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Situational interest (SI) is one of the promising states that can improve student’s learning and increase the acquired knowledge.
Electroencephalogram- (EEG-) based detection of SI could assist in understanding SI neuroscientific causes that, as a result, could
explain the SI role in student’s learning. In this study, 26 participants were selected based on questionnaires to participate in the
mathematics classroom experiment. SI and personal interest (PI) questionnaires along with knowledge tests were undertaken to
measure student’s interest and knowledge levels. A hybrid method combining empirical mode decomposition (EMD) and wavelet
transform was developed and employed for feature extraction. /e proposed method showed significant difference using the
multivariate analysis of variance (MANOVA) test and consistently outperformed other methods in the classification performance
using weighted k-nearest neighbours (wkNN). /e high classification accuracy of 85.7% with the sensitivity of 81.8% and
specificity of 90% revealed that brain oscillation patterns of high SI students are somewhat different than students with low or no
SI. In addition, the result suggests that the delta rhythm could have a significant effect on cognitive processing.

1. Introduction

Learning sciences and mathematics have been an obstacle
for many students. Several research studies were carried out
to investigate the causes of the low number of students
joining these fields. Two out of six suggestions to make
mathematics come alive were eliminating mathematics fear
and developing interesting teaching strategies to induce
positive effect on students’ learning [1]. Hence, a variety of
researchers proposed the use of situational interest (SI) to get
students of different backgrounds to enjoy studying math-
ematics or science even if they do not have initial or indi-
vidual interest in the first place [2, 3]. To do so, it is critical to
understand the neural mechanisms of interest and curiosity
as part of motivational phenomena and their influence on
memory and learning as noted by Hidi and Renninger [4].
/erefore, this work explains the effect of SI on student’s
learning and examines its EEG correlates. /e study in [5]
investigated the physiological impact of SI but had a

relatively small number of subjects and focused on feature
extraction with little attention given to EEG power spectra,
e.g., delta oscillations. /e role of delta EEG rhythm during
learning is not clear. /e study by Mathewson et al. [6]
claimed the possibility of predicting video game learning
rate by alpha and delta EEG power. Several studies have
reported the increase of delta during tasks that demand
attention, cognitive processing, or working memory (see [7]
for a review). Yet, the increase of delta is well documented
during states like drowsiness, stage 1 sleep, and some brain
disorders [8]. Looking at recent approaches in the field of
biomedical signal’s analysis, there is a trend of combining
decomposition methods for feature extraction. /is way
helps overcoming the weaknesses of each method and en-
hances their strengths. For example, EMD and wavelet
methods were used widely in EEG and ECG research sep-
arately or combined depending on the nature of the data and
the purpose of the analysis [9, 10]. Because of its features and
characteristics, EMD is extensively applied to biomedical
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signals that are nonlinear and nonstationary time series such
as HRV, EMG, and brain signals using EEG. It assumes that
every data consist of a number of intrinsic mode functions
(IMFs) in which basis oscillation is derived from the data.
Similarly, wavelet transform has been used extensively in
BCI applications because of its ability to reserve time and
frequency information with a wide variety of scale and
translation functions. Both methods were successfully used
as base for filtering or further feature extraction to achieve
high classification accuracy, denoising, and reconstruction
of the data with high signal-to-noise ratio. In [11], the
authors applied EMD to the seismic signal followed by
wavelet ridge to extract the instantaneous spectral properties
of a reservoir. /ey found instantaneous frequency extracted
by the wavelet ridge superior to instantaneous frequency
extracted by Hilbert transform in revealing geological fea-
tures. /e combination of EMD and wavelet is also used to
discriminate between focal and nonfocal EEG signals
extracted from epilepsy patients such as the work done by
Das and Bhuiyan [12] that used entropy-based features in
the combined EMD-DWTspace and achieved an accuracy of
89.4%. In [13], wavelet packet transform followed by EMD
preceded wavelet packet transform followed by ICA in EEG
artifact cleaning. Generally, EMD performance overcame
WT in denoising EEG signals as well as preparing feature
extraction [14, 15]. Hence, this work is studying the effect of
SI in a classroom to examine the SI impact on learning. /e
experiment was carried out using EEG to acquire the data in
order to avoid distraction of lecture flow. EMD and wavelet
were used to decompose the EEG data and extract the
relevant features for the classification of students’ high and
low SI. /e contribution of this paper can be summarized as
follows:

(1) Identification of EEG correlates corresponding to
situational interest in learning in a classroom. /is
could carry significant information for further un-
derstanding of SI phenomena and synchronized EEG
recording.
(2) Discussing and evaluating the potential of
employing the hybrid EMD-wavelet approach in
extracting the relevant EEG features, especially when
certain EEG rhythms or oscillations are required.

2. Materials and Methods

2.1. Participants. /e participants of this experiment were
first-year undergraduate and foundation students from
Universiti Teknologi PETRONAS (UTP). Students with a
history of brain injuries or under any medication that could
influence EEG data were excluded. /e participants were
selected based on a questionnaire regarding joining UTP
mathematics club and distributed among all foundation and
first-year undergraduate students. In order to select a bal-
anced group of participants with high, low, and moderate
interest, the questionnaire was run as a pre-evaluation for
the level of personal/individual interest of students. /e
study ethical approval was obtained from the UTP ethical
approval committee, and all participants were familiarized

with the experiment and EEG equipment and had given
written consent upon their arrival to the experimental room.
Twenty-six students participated in this experiment and
were remunerated for their time of participation.

2.2. Interest Questionnaires and Knowledge Tests. /e
questionnaires used in this experiment were adopted from
published and verified sources. To qualify situational in-
terest, the SI questionnaire designed by Mitchell and Rot-
gans and Schmidt [2, 16] was adopted. Furthermore, the PI
questionnaire in [2] was adopted to qualify individual
(personal) interest of the participants. From the situational
interest questionnaire result, using the median as the ref-
erence, subjects that scored more than 77 out of 100 were
considered as high-interest students, while subjects scored
less than 69 out of 100 were considered as low-interest
students. Subjects scored between 76 and 69 were considered
to have moderate situational interest and therefore were not
considered for classification tasks.

Because interested students are thought to have better
learning compared to noninterested students [17], similar
pre- and postknowledge tests were undertaken by students
before and after the experiment to evaluate the learning
outcome. Both tests consisted of mathematical problems
based on the presented lecture.

2.3. Stimuli. First-year undergraduate students had a lecture
about Laplace transform from the ordinary differential
equations (ODE) course that was delivered by the UTP
lecturer. /e lecture was prepared in an interesting manner
by including different examples and changing font and
colors. /e interestingness of the material was checked in
three ways. First, by an expert who viewed the material and
approved it, second, by delivering the lecture to different
students who did not participate in the experiment and
getting their feedback, and the third way of checking the
material was by running a 5-Likert-type questionnaire fol-
lowed by a verbal, nonformal interview at the end of each
experimental session. Similar procedure was followed for a
lecture on the integration from calculus course for foun-
dation students. Among participants, 83.34% agreed that the
lecture was interesting, and all participants agreed that they
look forward for similar lectures, which confirmed the in-
terestingness of the stimulation for a majority of the
participants.

2.4. Experimental Setup and Data Acquisition. Due to the
limitation of the number of EEG devices, four sessions were
run with a maximum number of 10 participants per session.
Two cameras in the front and the back of the class were
settled for video recording throughout the experiment.
/ese video data were used later to confirm the self-reported
interest result when needed. Upon the arrival of participants
and signing of the consent forms, preknowledge test and PI
questionnaire were undertaken./is was to ensure low to no
knowledge about the presented topic and to confirm the
level of individual interest. /en, participants wore Enobio
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EEG caps simultaneously, which had 8 channels each, dry
sensors, and a sampling frequency of 500Hz as shown in
Figure 1, with the researcher’s assistance and were ought to
speak to researchers if they felt discomfort and had the
option to leave the experiment at any time. /e EEG
channels included Fp1, Fp2, F3, F4, T7, T8, O1, and O2
according to the 10–20 international system, and the ref-
erence electrodes of common mode sense (CMS) and driven
right leg (DRL) in which both were placed in the right
mastoid were employed [16].

/e baseline data of 4 min eyes-opened and 4min
eyes-closed were acquired followed by about 22 min of
Laplace transform lecture or integration lecture. /en,
another baseline of 4 min eyes-opened was recorded. /e
presentations were delivered through a projector to a
projector screen. After the EEG recording, SI question-
naire and postknowledge test were undertaken. /is was
followed by a presentation questionnaire to evaluate the
interestingness of the topic. Figure 2 shows the experi-
ment block diagram.

2.5. Data Preprocessing. Two subjects’ data were removed
because of technical errors that caused either faulty EEG data
embedded with DC components or corrupted EEG file and,
therefore, were not appropriate for analysis. /e recorded
videos were used to mark the exact time of starting and
ending the lecture and observe the behaviour of students
during the experiment.

In the obtained EEG data, drift was corrected, and a
notch filter of 50Hz was applied to remove line noise. /e
data were then filtered using the FIR filter with a low fre-
quency of 0.5Hz and high frequency of 47Hz. After that, the
region of interest (ROI) was extracted as follows: for high SI,
the moments where subjects expressed high interest in the
content were selected. For low SI, the moments of no interest
in the presented content were selected.

/emoments in which subjects were not expressing high
or low interest or the moments in which the subject’s face
was not clear or not shown were excluded from the analysis.
/e number of segments derived varied from one subject to
another because of individual interest differences. /erefore,
the least length among subjects was set as the standard length
in order to have equal length of data from all the subjects to
ensure unbiased analysis. /is length was 2min and 34 s and
was extracted from all the subjects.

2.6. Feature Extraction Methods

2.6.1. Power Spectral Density. To obtain the power spectral
density, the raw EEG data were filtered according to re-
spective frequencies, gamma, beta, alpha, theta, and delta.
/e power was calculated using the periodogram method by
Welch [18] through Hanning window function. First, the
EEG data were segmented into eight segments with 50%
overlap. /en, power spectral density (PSD) was calculated
for each one of these segments. After that, the average PSD
was calculated for all the segments to obtain the absolute
power for each wave band.

/e calculated EEG power of each wave was then av-
eraged across brain regions, i.e., frontal (Fp1, Fp2, F3, and
F4), temporal (T3 and T4), and occipital (O1 and O2) to
graph the differences in brain regions between high and low
SI students. /is procedure was performed for the baseline
condition (4min eyes-opened) and lecture condition
(Laplace/integration). After that, the percentage of change
was obtained by subtracting the PSD of the lecture condition
from the PSD of the baseline and dividing the result by the
PSD of the baseline. /is step is necessary to account for
subjective variability.

2.6.2. Empirical Mode Decomposition. EMD is proposed to
decompose the EEG signals: 1) to reduce the signal noise and
(2) to increase the number of features and improve the
analysis result by separating the main signal frequency into
subband frequencies. /e resulted oscillations are inde-
pendent of each other and might be linear or nonlinear with
the same number of extrema and zero-crossings [19, 20].
IMFs are nearly periodic oscillations with zero mean. Hence,
each IMF follows the following: (1) the number of extrema
and zero-crossings must equal or differ by no more than one
in the data; (2) the mean value of local maxima and local
minima envelopes is equal to zero. /ese IMF values can be
found by generating the upper and lower envelops of the
EEG signal X(t) by finding all the local extrema and in-
terpolating them with a cubic spline line. /e mean of the
upper and lower envelops m1(t) is used to produce the first
component, h1(t):

X(t) − m1(t) � h1(t). (1)

New h1(t) is subtracted from the mean until it complies
with the two conditions described above. /en, the first IMF
is produced as IMF1� c1(t). /is c1(t) is subtracted from
X(t) yielding a residue r1(t). /e residue now becomes the
new signal X(t), and the procedure is repeated until residue
signal r1(t) becomes monotonic or no more IMFs can be
derived from it. /en, the sifting process stops to finally
obtain

X(t) � 
n

j�1
cj(t) + rn(t). (2)

/e decomposition is achieved by having n empirical
modes and one residue rn(t) that reflects a constant value or
the average trend of X(t).

2.6.3. Discrete Wavelet Transform. Discrete wavelet trans-
form is a transform that decomposes a signal into its low-
and high-frequency components using a specific subset of
frequency and translation values determined by the type of
data and purpose of decomposition. By determining the
wavelet mother, the EEG signal is decomposed up to the
predetermined decomposition level using equations (3) and
(4) by designed low- and high-pass filters producing detailDj
and approximation Aj coefficients for each level, where j
represents the decomposed level. /e approximation Aj is
then used for further decomposition, and the maximum
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decomposition level depends on the principal frequency of
the signal.

ϕj,k(n) � 2(j/2)
h 2j

n − k , (3)

ψj,k(n) � 2(j/2)
g 2j

n − k , (4)

where n� 0, 1, 2, ..,M‒ 1, j� 0, 1, 2, . . ., J− 1 with J� number
of decomposition levels, k� 0, 1, 2, . . ., 2j − 1, and M is the
length of the EEG signal x(n). Denoting the high-pass filter
as g (n) and low-pass filter as h (n), the dilation function and
the wavelet function can be written as follows [21]:

Aj �
1
��
M

√ 
n

x(n).ϕj,k(n),

Dj �
1
��
M

√ 
n

x(n).ψj,k(n),

(5)

where x(n) represents the EEG signal with a length ofM and
φj,k(n) and ψj,k(n) represent the dilation and mother
function of the wavelet, respectively.

2.6.4. Proposed EMD-Wavelet Energy. Using EMD, the
preprocessed EEG data were decomposed into several IMFs
with a residue. /e signal is decomposed by direct extraction
of the local energy associated with signals’ time scales. Each
IMF contains single-frequency or limited frequency bands
that allow better representation of the EEG signal. Further-
more, the data contain some important information that
could be regarded as artifact, but it is important for the
classification, and the use of EMD improves the signal-to-
noise ratio while keeping this information. For example, the
quantity and quality of eye blinks and body movement could
be related to student’s interest, and the removal of this

information could cause loss of significant classification
features. With EMD, the whole signal is decomposed into the
IMFs that can be later used efficiently to construct back the
signal with some noise removed [18]. After extracting the
IMFs, DWT was applied for each IMF to obtain the per-
centage of energy (relative energy) corresponding to the
approximation and use it as a feature. /e approximation of
the DWT is used in several studies to construct a noise-free
signal/image because it reserves its properties.

By checking the result of several wavelets, Daubechies
with 5 decomposition levels was found to be appropriate for
obtaining reliable feature vectors from the EEG signal [22].
Daubechies wavelet is the best choice among other mother
wavelets when reserving signal energy is required; besides, it
has strict vanishing moment. In addition, five levels of
decomposition correspond to the basic EEG rhythms: delta,
theta, alpha, beta, and gamma, which offer proper selection
of the required rhythm or wave band.

/e corresponding detail and approximation coefficients
of the EEG signal using db4 with 5 decomposition levels are
shown in Table 1. /e frequency bands of each decompo-
sition level comprised in the range [fm/2: fm] such that fm � fs/
2j+1, where fs is the sampling rate and j is the level of de-
composition [23].

After that, the approximation was used to calculate the
wavelet energy through the following equation [24]:

EAi � 

N

j�1
Aij




2
, (6)

where i� 1, 2, .., l is the number of coefficients by level which
are kept in vector l and N is the signal’s length.

/e percentage of energy of the approximation coeffi-
cients at the coarsest scale for each decomposed IMF was
then arranged in a feature vector for classification. /is was

Figure 1: Participants’ seating during the experiment.

Wearing EEG
simultaneously

Fill in
questionnaires

Fill in
questionnaires

EEG recording

EC EO
Learning
content EO

Figure 2: Experiment block diagram. EC: eyes-closed; EO: eyes-opened; learning content: Laplace transform/integration.
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performed for each EEG channel producing a total of 64
features per segment.

/e main advantage of this method is to precisely extract
the energy of the signal corresponding to the EEG delta
rhythm. Also, the method does not require removal of ar-
tifacts due to the 2-stage filtering using EMD and DWT
which makes it favourable for online and classroom analysis.

2.7. Classification. k-nearest neighbours is a discriminant
classifier that classifies an unseen point from the testing set
based on the dominant class of its nearest neighbours. By
manipulating the k values, kNN can produce a nonlinear
decision boundary.

kNN uses nonparametric density estimation and,
therefore, better fits the actual densities encountered in
practice. Euclidean distance in equation (7) is used to de-
termine the k-nearest neighbours of the unseen instance:

dist xi, yi(  �

�����������



n

i�1
xi − yi( 

2




, (7)

where i� 1, 2, 3, . . ., n is the number of points in a vector.
kNN has different types: one of them is weighted kNN

(wkNN). /e idea of weighted kNN is that each observation
from the training set that is close to a new observation
should get a high weight in the decision, while the obser-
vation that is far away should get lower weight in the de-
cision. /e main difference between kNN and wkNN is that
kNN is influenced only by the k neighbours close to the
observation to make the decision regardless of the individual
similarities, while wkNN gives weight to each observation
based on how close they are to the training observations, and
the higher weights make the decision. /us, wkNN over-
comes the limitation of kNN and improves the classification
accuracy. To determine the weight, the following equation is
simply used:

weight xi, yi(  �
1

dist xi, yi( ( 
2, (8)

where the distance between the two points xi andyi is
calculated using equation (7), and therefore, the number of k
can now be automatically selected.

3. Results and Discussion

3.1. Behavioural Analysis. Examining behavioural data,
which are postknowledge tests and SI questionnaires,

showed a positive relationship between the high score in the
SI questionnaire and the high postknowledge test score.

/e correlation value between postknowledge test and
situational interest in exp. 1 and exp. 2 was r� 0.603 and
r� 0.561, respectively, with p< 0.05 indicating a moderate
positive relationship. /at is, the increase in situational
interest has a positive effect on postknowledge test. /is is in
line with the previous subjective research studies that
showed a positive correlation between situational interest
and academic achievement [16, 17].

3.2. Power Spectral Analysis. /e result of the PSD was
averaged across brain lobes to identify the specific brain
region that represents the significant change between high
and low SI subjects. Table 2 presents the significant differ-
ence that occurred in two brain lobes (frontal and occipital)
and in the theta rhythm in the occipital lobe.

Figure 3 shows an increase of the delta wave in the
frontal lobe in the lecture condition compared to the
baseline condition for both groups. However, this increase
was significantly higher for the low SI group in the frontal
lobe accompanied by a significant decrease in the occipital
lobe. Since processing of visual content such as colors and
shapes in the presentation slides is performed mostly in the
occipital lobe, it is rational to suggest that high SI students
were more focusing and paying attention to the presented
materials compared to low SI students of whom some of
them were sleepy or fell asleep as recorded by the cameras
during the lecture. Moreover, the concomitant change of
delta activation in frontal and occipital lobes could indicate
attention to the presented material as described in [25].
Increase of delta of about 1Hz in parietal and temporal lobes
was reported during Go/No-Go tasks that require cognitive
processing [7].

/e results obtained thus far show the potential for using
delta rhythm to extract features related to situational in-
terest. To extract the delta rhythm, an efficient method has to
be used to obtain good size of data. Extracting delta rhythm
using EMD is possible but will result in low amount of data
because only the lower one or two IMFs can carry the delta
band (<4Hz). Similarly, for DWT, the last approximation
component can be regarded as delta as in Table 1. However,
combining EMD and wavelet as described earlier in the
proposed EMD-wavelet energy section offers good quality
and quantity of EEG data in the delta rhythm./is is because
EMD decomposes the EEG signal into its empirical modes,
and then from each mode, the low-frequency component
represented by the wavelet approximation is extracted. In

Table 1: /e corresponding frequency obtained using db4 for 5 decomposition levels.

Level Wavelet coefficients Frequency (Hz) EEG rhythms EEG frequency (Hz)
1 Dj�0 62.5–125 — —
2 Dj�1 31.25–62.5 Gamma >30
3 Dj�2 15.62–31.25 Beta 13–30
4 Dj�3 7.81–15.62 Alpha 8–12
5 Dj�4 3.91–7.81 /eta 5–7
5 Aj�4 1.91–3.91 Delta <4
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another word, employing EMD followed by wavelet de-
composes the EEG into its modes starting from high-fre-
quency components to low-frequency components and then
extracting the low-frequency components from each mode.
/is way, components such as IMF 1 and IMF 2 that contain
high frequency can be used because it will be followed by
wavelet decomposition to obtain the approximation which
contains the low-frequency component of the signal.

3.3. StatisticalAnalysis. In order to assess the discrimination
ability of the features extracted using the proposed method,
it was compared to another two methods which are the
energy of EMD using all the 8 IMFs (EMD-energy) and the
energy of all the details and approximation of DWT (DWT-
energy). EMD-energy produced 8 features per channel, i.e., 8
features× 8 channels� 64 features, while DWT-energy
produced 6 features× 8 channels� 48 features. To determine
the significance of the results obtained, two-waymultivariate
analysis of variance (MANOVA) was applied. /e two in-
dependent variables were lecture type (Laplace/integration)
and situational interest (low/high), while the dependent
variables were the extracted features. Table 3 summarizes the
number of features of each method and the corresponding
MANOVA result per data segment for the three methods
(including the proposed method).

Table 3 shows significant difference of the extracted
features between high and low SI students only when using
the proposed method with p � 0.008. EMD-energy had less

p value compared to DWT-energy indicating better dis-
crimination ability. /is is because the EMD method has
approximately 4 out of the 8 decomposed IMFs falling in the
delta range, while DWT, as shown in Table 1, has only one
decomposed approximation falling in the delta range which
implies the inclusion of nonsignificant features that belong
to the other EEG rhythms (alpha, beta, and gamma).

Hence, the proposed method achieved both objectives
which are selecting the rhythms related to SI and increasing
the number of these relevant features.

3.4. Classification. /e selected significant features are now
ready for classification. /e features extracted by the two
aforementioned methods along with the proposed method
were classified using linear SVM and weighted kNN. /e
result of the classification is shown in Table 4.

/e results in Table 4 show the superiority of the pro-
posed method in classifying students’ high and low SI in-
terest. /e other two methods show either low sensitivity or
low specificity indicating high misclassification between the
two groups. /e highest accuracy of 85% was achieved using
weighted kNN, while the result of linear SVMwas quite poor
(<67%) which suggests the superiority of weighted kNN in
this case.

/ere are some limitations to the current study. /e two
experiments were carried out in different classrooms which
are slightly different in terms of lightening and available
space. Future studies are encouraged to fix the experiment

Table 2: /e result of the t-test for the PSD between high and low SI groups.

Channel
p value

Delta /eta Alpha Beta Gamma
Fp1 0.054 0.074 0.144 0.152 0.159
Fp2 0.022 0.162 0.390 0.121 0.638
F3 0.378 0.651 0.387 0.307 0.526
F4 0.140 0.180 0.158 0.210 0.424
T7 0.065 0.172 0.316 0.277 0.227
T8 0.631 0.519 0.696 0.754 0.973
O1 0.118 0.328 0.952 0.594 0.332
O2 0.029 0.011 0.367 0.363 0.235
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room and perhaps repeat the experiment with the same
participants. Also, to address the phenomenon of interest, it
is advised to use an individual experiment along with the
classroom to account for possible EEG group-based syn-
chronization or coherence impact; see [26, 27] for a review.

4. Conclusion

/is research is conducted to address the changes between
high and low SI students using EEG./e research proposed a
novel approach for extracting the features from raw EEG
data. /e results supported the claim that high SI students
show some different brain activities compared to low SI
students. /e extracted features relevant to the delta rhythm
achieved high classification accuracy that reached 85.7%
using EMD-wavelet energy features fed into the weighted
kNN classifier. Behavioural analysis revealed a positive re-
lationship between students’ postknowledge test score and
high SI suggesting that students with high SI are most likely
to have high test scores and, as a result, more knowledge
compared to low SI students.
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