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*e synthetic aperture radar (SAR) image preprocessing techniques and their impact on target recognition performance are
researched. *e performance of SAR target recognition is improved by composing a variety of preprocessing techniques. *e
preprocessing techniques achieve the effects of suppressing background redundancy and enhancing target characteristics by
processing the size and gray distribution of the original SAR image, thereby improving the subsequent target recognition
performance. In this study, image cropping, target segmentation, and image enhancement algorithms are used to preprocess the
original SAR image, and the target recognition performance is effectively improved by combining the above three preprocessing
techniques. On the basis of image enhancement, the monogenic signal is used for feature extraction and then the sparse
representation-based classification (SRC) is used to complete the decision. *e experiments are conveyed on the moving and
stationary target acquisition and recognition (MSTAR) dataset, and the results prove that the combination of multiple pre-
processing techniques can effectively improve the SAR target recognition performance.

1. Introduction

Synthetic aperture radar (SAR) is widely used in military and
civilian fields because of its all-weather data measurement
and imaging capabilities. *e key technology represented by
SAR automatic target recognition (ATR) has become an
important support for intelligence reconnaissance, missile
guidance, and other links [1]. With the development and
maturity of high-resolution SAR imaging technology, tac-
tical target recognition methods based on SAR images have
emerged. *ese methods mainly adopt the two-stage idea of
“feature extraction + classifier.” Feature extraction starts
from the original SAR image and extracts valuable target
features, such as geometric shape, gray-scale distribution,
and scattering characteristics, based on the idea of removing
the roughness and keeping the essence. In [2–7], the geo-
metric shape features such as target area (shadow) and
contour were used to design SAR target recognition
methods, which reflected the physical appearance infor-
mation of the target. However, due to common interference
such as noise and clutter in SAR images, the precision of

features such as target regions and contours is often limited.
In [8–15], principal component analysis (PCA), monogenic
signal, mode decomposition, and other mathematical pro-
jection or signal decomposition algorithms were employed
to obtain SAR image features. Such features have good
consistency and high extraction efficiency. *e disadvantage
is that they often fail to reflect the physical layer information
of the target. *e characteristics that describe the scattering
characteristics of SAR targets include polarization charac-
teristics and local scattering centers. At this stage, the most
used scattering feature is the scattering center, and the
decision is made through the matching of attribute pa-
rameters (position, length, structure, and so on) [16–18].
Since the scattering center model is generally very com-
plicated, it is difficult to estimate the parameters of the
scattering center with high efficiency and precision. *e
classifiers used in SAR target recognition are mostly
inherited from the field of optical pattern recognition or
optimized and improved according to the characteristics of
SAR images, such as K nearest neighbors (K-NN) in [8],
support vector machine (SVM) used in [19, 20], adaptive
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boosting [21], the sparse representation-based classification
(SRC) [22–26], and the recently popular convolutional
neural network (CNN) [27–41].

Different from general optical images, there are a lot of
noise interference in SAR images, which often results in poor
visibility and readability. *erefore, before carrying out
target recognition, using certain preprocessing methods to
process SAR images can effectively improve the subsequent
recognition performance. Generally, the size and pixel
processing of the original SAR image can be used to im-
prove the SAR image quality so as to facilitate subsequent
feature extraction and classifier design. In the existing
literature, a large number of preprocessing techniques have
been adopted and verified, including image cropping,
target segmentation, image enhancement, and super-
resolution. In this paper, three types of preprocessing
methods, image cropping, target segmentation, and image
enhancement, are adopted for the problem of SAR image
target recognition. On this basis, the monophonic signal is
further used as the basic method of feature extraction to
obtain multilevel spectrum features. Based on sparse
representation classification, the results of preprocessing
and feature extraction are classified, and the final decision
result is obtained. Experiments are conveyed on the
moving and stationary target acquisition and recognition
(MSTAR) dataset. *e results validate the effectiveness of
the proposed method.

2. Description of Preprocessing Techniques

2.1. Image Cropping. Image cropping is a very common
preprocessing technique in SAR target recognition, which
can efficiently eliminate a large amount of background re-
dundancy in original SAR image. *e image cropping op-
eration is very simple, by segmenting a square area with a
certain side length in the center of the original SAR image as
the target image. *e selected side length of the square has a
certain influence on the final target recognition perfor-
mance. *e larger the side length is, the more background
clutter will be removed, but at the same time it is possible to
remove a part of the target area. *erefore, it is very im-
portant to select a suitable cropping window. When the
window is too small, the target characteristics are likely to be
destroyed to a certain extent. On the opposite, a very large
window may keep too many background and clutter pixels.
As a result, those interferences still exist.

2.2. Target Segmentation. *e purpose of target segmenta-
tion is to separate the target area from the background pixels
and target shadows so as to eliminate the interference of
background noise as much as possible. Compared with
optical images, the visibility of SAR images is poor and the
target boundary is not clear. *erefore, SAR target seg-
mentation has always been a difficult problem, and it is
difficult to reliably evaluate the performance of a certain
target segmentation algorithm. In this paper, the target
segmentation algorithm proposed in the literature is used,
and the specific implementation steps are as follows:

Step 1. Performing histogram equalization on the
original SAR image, and transforming its dynamic
range to [0, 1]
Step 2, Performing average filtering on the histogram
equalized image
Step 3. Using the threshold method for image seg-
mentation, and the threshold value is 0.8
Step 4. Aiming at the influence of possible small
fractures and cavities in the target area and background
clutter, mathematical morphology operations are used
to eliminate them

With the help of high-precision target segmentation, the
pure target characteristics can be maintained while the in-
terferences can be efficiently eliminated. In the next stage,
the features can be extracted only in the target region so the
effectiveness can be better maintained.

2.3. Image Enhancement. Image enhancement uses certain
image processing technology to highlight some information
in the image or weaken or eliminate some irrelevant in-
formation for the application requirements of certain
characteristics. *erefore, it can enhance the ability to in-
terpret the information of interest. For the specific appli-
cation of SAR target recognition, a large number of image
enhancement techniques have been adopted, such as con-
trast enhancement, image filtering, and power exponential
enhancement. In this paper, power exponent enhancement
is used to preprocess the original SAR image. *e specific
operation is as follows. First, the power transformation of
the gray value of the original SAR image is as follows:

K(x, y) � [I(x, y)]
α
. (1)

*en, the power-transformed pixel value is normalized
according to the following equation:

J(x, y) �
K(x, y)

xy|K(x, y)|
2

 
1/2. (2)

*e enhancement effect under different powers is not the
same. At a suitable power choice, the image enhancement
has the effect of suppressing the background and enhancing
the target characteristics, which is beneficial for the fol-
lowing feature extraction and correct target recognition.

3. Application of Target Recognition

3.1. Feature Extraction by Monogenic Signal. *e mono-
morphic signal is a two-dimensional analytical signal that
has the ability to analyze the two-dimensional time-fre-
quency characteristics of the image so as to analyze the rich
texture and detailed features of the target. At present,
monophonic signals have been effectively used in face image
and SAR image recognition [11, 12]. Denote f(z) as the 2D
signal, and its Riesz transform is calculated as fR(z), where
z � (x, y)T denotes the 2D spatial domain coordinate. At
first, the two-dimensional Riesz transform of the original
signal is calculated as follows:
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fM(z) � f(z) − (i, j)fR(z), (3)

where i and j are the imagery units. *e original signal and
Riesz transform comprise the real and imaginary parts of the
monogenic signal. *en, three monogenic components, i.e.,
local amplitude, local phase, and local orientation, can be
obtained as following equation:

amplitude : A(z) �

��������������

f(z)
2

+ fR(z)



2



,

phase : φ(z) � a tan 2 fR(z)


, f(z)  ∈ (− π, π],

orientation : θ(z) � a tan 2
fy(z)

fx(z)
  ∈ −

π
2

,
π
2

 ,

(4)

where fx(z) and fy(z) are the i-imaginary and j-imaginary
components, respectively.

*e Riesz transformation and Log-Gabor in the de-
composition process of the monophonic signal are both
performed in two dimensions, so the decomposed A(z),
φ(z), and θ(z) finally are in the form of a two-dimensional
matrix consistent with the original image size. *ey have
different characteristics and have the ability to describe
the characteristics of the original image from different
sides. *e local amplitude focuses on reflecting the in-
tensity (gray value) distribution of the image. *e local
phase and local orientation describe the local details of the
image and the target shape information, respectively.
*erefore, making full use of the multilevel spectral
components obtained by the single-analysis signal de-
composition is beneficial to describe the target charac-
teristics more comprehensively, thereby improving the
subsequent classification accuracy. With reference to the
parameter settings in [11], this study defines 3 Log-Gabor
filters of different scales so as to obtain 3 levels and 9-
component monochromatic spectrum components,
which are combined as one feature vector. It is validated
that each spectral component at different levels can ef-
fectively reflect part of the characteristics of the original
SAR image, but there is also a certain degree of redun-
dancy. *erefore, it is necessary to effectively screen a
large number of spectral components obtained by de-
composition so as to comprehensively improve the ac-
curacy and efficiency of subsequent classification.

3.2. SRCforClassification. *e sparse representation is based
on the theory of compressed sensing and analyzes the
characteristics of the sample by linearly characterizing the
sample with unknown characteristics on the overcomplete
dictionary. Wright et al. used sparse representation in face
recognition, that is, to determine the category of the test
sample based on the reconstruction error of each category
under the sparse representation coefficient [42, 43]. Spe-
cifically, a global dictionary A � [A1, A2, . . . , AC] ∈ Rd×N is
first constructed composed of multiple training categories,
where Ai represents the Ni atom corresponding to the ith

training sample in the class. For the test sample y to be
identified, the sparse linear representation is performed as
follows:

x � argmin
x

‖x‖0,

s.t. ‖y − Ax‖
2
2 ≤ ε,

(5)

where x is the sparse coefficient vector to be solved and ε is
the settled error threshold.

Since the direct solution of the optimization problem in
equation (5) is very complicated, researchers obtain high-
confidence approximate solutions through the principle of
equivalent approximation. For example, in [42], the ℓ1 norm
is used to replace the original ℓ0 norm to convert it into a
convex optimization problem that is easy to solve. In [22],
the orthogonal matching pursuit (OMP) algorithm was
employed based on a greedy mechanism to improve the
overall solution efficiency. According to the solved sparse
representation sparse vector, the category of the test sample
can be judged according to its distribution rules in different
categories. Among many principles for decision, the crite-
rion based on the minimum reconstruction error is the most
widely used. *e basic idea is to linearly reconstruct the test
samples with samples of each category and then calculate the
reconstruction error, as follows:

r(i) � y − Aixi

����
����
2
2 (i � 1, 2, . . . , C), (6)

where xi includes the linear coefficients related to the ith
training class and r(i) is the reconstruction error from ith
training class. Finally, SRC makes the decision based on the
least error.

3.3. Procedure of Implementation. Based on the above dis-
cussions, the basic procedure of the proposed method is
summarized as shown in Figure 1. *e training and test
samples are first processed by the three preprocessing
techniques. Afterwards, the monogenic signal is used to
extract the features from the training samples to establish the
global dictionary. *e monogenic feature vector from the
test sample is represented by the global dictionary, and the
reconstruction errors from different classes are compared to
determine the target class. Specially, the MSTAR SAR im-
ages for experiments are cropped to the size of 80× 80 to
intactly cover the target regions. Furthermore, the power
factor used in image enhancement is chosen to be 2.5 to
achieve a relatively good result.

4. Experiments

4.1. MSTAR Dataset. Set the experimental conditions based
on the MSTAR data set to carry out the classification ex-
periment of multiclass targets. As a currently widely used
SAR target image data set, MSTAR data contain 10 types of
vehicle targets acquired under various conditions (see
Figure 2 for examples of optical and SAR images). In these
images, the target azimuth angle covers 0°∼360°, and some
targets have several submodels (such as BMP2 and T72); the
original image resolution reaches 0.3m. Table 1 shows one of
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the typical experimental conditions based on SAR images of
10 types of targets. Among them, the training and test sets
use samples at the elevation angles of 17° and 15°, respec-
tively; the test sets of BMP2 and T72 contain more sub-
models than the training set. Under the current setting
conditions, the gap between training and testing samples is
relatively small, which is generally approximate to standard
operating conditions (SOCs).

In order to verify the effectiveness and robustness, the
proposed method is compared with several reference
methods from current literatures including the SRC-based
method in [22], method using monogenic signal for feature
extraction in [11], and method based on CNN in [30]. *e
following tests are conducted under both the standard
operating condition (SOC) and extended operating

conditions (EOCs) to achieve comprehensive evaluations on
the proposed method.

4.2. Validation of Processing Techniques under SOC. A pre-
liminary validation is conveyed under SOC, whose experi-
mental setup is shown in Table 1. *e training samples are
those SAR images of the ten targets measured at 17° de-
pression angle. *e test samples are from 15° depression
angle with extra target configurations in BMP2 and T72.*e
results achieved by the proposed method are displayed in
Figure 3, in which the recognition accuracies of different
targets are marked on the diagonal. BMP2 and T72 suffer the
lower recognition rates than the remaining ones because of
the disturbance caused by configuration variances. Table 2

Training
samples Dictionary

SRCPreprocessing +
monogenic signal

Reconstruction errors Target labelTest sample

Figure 1: Procedure of the proposed method for target recognition.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 2: Imagery of targets in the MSTAR dataset to be recognized: (a) BMP2; (b) BTR70; (c) T72; (d) T62; (e) BRDM2; (f ) BTR60;
(g) ZSU24/4; (h) D7; (i) ZIL131; (j) 2SI.
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lists the average recognition rates of different methods. In
particular, we compare the proposed method with the one
without the three preprocessing techniques. *e compar-
ison shows that the use of preprocessing techniques ef-
fectively improves the recognition performance. Compared
with the three reference methods, the proposed method
achieves the highest result, validating its superior
effectiveness.

4.3. Depression Angle Variances. In the experimental setup
under SOC, the depression angles of the test and the training
samples are very close (only 2° difference). In practice, the
test sample is likely to be at a different depression angle from
the training set. At this time, the image differences caused by

the difference in the depression angle increase the difficulty
of recognition. Table 3 shows the experimental conditions
with large depression angle differences. *e samples at 17°
depression angle are used to classify the test sets at 30° and
45°, respectively. Table 4 comprehensively shows the average
recognition rate of each method at the two depression
angles. It can be clearly seen that when the depression angle
is 45°, the performance of each method drops significantly.
Comparing and analyzing under the two test conditions, the
proposed method obtains the best performance, which
shows its robustness to the change of depression angle. *e
preprocessing techniques could effectively improve the
image quality even under the situation of depression angle
variances. *en, the features after preprocessing can better
handle the EOC caused by depression angle variances.

Table 1: Description of training and test samples under SOC.

Target class
Training (17°) Test (15°)

Configuration Number of samples Configuration Number of samples

BMP2 9563 222
9563 184
9566 185
c21 185

BTR70 c71 222 c71 185

T72 132 221
132 185
812 184
s7 180

T62 A51 288 A51 262
BRDM2 E-71 287 E-71 263
BTR60 7532 245 7532 184
ZSU23/4 d08 288 d08 263
D7 13015 288 13015 263
ZIL131 E12 288 E12 263
2S1 B01 288 B01 263

0.985 0.000 0.010 0.005 0.000 0.000 0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.010 0.000 0.985 0.000 0.000 0.005 0.000 0.000 0.000 0.000

0.004 0.000 0.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.004 0.000 0.004 0.993 0.000 0.000 0.000 0.000 0.000

0.005 0.000 0.000 0.000 0.000 0.995 0.000 0.000 0.000 0.000

0.000 0.004 0.000 0.000 0.004 0.000 0.993 0.000 0.000 0.000

0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.996 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0002S1

ZIL131

D7

ZSU23/4

BTR60

BRDM2

T62

T72

BTR70

BMP2

BT
R7

0

T7
2

T6
2
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Figure 3: Results achieved by the proposed method under SOC.
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4.4. Noise Corruption. Noise exists in the whole process of
SAR data acquisition and imaging, so it is an important
factor that must be considered in SAR target recognition. As
the noise continues to intensify, the original target char-
acteristics are continuously disturbed or even submerged.
*e images in the original MSTAR dataset are all collected
from cooperative conditions, which are less affected by noise
interference and have a higher signal-to-noise ratio (SNR).
For this reason, this experiment implements noise addition
to the test samples in Table 1 according to the idea in [17]
and then uses the proposed and referencemethods to classify
the noise samples. Figure 4 shows the performance curves of
different methods. *rough the preprocessing techniques,

the noise interferences can be effectively relieved so the
features in the following stage can maintain higher dis-
crimination. Comparing all methods comprehensively, the
method in this paper has the strongest noise robustness.

5. Conclusion

*is paper discusses the influence of SAR image pre-
processing technology on target recognition performance
and analyzes and studies three preprocessing technologies of
SAR image cropping, target segmentation, and image en-
hancement. *e preprocessed SAR image is extracted from
the features of the monomorphic signal and classified based

Table 3: Experimental setup under depression angle variances.

Class Configuration
Depression angle

Training Test
17° 30° 45°

2S1 B01 288 277 292
BRDM2 E-71 287 276 292
ZSU23/4 d08 288 277 292

Table 4: Average recognition rates of different methods under depression angle variances.

Recognition method Ours SRC Monogenic CNN

Average recognition rate (%) 30° 97.28 95.68 96.82 96.34
45° 72.06 68.74 70.26 68.15

Ours
SRC

Monogenic
CNN

40

50
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70
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90

100

A
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)

–100 –5510
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Figure 4: Average recognition rates at different SNRs.

Table 2: Results comparison under SOC.

Method type Average recognition rate (%)
Ours 99.02
Ours without preprocessing 97.64
SRC 97.18
Monogenic 98.06
CNN 98.85
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on the SRC to obtain the target category of the test sample.
Experiments on theMSTAR dataset are carried out. It can be
seen from the experimental results that the recognition rate
obtained after preprocessing is significantly improved. At
the same time, the method is also more robust to EOCs such
as depression angle differences and noise interference.
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