)

, (8)

where xi ∈ Al indicates xi ≤d and xi ∈ Ar indicates xi > d.
n0 �  I[xi ∈ O], n

j

l (d) �  I[xi ∈ O: xij ≤ d], n
j
r(d) �  I

[xi ∈ O: xij >d], iterate through each segmentation node to

find d∗j � argmaxdVj(d), calculate the maximum infor-
mation gain value Vj(d∗j ) from the feature segmentation,
then calculate feature d∗j to get the segmentation point j∗,
and finally divide the data into left and right subleaf nodes.

To exclude the effect of uneven distribution of some data,
GOSS updates the information gain by designing a constant
multiplier with a small gradient. GOSS first ranks the data
according to their absolute magnitude and selects the top a

examples. *en a random sampling method is used to select
b examples among the remaining data. Finally, the small
gradient data is multiplied with (1 − a)/b when updating the
segmentation node information gain, which makes the al-
gorithm focus more on the lack of training samples without
changing the original data feature distribution. *e infor-
mation gain is calculated by the following equation:

Input:A raw acceleration signalD, the state error covariancematrixQ, themeasurement error covariancematrixR, and the time step
L.
Output: Optimal filtered output of S.
1: Perform Kalman filter algorithm used to compute optimal filter vector S.
2: Set Xt � 0, Pt � 1, A � 1, C � 1, t � 2.
3: while t≤ L do
4: Xt−1 � AXt.
5: Pt−1 � APtA

T + Q.
6: K � Pt−1C

T/(CPt−1C
T + R).

7: Xt � Xt−1 + K(D(t) − CXt−1).
8: Pt � (1 − KC)Pt−1.
9: S(t) � Xt.
10: t � t + 1.
11: end while
12: Getting the optimal filter vector S.

ALGORITHM 1: Preprocessing of fetal movement signal using Kalman filter.

Table 1: *e detailed explanation of TFWD features extraction.

Feature no. Feature Description
1 T_Mean *e time domain signal mean.
2 T_STD *e time domain signals standard deviation.
3 T_ Median *e time domain signals median.
4 T_Max *e time domain signals maximum.
5 T_Min *e time domain signals minimum.
6 T_IQR *e time domain signals interquartile range.
7 T_ Energy *e time domain signals energy.
8 T_WF *e time domain signals waveform factor.
9 T_CF *e time domain signals crest factor.
10 T_PF *e time domain signals pulse factor.
11 T_MF *e time domain signals margin factor.
12 F_FIM *e frequency index of the spectrum maximum.
13 F_SM Spectrum maximum.
14 F_FISM *e frequency index of the spectrum submaximum.
15 F_SSM Spectrum submaxima.
16 F_Mean *e mean of the spectrum.
17 F_ Skewness Spectrum skewness.
18 F_ Kurtosis Spectrum kurtosis.
19 F_ Entropy Spectrum entropy.
20 W_ Energy *e sum of energy for each subband signal after wavelet transforms.
21 W_Mean *e sum of mean for each subband signal after wavelet transforms.
22 W_STD *e sum of standard deviations for each subband signal after wavelet transforms.
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Vj(d) �
1
n0

xi ∈ Al
gi +(1 − a/b)xi ∈ Bl

gi 
2

n
j

l (d)
+

1
n0

xi ∈ Ar
gi +(1 − a/b)xi ∈ Br

gi 
2

n
j
r(d)

, (9)

where Vj(d) denotes the smaller subset of instances and its
information gain is used to calculate the segmentation
nodes, which can largely reduce the computational
complexity.

In this study, taking the fetal movement feature data as
an example, we clearly explain the training process of
LightGBM model in Algorithm 2.

*e following is an explanation of the process of Al-
gorithm 2. y

(t)
i denotes the prediction result of the i-th

sample at the t-th iteration. ft(xi) is the learning function of
the t-th classification tree. L(t) is the loss function used to
measure the residual between the prediction y

(t)
i and the

target y1.*e stopping condition is the completion of theM-
th iteration of the training process. In addition, the residual
value of a sensible loss function can be utilized instead of M
as the finish iteration condition. If the training residuals of
the model are less than the expected set loss value, the
training process will be stopped. Two stop iteration con-
ditions can be swapped with each other.

2.6. PerformanceMetrics. *e proposed method is evaluated
using Accuracy, Precision, Recall, and F1-Score under a
confusion matrix. *e receiver operating characteristic
(ROC) is also an important evaluation indicator, which
compares the visualization curves of the true positive and
false positive rates. *e AUC is defined as the area under the
ROC curve.*e AUC is a performance metric that measures
the merit of a machine learning model. True positive (TP)
means that the true class of the sample is a positive case and
the model predicts a positive result. True negative (TN)
indicates that the true class of the sample is a negative case
and the model predicts a negative result. False positive (FP)
means that the true class of the sample is a negative case, but
the model predicts it to be a positive case. False negative
(FN) indicates that the true class of the sample is a positive
case, but the model predicts it to be a negative case.

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 − Score �
2 × Precision × Recall
Precision + Recall

.

(10)

3. Experimental Results

3.1. Results and Analysis. In this study, the simulation
performance for evaluating fetal movement recognition is
analyzed by combining the strengths of Kalman filtering to

recover fetal movement signals in a continuous low-am-
plitude background contaminated by noise, time-frequency
domain and wavelet domain feature extraction, and
Bayesian Optimization algorithm (BOA) for LightGBM
model. *e experiments were conducted on a Windows 10
PC with an Intel Core i7-7700 CPU @ 3.6GHz and 32GB of
RAM. Simulation experiments of the proposed method are
conducted using Python 3.8. We analyzed the evaluation
metrics like Accuracy, Precision, Recall, F1-Score, and AUC-
ROC. *e proposed methods are compared for evaluation
metrics in signal preprocessing algorithms, feature extrac-
tion algorithms, optimization algorithms, and recognition
models, respectively.

In this study, the result of fetal movement recognition is
expressed as 0, and the result of nonfetal movement rec-
ognition is expressed as 1. *e experimental analysis is
performed using tenfold cross-validation. Previous studies
have shown that tenfold cross-validation is beneficial to
avoid model overfitting.

3.2. Experimental Results with LightGBM Model. *e ex-
perimental analysis is performed using tenfold cross-vali-
dation. Firstly, the raw fetal movement signal is preprocessed
using Kalman filter. Secondly, the time domain, frequency
domain, and wavelet domain features of the preprocessed
signal are extracted. Finally, the hyperparameter values of
the LightGBM model were evaluated using Grid Search
algorithm (GSA) [50], Random Search algorithm (RSA) [51]
and Bayesian Optimization algorithm (BOA) [52]. Table 2
indicates the optimal hyperparameter values obtained by
different optimization algorithms for LightGBM model.

To compare the performances of different optimization
models, the Accuracy, Precision, Recall, and F1-Score
evaluationmetrics under confusionmatrix are used. Figure 2
shows the performance analysis of the Accuracy and F1-
Score evaluation metrics of LightGBMmodel using different
optimization algorithms.

To better observe the details of different optimization
techniques for tuning LightGBM model hyperparameters,
Figure 3 shows the kernel density estimation plots for tuning
the hyperparametric sampling of the LightGBMmodel using
Grid Search algorithm, Random Search algorithm, and
Bayesian Optimization algorithm. As shown in Figure 3,
Bayesian Optimization algorithm tends to concentrate
around the hyperparameter values and therefore obtains the
lowest loss in cross-validation. *is demonstrates the ad-
vantage of using the Bayesian Optimization algorithm to
tune the LightGBMmodel hyperparameters by spending less
time to evaluate promising hyperparameter values.

Table 3 shows the specific average values. As shown in
Figures 2 and 3 and Table 3, the LightGBM model with the
Bayesian Optimization algorithm outperforms the Grid
Search algorithm and the Random Search algorithm in all

Computational Intelligence and Neuroscience 7



evaluation metrics. *e Grid Search algorithm finds the best
combination of hyperparameters by traversing each inter-
section in the grid, which has the advantage of being effective
and suitable for situations where the entire parameter space
needs to be searched and the disadvantage of being very
computationally expensive and facing dimensional catas-
trophe. *e Random Search algorithm refers to the random
search of hyperparameters with the search strategy: for
hyperparameters whose search range is distribution, random
sampling is performed according to the given distribution,
and, for hyperparameters whose search range is list, sam-
pling is performed with equal probability in the given list.
*e advantage of Random Search is fast calculation, the
disadvantage is easy to miss some important information.
*e Bayesian Optimization algorithm gradually learns to
obtain more feedback from the objective function bymaking
initial hyperparameter tuning attempts. *en, different parts
of the initial search space are adjusted and sampled. Bayesian

Optimization algorithms are more efficient than Grid Search
and Random Search algorithms, while avoiding the impact
of random search that can miss important information.

3.3. Comparative Analysis of the Proposed Preprocessing Al-
gorithm with Previous Studies. To validate the strength of
proposed fetal movement signals preprocessing algorithm, the
experimental analysis is performed using tenfold cross-vali-
dation. *e performance of the proposed Kalman filter (KF)
preprocessing algorithm is compared with the band-pass filter
(BPF) algorithm with a bandwidth of 0.5Hz–20Hz [42], Sin-
gular Spectrum Analysis (SSA) algorithm [44], Empirical Mode
Decomposition (EMD) algorithm, Ensemble Empirical Mode
Decomposition (EEMD) algorithm, and Adaptive Wavelet
Transform (AWT) algorithm [43]. *e existing BPF, SSA,
EMD, EEMD, AWT fetal movement signal preprocessing al-
gorithms, and the proposed KF algorithm combined with time

Input: Training set (xi, yi) 
N
i�1.

Output: LightGBM model y
(t)
i .

1: Initialize the first tree denoted as: y
(0)
i � f0 � 0

2: *e negative gradient of the loss function is used as an approximation of the current decision tree to train a new decision tree:
ft(xi) � argmin

ft

L(t) � argmin
ft

L(yi, y
(t−1)
i + ft(xi))

3: *e next model is obtained by accumulating multiple weak classification trees: y
(t)
i � y

(t−1)
i + ft(xi)

4: Repeating steps 2 and 3 above until the model reaches the stop iteration condition:
5: Obtain the strong final classification model: y

(t)
i � 

M−1
t�0 ft(xi)

ALGORITHM 2: *e training process of LightGBM model.

Table 2: Optimal hyperparameter values are obtained by different optimization algorithms for LightGBM model.

Model Parameters Grid Search Random Search Bayesian Optimization

LightGBM

N_estimators 90 50 51
Max_depth 8 9 5
Num_leaves 50 225 63
Subsample 0.7 0.9 0.8863

Colsample_bytree 0.7999 0.8899 0.9079
Min_child_samples 4 7 8
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Figure 2: Performance analyses of the Accuracy and F1-Score evaluation metrics of LightGBM model with tenfold cross-validation using
different optimization algorithms.
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Figure 3: *e kernel density estimation plots for tuning the hyperparametric sampling of the LightGBM model using Grid Search al-
gorithm, Random Search algorithm, and Bayesian Optimization algorithm.
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domain, frequency domain, and wavelet domain feature ex-
tractionmethods and Bayesian-optimized LightGBMmodel are
analyzed for tenfold cross validation. Table 4 shows the com-
parative analysis of the proposed preprocessing algorithm with
the previously studied algorithms, where the parameter type of
the EMD technique is the intrinsic modal function (IMF), the
parameter type of the EEMD method is the noise standard
deviation (STD) and the intrinsic modal function (IMF), and
the parameter type of the AWT technique is the wavelet type
(WT) and the thresholding (THR).

As shown in Table 4, the proposed Kalman filter pre-
processing algorithm for fetal movement signal is the best in
all evaluation metrics compared to the existing band-pass
filter with a bandwidth of 0.5Hz–20Hz algorithm, SSA
algorithm, EMD algorithm, EEMD algorithm, and AWT
algorithm.

*e accuracy of the proposed Kalman filtering algorithm
is improved by 1.15%, 1.64%, 2.59%, 4.87%, and 1.38%
compared to band-pass filter with a bandwidth of
0.5Hz–20Hz algorithm, SSA algorithm, EMD algorithm,
EEMD algorithm, and AWT algorithm, respectively.

*e advantage of BPF is that each of the useful frequency
components and the desired filtered frequency components
occupies a different frequency band, and the interference is
filtered out by a suitable frequency selection filter to obtain a
pure signal. However, there is a possibility of frequency
overlap between the fetal movement signal and the inter-
ference signal, and then BPF cannot effectively filter out the
interference. EMDhas the advantage of being data-driven and
adaptive, capable of analyzing nonlinear smooth signals.
However, EMD obtains IMF components with modal alias-
ing. EEMD has slightly improved the decomposition effi-
ciency based on EMD algorithm and achieved better results in
the field of one-dimensional random signal denoising ef-
fectively. However, the EEMD algorithm has high compu-
tational complexity and large computational effort. *e SSA
algorithm maintains the same signal trend as conventional
denoising algorithms and does not cause signal distortion and
attenuation. In contrast, the Kalman filtering algorithm can
estimate the state of a dynamic system from a series of data in
the presence of measurement noise when the measurement
variance is known. *e Kalman filtering algorithm has the
advantages of low computational complexity and small
computational effort, which can filter out the random noise of
continuous low amplitude in the fetal movement signal and
recover and correct the fetal movement signal.

3.4. Comparative Analysis of the Proposed Feature Extraction
Methods with Previous Studies. To validate the strength of
the proposed fetal movement signal feature extraction

method, the performances of the proposed fetal movement
signal time domain, frequency domain, and wavelet domain
(TFWD) feature extraction methods are compared with
existing time domain (TD) feature extraction methods [36],
time domain and wavelet domain (TWD) feature extraction
methods [41], and time domain and frequency domain
(TFD) feature extraction methods [46]. *e existing TD,
TWD, TFD fetal movement signal feature extraction
methods and the proposed TFWD method combined with
Kalman filter algorithm and Bayesian optimized LightGBM
model are analyzed for ten-fold cross-validation.

*e experimental analysis is performed using tenfold
cross-validation. Figure 4 displays the comparative analysis
of proposed feature extractionmethod with existing research
methods. Table 5 displays the average of the tenfold cross-
validation results for different feature extraction methods.

As shown in Table 5, the accuracy performance analysis
of the proposed TFWD feature extraction methods im-
proved by 1.98%, 2.14%, and 1.73% compared to the TD
feature extraction method, TWD feature extraction
methods, and the TFD feature extraction method,
respectively.

To validate the performance strength of the proposed
TFWD features extraction method, Figure 5 displays the
performance analysis of the curves for feature number se-
lection and accuracy. Figure 6 displays the learning curve for
the number of training samples and score. As shown in
Figures 5 and 6, the LightGBMmodel performs increasingly
well as the numbers of features and training samples in-
crease, with no overfitting occurring.*e existing TD, TWD,
and TFD methods for fetal movement signal feature ex-
traction still have shortcomings and do not consider some
features such as spectral entropy which indicate the un-
certainty and complexity of the signal, so the ideal recog-
nition performance may not be obtained. In contrast, the
TFWDmethod is more comprehensive in feature extraction
and fully considers the key detailed features of fetal
movement signals in the time domain, frequency domain,
and wavelet domain, which makes the model training and
classification performance better.

3.5. Comparative Analysis of the Proposed Optimization
Model with Previous Studies. In order to validate the
strength of proposed optimization model, the experimental
analysis was performed using tenfold cross-validation. *e
performance analysis of the proposed Bayesian Optimiza-
tion algorithm (BOA) [52] for LightGBM model with the
existing Grid Search algorithm (GSA) [50], Random Search
algorithm (RSA) [51], and genetic programming algorithm
(TPTO Classifier) [54] for optimizing the Random Forest

Table 3: Performance analysis results of LightGBM model using different optimization algorithms.

Metrics Grid Search (%) Random Search (%) Bayesian Optimization (%)
Accuracy 92.91 93.16 94.06
Precision 94.12 94.09 94.48
Recall 96.29 96.64 97.56
F1-Score 95.12 95.29 95.94
AUC-ROC 96.93 96.6 96.85
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Figure 4: *e comparative analysis of proposed feature extraction method with existing research methods.

Table 4: *e comparative analysis of the proposed preprocessing algorithm with the previously studied algorithms.

Authors Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)
Bobrova et al. [42] BPF (0.5Hz–20Hz) 92.91 93.67 96.87 95.16 95.93
Lu et al. [44] SSA 92.42 92.7 97.21 94.85 94.69

Martinek et al. [43]

EMD (IMF� 3 + 4 + 5) 92.17 92.39 97.21 94.67 94.22
EMD (IMF� 4) 90.77 90.84 96.98 93.75 94.59

EEMD (STD� 0.2, IMF� 4) 88.53 90.39 94.08 92.14 91.80
EEMD (STD� 0.2, IMF� 4 + 5) 89.69 89.93 96.52 93.04 92.83
EEMD (STD� 0.3, IM� 4) 89.28 91.05 94.31 92.62 93.30

EEMD (STD� 0.3, IM� 4 + 5) 89.27 90.54 95.12 92.69 93.14
AWT (WT�db 4, THR� hard) 92.82 93.39 96.98 95.09 96.44
AWT (WT�db4, THR� soft) 92.83 93.73 96.63 95.08 96.79

AWT (WT�sym4, THR� hard) 92.58 93.60 96.40 94.90 95.64
AWT (WT�sym4, THR� soft) 92.49 93.29 96.63 94.85 96.06

Proposed Kalman filter 94.06 94.48 97.56 95.94 96.85

Table 5: *e average of the tenfold cross-validation results for different feature extraction methods.

Authors Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)
Abeywardhana et al. [36] TD 92.08 93.05 96.29 94.57 96.33
Zhao et al. [41] TWD 91.92 92.96 96.29 94.49 96.72
Liu et al. [46] TFD 92.33 93.38 96.29 94.74 96.67
Proposed TFWD 94.06 94.48 97.56 95.94 96.85
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Figure 5: *e performance analysis of the curves for feature number selection and accuracy.
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(RF) [55] model and Extreme Gradient Boosting (XGBoost)
[56] model, respectively, is carried out [57]. *e perfor-
mances are compared and analyzed by changing the opti-
mization model and combining the strengths of Kalman
filtering (KF) algorithm and time domain, frequency do-
main, and wavelet domain (TFWD) feature extraction with
tenfold cross-validation.

Figures 7 and 8 show the Accuracy and F1-Score
comparison analysis of the proposed Bayesian Optimization
algorithm for LightGBM model with existing different op-
timization models. Figures 9 and 10 show the ROC and
Precision-Recall curve performance analysis of the proposed
Bayesian Optimization algorithm for LightGBMmodel with
the existing optimization model, respectively. Table 6 shows
the average values of evaluation metrics for different opti-
mization models.

As shown in Figures 7 and 8, the Accuracy and F1-Score
evaluation metrics of the proposed BOA-LGBM model are
the best compared to the existing optimization models. As
shown in Table 6, the accuracy of proposed BOA-LGBM
model is improved by 1.81%, 1.48%, 1.15%, 3.79%, 1.97%,
and 1.23% compared to the existing methods like RSA-RF,
GSA-RF, TPTO-RF, RSA-XGBoost, GSA-XGBoost, and
TPTO-XGBoost, respectively.

RF, XGBoost, and LightGBM all belong to ensemble
learning, which aims to improve the generalization ability and
robustness of the basic learner by combining the prediction
results of multiple base learners. RF has the advantage that
training can be highly parallelized and handle very-high-di-
mensional data, with the disadvantage that it tends to overfit in
noisy classification or regression problems. XGBoost improves
the loss function of the model and adds a regular term for the
model complexity.*e advantage is the ability to process high-
dimensional data in parallel, which largely reduces the com-
putational effort. However, XGBoost uses presorting, which
requires presorting the features of the nodes before iteration
and then traversing to select the best segmentation point, and
the algorithm ismore time-consumingwhen the data volume is
large. In contrast, LightGBM uses histogram algorithm, which
occupies low memory and has lower complexity of data seg-
mentation. In addition, LightGBM uses deep optimization and

leaf-wise growth strategy, which selects the node with the
greatest gain from the current leaf for segmentation each time
and iterates cyclically to prevent overfitting.

3.6. Comparative Analysis of the Proposed Model with
Previous Studies. *e KF+TFWD+BOA-LGBM proposed
is analyzed and compared with various existing fetal move-
ment signal preprocessing, feature extraction, and recognition
methods, namely, band-pass filter with a bandwidth of
0.5Hz–45Hz preprocessing and time and frequency domain
feature selection and Support Vector Machine classification
methods (BPF+TFD+SVM) [31], band-pass filter with a
bandwidth of 1Hz–20Hz preprocessing and time domain
feature extraction and Random Forest classification methods
(BPF+TD+RF) [33], band-pass filter with a bandwidth of
0.5Hz–20Hz preprocessing and Discrete Wavelet Transform
feature extraction and Fuzzy Adaptive Resonance *eory
Mapping classification methods (BPF+DWT+Fuzzy ART-
MAP) [37], Empirical Mode Decomposition preprocessing
and time domain feature extraction and machine learning
classification methods (EMD+TD+ML) [48], high-pass
filter with a cutoff frequency of 0.8Hz preprocessing and
Independent Component Analysis and Discrete Wavelet
Transform feature extraction and Bagging classification
methods with Random Forest as its base classifier
(HPF+ ICA+DWT+RF-Bagging) [49]. ML algorithms in-
clude Random Forest (RF) [55], Multilayer Perceptron (MLP)
[58], Support Vector Machine (SVM) [59], and Logistic
Regression (LR) [60] classification models.

In order to validate the strength of the proposed fetal
movement classification model, the experimental analysis is
performed using tenfold cross-validation. As shown in
Figures 11 and 12, the accuracy and F1-Score evaluation
metrics of the proposed KF+TFWD+BOA-LGBM model
are compared with existing models. As shown in Figures 13
and 14, the ROC curves and Precision-Recall curves of the
proposed KF+TFWD+BOA-LGBM model are compared
with the existing models. Table 7 displays the average values
of evaluationmetrics for different models with 10-fold cross-
validation.

As shown in Table 7, the accuracy of the proposed
KF+TFWD+BOA-LGBM model for fetal movement rec-
ognition is higher than those of the existing methods such as
BPF +TFD+ SVM, BPF +TD+RF, BPF +DWT+Fuzzy
ARTMAP, EMD+TD+RF, EMD+TD+MLP, EMD+TD
+SVM, EMD+TD+LR, and HPF+ ICA+DWT+RF-
Bagging, improving by 11.38%, 2.14%, 3.47%, 2.06%, 6.85%,
6.93%, 7.1%, and 2.88%, respectively. *e F1-Score of
proposed KF+TFWD+BOA-LGBM model for fetal
movement recognition was higher than those of the existing
methods such as BPF +TFD+ SVM, BPF +TD+RF,
BPF +DWT+Fuzzy ARTMAP, EMD+TD+RF, EMD+
TD+MLP, EMD+TD+ SVM, EMD+TD+LR, and HPF+
ICA+DWT+RF-Bagging, improving by 7.07%, 1.42%,
2.6%, 1.37%, 4.75%, 4.61%, 4.85%, and 2.45%, respectively.

For existing fetal movement signal preprocessing algo-
rithms. BPF has the advantage that each of the fetal movement
signal components and the desired filtered frequency
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Figure 6: *e learning curve for the number of training samples
and score.
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Figure 7: *e accuracy comparison analysis of the proposed Bayesian Optimization algorithm for LightGBMmodel with existing different
optimization models.
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Figure 8: F1-Score comparison analysis of the proposed Bayesian Optimization algorithm for LightGBM model with existing different
optimization models.
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components occupies a different frequency band. *en, the
interference is filtered out by a suitable frequency selection
filter to obtain a pure signal. However, BPF cannot effectively

filter out the interference when there is a possibility of spectral
overlap between the fetal movement signal and the interfering
signal. EMD has the advantage of being data-driven and
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Figure 10: Precision-Recall curve performance analyses of the proposed BOA-LGBM model with the existing optimization model.

Table 6: *e average values of evaluation metrics for different optimization models with tenfold cross-validation.

Authors Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

Valarmathi et al. [57]

RSA-RF 92.25 93.76 95.71 94.76 96.86
GSA-RF 92.58 93.77 96.17 94.81 97.03
TPTO-RF 92.91 93.73 96.40 94.85 96.78

RSA-XGBoost 90.27 94.69 91.64 93.07 93.73
GSA-XGBoost 92.09 92.89 96.41 94.56 95.83
TPTO-XGBoost 92.83 93.46 96.87 95.08 96.33

Proposed BOA-LGBM 94.06 94.48 97.56 95.94 96.85
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Figure 11: *e accuracy evaluation metrics of the proposed KF+TFWD+BOA-LGBM model are compared with existing models.
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adaptive, capable of analyzing nonlinear smooth signals.
However, EMD obtains IMF components with modal aliasing,
which can lead to erroneous time-frequency fetal movement
signals. *e advantages of ICA allow for blind source sepa-
ration of fetal movement signals. However, the separation of
the fetal movement signal components by the ICA algorithm
leads to inconsistency between the amplitude and the source
signal. In addition, the algorithm may not be applicable when
the assumptions are not satisfied. In contrast, the KF algorithm
can estimate the state of a dynamic system from a series of data
in the presence of measurement noise when the measurement
variance is known. *e Kalman filtering algorithm has the
advantages of low computational complexity and small
computational effort, which can filter out the random noise of
continuous low amplitude in the fetal movement signal and
recover and correct the fetal movement signal.

For existing fetal movement classification algorithm,
the SVM classification algorithm uses kernel functions to
map to higher-dimensional spaces and solve nonlinear
classification problems. However, the algorithm is difficult
to implement for large training samples and is sensitive to
the choice of parameters and kernel functions. *e MLP
algorithm consists of many identical simple processing
units combined in parallel, with a high degree of parallelism
and good fault tolerance and associative memory. How-
ever, the problem of selecting the number of implicit nodes
for the network of this algorithm remains a challenge so far,
and the learning speed is slow and easy to fall into local
limit values. *e LR algorithm is computationally inex-
pensive and can handle large data using fewer resources,
but it tends to underfit and has low classification accuracy.
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Figure 12: *e F1-Score evaluation metrics of the proposed KF +TFWD+BOA-LGBM model are compared with existing models.
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Figure 13: ROC curves of proposed KF +TFWD+BOA-LGBM
model are compared with the existing models.
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Fuzzy ARTMAP belongs to lightweight neural network
algorithm, which is computationally inexpensive and has
good performance and wide applicability, but the classi-
fication process agrees to overfitting. RF has the advantage
that training can be highly parallelized and handle very-
high-dimensional data, with the disadvantage that it tends
to overfit in noisy classification or regression problems. In
contrast, LightGBM uses histogram algorithm, which oc-
cupies low memory and has lower complexity of data
segmentation. In addition, LightGBM uses deep optimi-
zation, leaf-wise growth strategy, which selects the node
with the greatest gain from the current leaf for segmen-
tation each time and iterates cyclically to prevent
overfitting.

4. Conclusion

In this paper, the strengths of Kalman filtering, time and
frequency domain and wavelet domain, and Bayesian Op-
timization LightGBM model are combined for the accurate
prediction and recognition of fetal movements. Firstly, the
Kalman filtering (KF) algorithm is used to recover the fetal
movement signal in a continuous low-amplitude back-
ground contaminated by noise. Secondly, the time domain,
frequency domain, and wavelet domain (TFWD) features of
the preprocessed fetal movement signal are extracted. Fi-
nally, the Bayesian Optimization algorithm is used to op-
timize the LightGBM classifier to obtain the optimal
hyperparameters. In this manuscript, Kalman filtering
combined with time and frequency domain and wavelet
domain feature extraction and Bayesian Optimization
LightGBMmodel provides the best recognition results based
on prediction and detection. In the performance analysis of
the Zenodo fetal movement dataset, the proposed
KF+TFWD+BOA-LGBM model has a higher recognition
accuracy compared to the existing methods such as
BPF+TFD+ SVM, BPF +TD+RF, BPF+DWT+Fuzzy
ARTMAP, EMD+TD+RF, EMD+TD+MLP, EMD+TD
+SVM, EMD+TD+LR and HPF+ ICA+DWT+RF-Bag-
ging, improving by 11.38%, 2.14%, 3.47%, 2.06%, 6.85%,
6.93%, 7.1%, and 2.88%, respectively. *e experimental
results showed that the proposed KF+TFWD+BOA-
LGBM model is more robust to predict and recognize fetal
movements. *e proposed method has significant medical
value and broad application prospects for the application of
intelligent sensing-based technology to clinical fetal move-
ment detection.
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