
Research Article
Enhanced Comprehensive Learning Particle Swarm
Optimization with Dimensional Independent and
Adaptive Parameters

Xiang Yu 1 and Yu Qiao2

1Provincial Key Laboratory for Water Information Cooperative Sensing and Intelligent Processing,
Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China
2School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China

Correspondence should be addressed to Xiang Yu; xiang.yu@nit.edu.cn

Received 6 October 2020; Revised 3 January 2021; Accepted 25 January 2021; Published 5 February 2021

Academic Editor: Raşit Köker
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Comprehensive learning particle swarm optimization (CLPSO) and enhanced CLPSO (ECLPSO) are two literature metaheuristics
for global optimization. ECLPSO significantly improves the exploitation and convergence performance of CLPSO by pertur-
bation-based exploitation and adaptive learning probabilities. However, ECLPSO still cannot locate the global optimum or find a
near-optimum solution for a number of problems. In this paper, we study further bettering the exploration performance of
ECLPSO. We propose to assign an independent inertia weight and an independent acceleration coefficient corresponding to each
dimension of the search space, as well as an independent learning probability for each particle on each dimension. Like ECLPSO, a
normative interval bounded by the minimum andmaximum personal best positions is determined with respect to each dimension
in each generation. -e dimensional independent maximum velocities, inertia weights, acceleration coefficients, and learning
probabilities are proposed to be adaptively updated based on the dimensional normative intervals in order to facilitate exploration,
exploitation, and convergence, particularly exploration. Our proposed metaheuristic, called adaptive CLPSO (ACLPSO), is
evaluated on various benchmark functions. Experimental results demonstrate that the dimensional independent and adaptive
maximum velocities, inertia weights, acceleration coefficients, and learning probabilities help to significantly mend ECLPSO’s
exploration performance, and ACLPSO is able to derive the global optimum or a near-optimum solution on all the benchmark
functions for all the runs with parameters appropriately set.

1. Introduction

Particle swarm optimization (PSO) [1, 2] is a powerful class
of metaheuristics for global optimization. PSO simulates
the social behavior of sharing individual knowledge when a
flock of birds search for food. In PSO, flock and bird are,
respectively, termed as swarm and particle, and each
particle represents a candidate solution. Suppose the
problem to be solved hasD decision variables, each particle,
denoted as i, “flies” in a D-dimensional search space and is
accordingly associated with a D-dimensional velocity Vi �

Vi,1, Vi,2,􏽮 . . . , Vi,D}, a D-dimensional position

Pi � Pi,1, Pi,2, . . . ,􏽮 Pi,D}, and a fitness f (Pi) indicating the
optimization performance of Pi. -e swarm of particles
randomly initialize velocities and positions and search the
global optimum iteratively, and the final solution found is
the historical position that exhibits the best fitness value
among all the particles. In each iteration (or generation), i
updates Vi according to the present value of Vi, the his-
torical position giving i’s best fitness value so far (i.e., i’s
personal best position), and the personal best positions of
other particles.

Many different PSO variants have been proposed in the
literature since the introduction of PSO in 1995 [3]. For the
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earliest proposed global PSO (GPSO) [3, 4], the global best
position with the best fitness value among all the particles’
personal best positions is used for particle velocity update.
To be specific, in each generation, i’s velocity Vi and position
Pi are adjusted on each dimension as follows:

Vi,d � wVi,d + ar Bi,d − Pi,d􏼐 􏼑 + bs Gd − Pi,d􏼐 􏼑, (1)

Pi,d � Pi,d + Vi,d, (2)

where d (1≤ d≤D) is the dimension index; w is the inertia
weight; a and b are the acceleration coefficients; r and s are
two random numbers uniformly distributed in [0, 1]; Bi �

Bi,1, Bi,2, . . . , Bi,D􏽮 􏽯 is i’s personal best position; and G �

G1, G2, . . . , GD􏼈 􏼉 is the global best position. GPSO is liable to
get stuck in a local optimum if the global best position is far
from the global optimum. Local PSO (LPSO) [5] sets up a
social topology with the shape of, e.g., ring, star, and pyr-
amid. i’s neighborhood comprises i itself and the particles
that are directly connected with i in the topology. Unlike
GPSO, LPSO takes advantage of i’s local best position Li �

Li,1, Li,2, . . . , Li,D􏽮 􏽯 that gives the best fitness value among i’s
neighborhood to guide the flight trajectory update of i, as can
be seen from the following equation:

Vi,d � wVi,d + ar Bi,d − Pi,d􏼐 􏼑 + bs Li,d − Pi,d􏼐 􏼑. (3)

Compared with GPSO, LPSO reduces the chance of
resulting in a local optimum. With respect to both GPSO
and LPSO, i’s personal best position and the global/local best
position are used for updating Vi on all the dimensions.
However, the personal best position and the global/local best
position actually do not always contribute to the velocity
update on each dimension. Comprehensive learning PSO
(CLPSO) [6] and orthogonal learning PSO (OLPSO) [7]
encourage i to learn from different exemplars on different
dimensions according to equation (4) when updating Vi.

Vi,d � wVi,d + ar Ei,d − Pi,d􏼐 􏼑, (4)

where Ei � Ei,1, Ei,2, . . . , Ei,D􏽮 􏽯 is i’s exemplar position. In
CLPSO, i is additionally associated with a fixed learning
probability that controls Ei,d �Bi,d or Bj,d on each dimension
d, where j is a particle randomly selected, and j≠ i. OLPSO
sets Ei,d as i’s personal best position or the global/local best
position on each dimension d with the aid of orthogonal
experimental design; OLPSO therefore has two versions: the
global version OLPSO-G and the local version OLPSO-L.
CLPSO and OLPSO redetermine Ei if i’s personal best fitness
value f (Bi) does not improve for a consecutive number of
generations. CLPSO and OLPSO significantly outperform
GPSO and LPSO in terms of preserving the particles’ di-
versity and probing different regions of the search space to
obtain a promising solution.

Metaheuristics including PSO need to address three
important issues, namely, exploration, exploitation, and
convergence. Exploration means searching diversely to lo-
cate a small region that possibly contains the global opti-
mum, while exploitation refers to concentrating the search

around the small region for solution refinement. Conver-
gence is the gradual transition from initial exploration to
ensuing exploitation. We studied enhancing the exploitation
and convergence performance of CLPSO in [8], and our
proposed PSO variant is called enhanced CLPSO (ECLPSO).
ECLPSO calculates Bd and Bd which are, respectively, the
lower bound and the upper bound of all the particles’
personal best positions on each dimension d in each gen-
eration as follows:

Bd � min B1,d, B2,d, . . . , BN,d􏽮 􏽯,

Bd � max B1,d, B2,d, . . . , BN,d􏽮 􏽯,
(5)

where N is the number of particles. [Bd, Bd] is termed as the
normative interval of dimension d. Let the search space on
dimension d be [Pd, Pd] with Pd being the lower bound and
Pd being the upper bound; ECLPSO deems that when
[Bd, Bd] becomes indeed small (i.e., no greater than 1% of
[Pd, Pd] and no greater than absolute value 2 simulta-
neously), the swarm of particles enter the exploitation phase
on dimension d (i.e., the global optimum or a near-optimum
solution has been identified to be likely around the nor-
mative interval on dimension d); otherwise, the particles are
still in the exploration phase on dimension d (i.e., searching
different regions on dimension d). ECLPSO adaptively
updates the learning probability of each particle based on the
ranking of all the particles’ personal best fitness values and
the number of the dimensions that have entered the ex-
ploitation phase. In addition, ECLPSO conducts perturba-
tion on each dimension d that has entered the exploitation
phase in order to find a high-quality solution around the
normative interval on that dimension.

For a PSO variant, the velocity Vi,d of each particle i on
each dimension d is usually clamped by a maximum velocity
Vd, i.e.,

Vi,d �

Vd, if Vi,d >Vd,

− Vd, else if Vi,d < − Vd,

Vi,d, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

If Vd was too large, the particles might miss some
promising solutions on dimension d; on the contrary, too
small Vd would slow down the search process on di-
mension d. Vd is fixed at 20% of the dimensional search
space [Pd, Pd] by many literature PSO variants including
GPSO, LPSO, CLPSO, OLPSO, and ECLPSO. -e ex-
perimental results on various benchmark functions re-
ported in [8] have demonstrated that though ECLPSO
significantly improves the exploitation and convergence
performance of CLPSO, it still cannot locate the global
optimum or a near-optimum solution on a number of
functions including Rosenbrock’s function, rotated
Schwefel’s function, and rotated Rastrigin’s function. -e
fight trajectory and search behavior of all the particles in
ECLPSO are directly affected by each dimension d’s
maximum velocity Vd, the inertia weight w, the accel-
eration coefficient a, and each particle i’s learning
probability Li. -e experimental results reported in [8]
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have also indicated that the search process of the particles
evolves differently on each dimension; hence, in this
paper, we propose to assign an independent inertia
weight and an independent acceleration coefficient cor-
responding to each dimension, as well as an independent
learning probability for each particle on each dimension.
-e dimensional independent maximum velocities, in-
ertia weights, acceleration coefficients, and learning
probabilities are adaptively updated based on the di-
mensional normative intervals in order to facilitate ex-
ploration, exploitation, and convergence, particularly
exploration. We call the variant with the dimensional
independent and adaptive parameters as adaptive CLPSO
(ACLPSO).

We note that existing PSO variants, e.g., [3–42], have
rarely considered using dimensional independent parame-
ters other than the dimensional independent maximum
velocities, and we find only one work [26] as an exception. In
[26], Taherkhani and Safabakhsh modified GPSO, CLPSO,
and OLPSO with an independent inertia weight and an
independent acceleration coefficient for each particle i on
each dimension d; the inertia weight and the acceleration
coefficient are adaptively adjusted according to the im-
provement status of i’s personal best fitness value and the
distance between i’s dimensional position Pi,d and i’s di-
mensional personal best position Bi,d to achieve better ex-
ploration and faster convergence.

-e rest of this paper is organized as follows. Section 2
reviews the related work on PSO. -e more detailed
working principles of CLPSO and ECLPSO are elaborated
in Section 3. Section 4 presents our proposed dimensional
independent and adaptive parameters and the space and
time complexity analysis of ACLPSO. Performance
evaluation of ACLPSO on a variety of benchmark
functions is given in Section 5. Section 6 concludes this
paper.

2. Related Work

A lot of researchers worldwide have studied PSO. -e status
quo and research trend of PSO relevant research are to
investigate multistrategy and adaptivity based on the 4
typical PSO variants, i.e., GPSO, LPSO, CLPSO, and OLPSO.
Multistrategy refers to employing multiple strategies, while
adaptivity stands for adaptively setting some parameters as
well as appropriately invoking and switching the strategies.
Multistrategy and adaptivity aim to realize goals such as
exploration, exploitation, and convergence and help the
particles efficiently find the global optimum or a near-op-
timum solution.

2.1. RelatedWork Based on GPSO/LPSO. Zhan [9] proposed
adaptive GPSO; the variant identifies the swarm’s evolution
status based on the distribution of the distances among each
particle and all the other particles; the inertia weight and
acceleration coefficient are adaptively adjusted according to
the swarm’s evolution status for expediting convergence; the
variant additionally takes advantage of Gaussian mutation to

appropriately impose some momentum on the global best
position to help escaping from a local optimum. Median-
oriented GPSO was studied in [10]; the variant assigns an
independent acceleration coefficient for each particle i; i is
intentionally guided away from the swarm’s median position
that gives the median fitness value among all the particles’
fitness values during the flight velocity update, and i’s as-
sociated acceleration coefficient is adaptively updated based
on i’s fitness value, the swarm’s worst fitness value, and the
swarm’s median fitness value so as to benefit jumping out of
premature stagnancy in a local optimum and accelerating
convergence. Chen et al. [11] introduced an aging mecha-
nism with an aging leader and challengers for GPSO to
address exploration; by evaluating the improvement status
of the global best fitness value f (G), all the particles’ personal
best fitness values, and the leader’s fitness value, the variant
adaptively analyzes the leader’s leading capability, adjusts
the leader’s life span, and generates a challenger through
uniform mutation to possibly replace the leader when the
leader’s span becomes exhausted. GPSO augmented with
multiple adaptive strategies was presented in [12]; non-
uniformmutation and adaptive subgradient are alternatively
applied to the global best position, respectively, contributing
to escaping from a local optimum and conducting local
search; the variant also performs Cauchy mutation on a
randomly selected particle; as Cauchy mutation hinders
convergence, the variant assigns an independent inertia
weight and an independent acceleration coefficient for each
particle and minimizes the sum of the distances between
each particle and the global best position such that the
inertia weights and acceleration coefficients are adaptively
set and convergence is accordingly accelerated. In [13],
LPSO with adaptive time-varying topology connectivity was
investigated; for each particle i, the variant determines i’s
historical contribution status to the global best position and
the historical status of i’s topology connectivity getting stuck
in a threshold value for every 5 consecutive generations and
then adaptively updates i’s connectivity in the topology; the
variant relies on neighborhood search to help the particles
with their personal best fitness values ceasing improving in
the present generation to jump out of stagnancy. Xia et al.
[14] discussed GPSO with tabu detection and local search in
a shrunk space; each dimension d is segmented into 7 re-
gions of equivalent sizes; for every 5 consecutive generations,
the variant calculates the excellence level of each region on
dimension d based on the ranking of all the particles’
personal fitness values and the distribution of all the par-
ticles’ personal best positions in the regions; according to the
excellence level of the region that the global best position
belongs to, the variant appropriately randomly generates a
possible replacement from some other region to assist es-
caping from a local optimum; when the global best position
falls in a region on dimension d for 80 consecutive gener-
ations, the variant shrinks the dimensional search space to
that specific region for the purpose of speeding up con-
vergence; moreover, the variant conducts local search with
the aid of differential evolution. Other recent works related
to integrating GPSO/LPSO with multistrategy and/or ad-
aptivity include [15–32].
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2.2. Related Work Based on CLPSO/OLPSO. Liang and
Suganthan [33] proposed adaptive CLPSO with history
learning; for every 20 consecutive generations, the variant
adaptively updates each particle’s learning probability
based on the best learning probability out of all the par-
ticles’ learning probabilities (i.e., having resulted in the
biggest improvement for the personal best fitness value)
and Gaussian distribution. Memetic CLPSO was intro-
duced in [34]; the variant employs chaotic local search to
help each particle that cannot improve the personal best
fitness value for 10 consecutive generations getting out of
stagnancy and applies simulated annealing to the particle
whose personal best fitness value continues improving for 3
consecutive generations and whose personal best position is
actually the global best position for solution refinement.
Zheng et al. [35] studied adaptively determining the inertia
weight for CLPSO according to the relative ratio of the
number of particles with improved personal fitness values
in the present generation and adaptively setting the ac-
celeration coefficient by considering the sum of the ratio of
each particle’s fitness change over the particle’s position
change in the present generation. Superior solution guided
CLPSO was presented in [36]; for the variant, the set of
superior solutions includes not only each particle’s personal
best position but also other historically experienced posi-
tions with excellent fitness values; each particle learns from
the superior solutions for velocity update; the variant ap-
plies nonuniform mutation on each particle i to help es-
caping from a local optimum, and the mutation is activated
only when i’s personal best fitness value ceases improving
for 50 consecutive generations, and the average distance
between i’s position in the present generation and i’s po-
sition in the previous 5 generation is less than a threshold
value; the variant additionally takes advantage of some local
search techniques (e.g., quasi-Newton, pattern search, and
simplex search) to refine the global best position after 80%
of the search progress. Qin et al. [37] investigated 4 aux-
iliary strategies for OLPSO to generate an appropriate
exemplar position, respectively, for the purpose of pre-
serving diversity, jumping out of premature stagnancy,
accelerating convergence, and local search; the variant
mutates the global best position to further strengthen ex-
ploration. Other recent works including [38–42] are also
related to multistrategy and/or adaptivity research based on
CLPSO/OLPSO.

3. Background

3.1. Comprehensive Learning Particle Swarm Optimization.
In equation (4), the inertia weight w linearly decreases in
each generation, and the acceleration coefficient a is a
constant value equivalent to 1.5. Let kmax be the predefined
maximum number of generations; w is updated in each
generation k according to the following equation:

w � wmax −
k

kmax
wmax − wmin( 􏼁, (7)

where wmax � 0.9 and wmin � 0.4 are, respectively, the
maximum and minimum inertia weights.

Equation (8) is the empirical expression for setting each
particle i’s learning probability Li. All the particles are as-
sociated with different learning probabilities.

Li � Lmin + Lmax − Lmin( 􏼁
exp(10(i − 1)/N − 1) − 1

exp(10) − 1
, (8)

where Lmax � 0.5 is the maximum learning probability and
Lmin � 0.05 is the minimum learning probability.

For each particle i on each dimension d, a random
number uniformly distributed in [0, 1] is generated; if the
number is no less than Li, the dimensional exemplar Ei,d
�Bi,d; otherwise, Ei,d �Bj,d with j≠ i. To determine j, two
different particles excluding i are randomly selected, and j is
the winner with a better fitness value out of the two particles.
If Ei,d is the same as Bi,d on all the dimensions, CLPSO
randomly chooses one dimension to learn from some other
particle’s personal best position. CLPSO redetermines i’s
exemplar position Ei if i’s personal best fitness value ceases
improving for 7 consecutive generations.

CLPSO calculates the fitness value of i only if i is feasible
(i.e., within the dimensional search space [Pd, Pd] on each
dimension d). If i is infeasible, as all the dimensional ex-
emplars are feasible, i will eventually be drawn back to the
search space.

3.2. Enhanced Comprehensive Learning Particle Swarm
Optimization. ECLPSO introduces two enhancements,
namely, perturbation-based exploitation (PbE) and adaptive
learning probabilities (ALPs), to improve the exploitation
and convergence performance of CLPSO.

In each generation, regarding each dimension d, if the
dimensional normative interval [Bd, Bd] is indeed small, the
PbE enhancement updates the dimensional position Vi,d for
each particle i according to equation (9) instead of equation
(4):

Vi,d � wPbEVi,d + aPbEr Ei,d + c
Bd + Bd

2
− Ei,d􏼠 􏼡 − Pi,d􏼠 􏼡,

(9)

where wPbE � 0.5 is the inertia weight used exclusively for
the PbE enhancement; aPbE � 1.5 is the acceleration coeffi-
cient used exclusively for the PbE enhancement; and c is the
perturbation coefficient. c is randomly generated from a
Gaussian distribution with mean 1 and standard deviation
0.65, and c is clamped to 10 times of the standard deviation
on both sides of the mean. Each particle i is pulled towards
Ei,d plus a perturbation term c((Bd + Bd)/2 − Ei,d) on di-
mension d. -e PbE enhancement contributes to sufficient
exploitation around the indeed small dimensional normative
interval. Note that Vi,d updated by equation (9) is not limited
by the dimensional maximum velocity Vd.

-eminimum learning probability Lmin is fixed at 0.05. As
expressed in equation (10), the maximum learning probability
Lmax logarithmically increases in each generation k:
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Lmax � Lmin + h + q log(D+1) Mk + 1( 􏼁, (10)

where Mk is the number of exploitation valid dimensions
(i.e., the number of the dimensions whose normative in-
tervals have ever become indeed small) before or just in
generation k; h� 0.25 is the difference coefficient; and
q� 0.45 is the rate coefficient. Lmax is small (i.e., 0.3) when
Mk � 0 and benefits initial exploration. Lmax increases rapidly
with the particles’ exploitation progress to facilitate con-
vergence. -e ALP enhancement adaptively determines all
the particles’ learning probabilities based on the ranking of
the particles’ personal best fitness values, i.e.,

Li � Lmin + Lmax − Lmin( 􏼁
exp 10 Ti − 1( 􏼁/N − 1( 􏼁 − 1

exp(10) − 1
,

(11)

where Ti is i’s rank. If i gives the best personal best fitness
value, then Ti � 1. A low-ranked particle is often better on
more dimensions with respect to the personal best position
than a high-ranked particle.

4. Adaptive Comprehensive Learning Particle
Swarm Optimization

4.1. Dimensional Independent and Adaptive Maximum
Velocities. Suppose the optimization problem to be solved is
f (X) with X being the D-dimensional decision vector, and
the global optimum is X∗ � (X∗1 , X∗2 , . . . , X∗D). CLPSO and
ECLPSO fail to observe and address the fact that, on a
dimension d, if the dimensional global optimum X∗D is
located near either bound of the dimensional search space
[Pd, Pd] and all the particles’ dimensional personal best
positions are scattered (i.e., the dimensional normative
interval [Bd, Bd] is large), then it would be difficult for the
swarm of particles to locate X∗D; this is because the di-
mensional maximum velocity Vd updated by equation (4) is
restricted to be 20% of [Pd, Pd]. Figure 1 illustrates this
phenomenon. In Figure 1(a), a particle i’s dimensional
position Pi,d and X∗D are close to different bounds of
[Pd, Pd], and i’s dimensional exemplar position Ei,d is lo-
cated in between Pi,d and X∗D; the distance Ei,d–Pi,d and the
distance X∗D − Ei,d both are equal to 40% of Pd − Pd; and i
needs at least 2 generations to reach around Ei,d. As can be
seen from Figure 1(b), when i flies past Ei,d, i’s dimensional
velocity update is influenced by two forces, i.e., the inertia
force wVi,d and the exemplar force ar (Ei,d–Pi,d); the more i
being away from Ei,d, the more the exemplar force is to pull
it back to Ei,d. In Figure 1(c), X∗D is around Pd, and Pi,d is not
that far from X∗D; however, Ei,d is close to Pd ; Ei,d guides i to
fly away from X∗D. As a result, the chance for a particle to
reach close to the dimensional global optimum is small.
Furthermore, in case the dimensional global optimum is
located near the dimensional search space bound and the
dimensional normative interval is large on a significant
number of dimensions, CLPSO and ECLPSO would fail to
find the global optimum or a near-optimum solution, e.g.,
on Rosenbrock’s function, rotated Schwefel’s function, and
rotated Rastrigin’s function, for all the runs as reported in

[8].-erefore, Vd should not be fixed at 20% of [Pd, Pd]. We
propose to adaptively adjust Vd in each generation
according to the following equation:

Vd � s Bd − Bd( 􏼁, (12)

where s is the scaling coefficient and is a positive value. Vd is
positively related with the dimensional normative interval’s
size Bd − Bd. When [Bd, Bd] is large, Vd is large and con-
tributes to timely flight for getting close to X∗D; on the
contrary, Vd is small when [Bd, Bd] becomes small in order
to benefit fine-grained search.

Allowing each particle i’s position Pi,d on each dimen-
sion d to be infeasible also inhibits the particles to move close
to X∗D. Figure 1(d) shows an example; X∗D is near Pd, Pi,d
trespasses Pd and is infeasible, and Ei,d is around Pd; because
of the force imposed by Ei,d, Pi,d is pulled to a feasible di-
mensional position far from X∗D. Accordingly, an infeasible
dimensional position is proposed to be repaired immediately
by reinitialization between the previous feasible dimensional
position and the trespassed dimensional search space bound
[43, 44].

4.2. Dimensional Independent and Adaptive Inertia Weights
andAccelerationCoefficients. For CLPSO and ECLPSO, the
inertia weight w used in equation (4) is initially large to
result in a large inertia force and is helpful for exploration,
and w linearly decreases in each generation to gradually
decrease the inertia force for the purpose of facilitating
convergence and solution refinement. As w is dynamically
updated according to the generation counter k in equation
(7), w might obstruct exploration if the swarm of particles
had not found the global optimum or a near-optimum
solution even when k is large, and w might also impede
convergence if a promising solution had already been
located, and the particles can thus start solution refine-
ment even when k is small. In addition, the same w is used
with respect to all the dimensions. -e search processes of
the particles often evolve differently on different di-
mensions, i.e., taking different number of generations for
the exploration phase. We thus propose to assign an
independent weight wd for each dimension d to replace w

in equation (4) and adaptively set wd when the dimen-
sional normative interval [Bd, Bd]is greater than 1% of the
dimensional search space [Pd, Pd] or greater than 2 as
follows:

wd � u
Bd − Bd

Pd − Pd

+(1 − u) wmax −
k

kmax
wmax − wmin( 􏼁􏼠 􏼡,

(13)

wd �

wmax, if wd >wmax,

wmin, else if wd <wmin,

wd, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(14)

where u is the tradeoff coefficient and is a positive number. u
adjusts the tradeoff between the term (Bd − Bd)/(Pd − Pd)

and the term wmax − (k/kmax)(wmax − wmin). -e empirical
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value chosen for u is 0.3. -e incorporation of the term
(Bd − Bd)/(Pd − Pd) aims to improve the particles’ explo-
ration and convergence capabilities. If the dimensional
normative interval [Bd, Bd] is large, the particles are still
exploring different regions of the dimensional search space,
and accordingly, wd needs to be large; when [Bd, Bd] be-
comes small, wd also grows small to facilitate convergence.

We further propose to assign an independent acceler-
ation coefficient ad for each dimension d to replace a in
equation (4). wd and ad must satisfy the following so-called
stability condition [26, 45, 46]:

1 − wd ≥ 0 andwd + 1 − rad ≥ 0. (15)

Hence, ad is simply adaptively adjusted according to the
following equation:

ad � wd + 1. (16)

4.3. Dimensional Independent and Adaptive Learning
Probabilities. Regarding each particle i in CLPSO and
ECLPSO, a large value for i’s learning probability Li enables i
to learn more from its own personal best position for ve-
locity update and hence is beneficial for solution refinement,
while a small value for Li will let i to learn more from other
particles’ personal best positions and accordingly encour-
ages i to search diversely. Li is adaptively updated based on i’s
fitness rank Ti and the number of exploitation valid di-
mensions Mk in each generation k. A serious issue occurs if
Mk is 0 or a small value in all the generations, e.g., as reported
on Rosenbrock’s function, rotated Schwefel’s function, and
rotated Rastrigin’s function in [8]; small Mk leads to small
learning probabilities for the swarm of particles and fails to
realize convergence. We propose to assign an independent
learning probability Li,d for each particle i on each di-
mension d and adaptively set Li,d in each generation k as
follows:

Li,d � v logkmax
k +

Bd − Bd

Pd − Pd

exp D Ti − 1( 􏼁/N − 1( 􏼁 − 1
exp(D) − 1

,

(17)

Li,d �

Lmax, if Li,d >Lmax,

Lmin, else if Li,d <Lmin,

Li,d, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(18)

where Lmin � 0.05; Lmax � 0.75; and v is the learning prob-
ability-based coefficient and is a positive number no greater
than 1. -e term logkmax

k grows logarithmically with the
generator counter k in order to facilitate convergence. -e
term (Bd − Bd)/(Pd − Pd), being positively related with
Bd − Bd, also benefits convergence when the dimensional
normative interval [Bd, Bd] is large.

4.4. Workflow and Complexity Analysis. ACLPSO is our
proposed PSO variant based on ECLPSO with dimensional
independent and adaptive maximum velocities, inertia

weights, acceleration coefficients, and learning probabilities.
-e detailed step-by-step workflow of ACLPSO is as follows:

Step 1: for each particle i and each dimension d,
randomly initialize i’s dimensional velocity Vi,d and
dimensional position Pi,d based on the dimensional
search space [Pd, Pd], calculate i’s fitness value f (Pi),
and set i’s personal best fitness value f (Bi)� f (Pi), i’s
dimensional personal best position Bi,d � Pi,d, i’s ces-
sation counterWi � 0, the generation counter k� 1, the
maximum number of generations kmax, and all the
other parameters
Step 2: if k≤ kmax, go to Step 3; otherwise, go to Step 7
Step 3: for each dimension d, determine the dimen-
sional normative interval [Bd, Bd], and update the
dimensional maximum velocity Vd according to
equation (12)
Step 4: for each particle i, calculate i’s fitness rank Ti;
and if Wi% (g+ 1)� 0, reset Wi � 1 and reassign i’s
dimensional exemplar Ei,d on each dimension d
Step 5: for each particle i and each dimension d, adjust
i’s dimensional learning probability Li,d according to
equations (17) and (18); if [Bd, Bd] is indeed small,
update Vi,d according to equation (9); otherwise, up-
date the dimensional inertia weight wd according to
equations (13) and (14), the dimensional acceleration
coefficient ad according to equation (16), and Vi,d

according to equations (4) and (6); update Pi,d
according to equation (2), and repair Pi,d if Pi,d tres-
passes [Pd, Pd]

Step 6: for each particle i, calculate f (Pi); if f (Pi)≥ f (Bi),
update Wi �Wi+ 1; otherwise, set f (Bi)� f (Pi) and
Bi,d � Pi,d on each dimension d
Step 7: output the global best position with the best
fitness value among all the particles’ personal best
positions

As analyzed in [8], the time and space complexities of
ECLPSO are, respectively, O (ND) bytes and O (kmax
(NlogN+ND)) basic operations plus O (kmaxN) function
evaluations (FEs). Concerning ACLPSO, storing the di-
mensional independent inertia weights and acceleration
weights requires O (D) bytes, and storing the dimensional
independent learning probabilities needs O (ND) bytes.
Adaptively updating the dimensional independent maxi-
mum velocities, inertia weights, and acceleration coefficients
calls forO (kmaxD) basic operations, and adaptively adjusting
the dimensional independent learning probabilities de-
mands for O (kmaxND) basic operations. -erefore, the time
and space complexities of ACLPSO are the same as those of
ECLPSO.

5. Experimental Studies

5.1. Experimental Settings. -e experimental hardware
platform is a Microsoft Surface Pro laptop computer with an
Intel Core i5-7300U central processor at the frequency of
2.6GHz, 8GB internal memory, and 256GB solid-state disk
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external memory. -e operating system is 64 bit Windows
10.

16 commonly studied 30-dimensional functions
[6–8, 24, 47] are used in this paper for benchmarking
ACLPSO and other PSO variants. -e name, the expression,
the global optimum, the function value of the global opti-
mum, the search space, and the initialization space of each
function are listed in Table 1.-e functions are classified into
5 categories, namely, unimodal, multimodal, shifted, ro-
tated, and shifted rotated. Rosenbrock’s function f3 is uni-
modal in a 2-dimensional or 3-dimensional search space, but
is multimodal in higher-dimensional cases [48]; it features a
narrow valley from perceived local optima to the global
optimum. With the incorporation of the cosine term
cos(2πXd), there are a large number of regularly distributed
local optima for Rastrigin’s function f5. Ackley’s function f7
has a deep global optimum and many minor local optima.
Griewank’s function f8 contains a cosine multiplication term
􏽑

D
d�1 cos(Xd/

��
d

√
) that causes linkages among the decision

variables; f8 is similar to f5 in terms of many regularly
distributed local optima. Schwefel’s function f9 has a global
optimum that is distant from the local optima. With respect
to the unimodal and multimodal functions f1 to f9, the di-
mensional values of the global optimum are the same on all
the dimensions. A shifted function shifts the global optimum
X∗ to a vector Z that can be different on each dimension. A
rotated function multiplies the original decision vector X by
an orthogonal matrix O to get a rotated decision vector
Y�XO; because of the rotation, if one dimension of X
changes, all the dimensions of Y get affected. A shifted
rotated function is both shifted and rotated. -e shifted
global optima of the shifted functions f10 to f12 and the
shifted rotated function f16 can be found in [47]. -e or-
thogonal matrices of the rotated functions f13 to f15 and the
shifted rotated function f16 are generated by Salomon’s
method [49]. -e initialization spaces of the functions f1, f2,
f4, f5, f6, f7, f8, f13, and f15 are intentionally set to be
asymmetric.

We conduct experiments to investigate the following 3
issues: (1) what are the key parameters of ACLPSO and how

do the key parameters impact the performance of ACLPSO?
(2) How do the dimensional independent and adaptive
maximum velocities, inertia weights, acceleration coeffi-
cients, and learning probabilities improve the performance
of ACLPSO? (3) How is the performance of ACLPSO as
compared with other PSO variants? We consider 3 variants
of ACLPSO, i.e., ACLPSO-1, ACLPSO-2, and ACLPSO-3.
ACLPSO-1, ACLPSO-2, and ACLPSO-3 are the same as
ACLPSO, except that ACLPSO-1 does not repair the di-
mensional position Pi,d for each particle i on each dimension
d if Pi,d trespasses the dimensional search space [Pd, Pd],
ACLPSO-2 does not adopt the dimensional independent
and adaptive inertia weights and acceleration coefficients,
and ACLPSO-3 does not take advantage of the dimensional
independent and adaptive learning probabilities. Besides
ACLPSO-1, ACLPSO-2, and ACLPSO-3, ACLPSO is further
compared with CLPSO [6], ECLPSO [8], OLPSO-L [7],
adaptive GPSO (AGPSO) [9], feedback learning GPSO with
quadratic inertia weight (FLGPSO-QIW) [15], and GPSO
with an aging leader and challengers (ALC-GPSO) [11]. For
ACLPSO, ACLPSO-1, ACLPSO-2, ACLPSO-3, CLPSO, and
ECLPSO, they are all implemented by Java, the number of
particles N is set as 40, and 25 runs are executed on each
function. -e parameters of CLPSO, ECLPSO, OLPSO-L,
AGPSO, FLGPSO-QIW, and ALC-GPSO take the recom-
mended values that were empirically determined based on
extensive experiments on various benchmark functions in
[6–9, 11, 15]. Note that the value of N could be different for
different PSO variants. N is fixed at 40 for CLPSO, ECLPSO,
and OLPSO-L in [6–8], while it is equal to 20 for AGPSO,
FLGPSO-QIW, and ALC-GPSO in [9, 11, 15]. As we do not
have the source codes of OLPSO-L, AGPSO, FLGPSO-QIW,
and ALC-GPSO, we directly copy the results of these 4
variants from [7, 24] for performance comparison. Con-
cerning all the PSO variants compared, each run consumes
200,000 FEs.

5.2. Experimental Results and Discussion. -e mean and
standard deviation (SD) global best fitness value results of

Pd Pd

Pi,d Ei,d X∗

d

ar (Ei,d − Pi,d)

(a)

Pd Pd

Pi,dEi,d X∗

d

ar (Ei,d − Pi,d)

wVi,d

(b)

Pd Pd

Pi,dEi,d X∗

d

ar (Ei,d − Pi,d)

(c)

Pd Pd

Pi,dEi,d X∗

d

ar (Ei,d − Pi,d)

(d)

Figure 1: Illustration of why it is difficult for particle i to reach the dimensional global optimum X∗D on dimension d. (a) Pi,d and X∗D are
close to different bounds of [Pd, Pd], and Ei,d is located in between Pi,d andX∗D. (b) i flies past Ei,d. (c)X∗D is around Pd, Pi,d is not that far from
X∗D, and Ei,d is close to Pd . (d) X∗D is around Pd, Pi,d trespasses Pd, and Ei,d is close to Pd.
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ACLPSO with different combinations for the values of the
normative interval scaling coefficient s and the learning
probability-based coefficient v on all the benchmark func-
tions are listed in Table 2. Four different combinations are
considered, i.e., I (s� 1.1, v � 0.05), II (s� 1.1, v � 0.3), III
(s� 0.1, v � 0.05), and IV (s� 0.1, v � 0.3), and the best
combination on each function is marked in bold. Table 3
gives the mean and SD final number of exploitation valid
dimensions’ (i.e., Mkmax

) results of ACLPSO with 4 different
(s, v) combinations on all the functions. -e mean and SD
global best fitness value results of ACLPSO with the best
(s, v) combination, ACLPSO-1, ACLPSO-2, ACLPSO-3,
CLPSO, ECLPSO, OLPSO-L, AGPSO, FLGPSO-QIW, and
ALC-GPSO on all the functions are compared in Table 4. A
two-tailed t-test with degree of freedom 48 and significance
level 0.05 is performed between the global best fitness value
results of ACLPSO with the best (s, v) combination and
those of ECLPSO on each function, and the t-test results on
all the functions are listed in Table 5. Table 6 gives the mean
and SD execution time results of ACLPSO with the best (s, v)

combination, ECLPSO, and CLPSO on all the functions.
Table 7 lists the mean and SD global best fitness value results
of ACLPSO with other parameter settings on f3, f4, f12, and
f14. -e mean and SD global best fitness value and execution
time results of CLPSO with other parameter settings on f1
and f2 are given in Table 8. Figure 2 illustrates the changes of
the global best fitness value during the search process of
ACLPSO with the best (s, v) combination and in the best run
on f2, f3, f4, f12, f13, and f14.

As can be seen from Table 2, the best (s, v) combinations
are, respectively, IV, IV, III, IV, I, II, II, II, I, I, II, IV, II, II, II,
and IV on the 16 functions. ACLPSO with the best (s, v)
combination is able to find the global optimum or a near-
optimum solution on each function for all the 25 runs.
ACLPSO is likely to get trapped in an unsatisfactory local
optimum on f3 with combinations II and IV, on f4 with
combinations I, II, and III, on f5 with combinations II and
IV, on f9 with combinations II, III, and IV, on f10 with
combinations II and IV, on f12 with combinations I and II,
on f13 with combinations I, III, and IV, and on f14 with

Table 2: Mean and standard deviation global best fitness value results of ACLPSO with different values for the normative interval scaling
coefficient s and the learning probability-based coefficient v on all the benchmark functions.

Function Global best fitness value
ACLPSO

I: s� 1.1; v � 0.05 II: s� 1.1; v � 0.3 III: s� 0.1; v � 0.05 IV: s� 0.1; v � 0.3

f1
Mean 1.23E − 10 3.37E − 105 2.87E − 12 3.28E− 115
SD 6.08E − 10 9.36E − 105 8.18E − 12 6.11E− 115

f2
Mean 1.48E − 17 4.74E − 22 3.09E − 29 7.25E − 37
SD 2.19E − 17 9.70E − 22 4.27E − 29 6.84E − 37

f3
Mean 4.23 6.56E1 1.84 2.61E1
SD 2.43 2.49E1 1.63 2.87E1

f4
Mean 1.56E4 1.71E4 3.39E2 7.87E − 2
SD 3.44E3 8.24E3 8.84E1 8.72E − 2

f5
Mean 0 1.55 5.17E − 1 3.02
SD 0 9.12E − 1 5.83E − 1 1.45

f6
Mean 4.19E − 1 0 5.66E − 1 2.00E − 1
SD 7.19E − 1 0 6.63E − 1 4.08E − 1

f7
Mean 1.92E − 6 3.11E− 15 1.15E − 8 3.25E − 15
SD 6.96E − 6 0 5.77E − 8 7.11E − 16

f8
Mean 3.35E − 8 0 1.87E − 8 1.38E − 11
SD 3.88E − 8 0 3.45E − 8 4.56E − 11

f9
Mean 3.82E− 4 4.29E2 2.23E2 5.87E2
SD 9.15E− 7 2.71E2 1.38E2 2.04E2

f10
Mean 4.05E2 5.12E2 4.23E2 5.86E2
SD 1.60E1 1.02E2 2.32E1 2.56E2

f11
Mean 1.26E − 7 0 1.28E − 7 1.96E − 3
SD 3.30E − 7 0 2.34E − 7 8.01E − 3

f12
Mean 4.19E3 3.26E2 6.37E2 −4.48E2
SD 9.97E2 2.28E2 2.59E2 3.04

f13
Mean 3.65E1 3.25 2.04E1 1.39E1
SD 7.40 1.88 3.70 2.53

f14
Mean 5.78E2 2.53E2 1.35E3 1.32E3
SD 4.00E2 2.09E2 1.85E2 2.19E2

f15
Mean 2.05E − 3 5.33E− 17 1.65E − 3 2.76E − 3
SD 2.71E − 3 6.51E− 17 2.70E − 3 5.91E − 3

f16
Mean 2.73E − 5 3.96E − 15 1.74E − 6 3.82E − 15
SD 9.24E − 5 1.55E − 15 6.94E − 6 1.45E − 15
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combinations III and IV. -e accuracy of the mean global
best fitness value with the best (s, v) combination is no-
ticeably excellent on f1, f2, f5, f6, f7, f8, f11, f15, and f16. -e
observations indicate that s and v are the key parameters for
ACLPSO, and the performance of ACLPSO is sensitive to
the values of s and v. -e normative interval scaling coef-
ficient s determines the search granularity; large s encourages
the particles to search in a large granularity so as to escape
from an unsatisfactory local optimum and locate the global
optimum or a near-optimum solution, whereas small s will
let the particles to search in a small granularity so as not to
miss the deep global optimum or a deep near-optimum
solution during the search process. -e learning probability-
based coefficient v controls for a particle the number of
dimensions learning from the particle’s own personal best
position; large and small values for v, respectively, contribute
to the exchange of valuable information among the particles
and preserving valuable information embodied in each
particle; large v also benefits convergence and exploitation
but might lead to premature stagnancy and hinders

exploration in case some valuable information about the
global optimum or a near-optimum solution was not pre-
served. We can see from Table 3 that the mean number of
exploitation valid dimensions’ results of ACLPSO with v

being set as 0.3 is 30 or close to 30 on all the functions except
f6; in contrast, the mean number of exploitation valid di-
mensions’ results of ACLPSO is less than 11 or even 0 with v

being fixed at 0.05 on f3, f4, f6, f8, f10, f11, f12, f13, f14, and f15.
-e functions have different landscapes; thus, different (s, v)
combinations achieve the best performance on different
functions.

In Table 4, ACLPSO-1, ACLPSO-2, and ACLPSO-3
take the same values for s and/or v as the best (s, v)
combination of ACLPSO on each function. -e mean
global best fitness value results of ACLPSO-1 are worse
than those of ACLPSO on f1, f2, f3, f10, f13, f14, f15, and f16.
ACLPSO-2 performs inferior to ACLPSO in terms of the
mean global best fitness value results on f1, f2, f3, f4, f5, f10,
f11, f12, f13, f14, f15, and f16.-e mean global best fitness value
results of ACLPSO-3 are also worse than those of ACLPSO

Table 3: Mean and standard deviation number of exploitation valid dimensions’ results of ACLPSO with different (s, v) combinations on all
the benchmark functions.

Function Number of exploitation valid dimensions
ACLPSO

I: s� 1.1; v � 0.05 II: s� 1.1; v � 0.3 III: s� 0.1; v � 0.05 IV: s� 0.1; v � 0.3

f1
Mean 26.4 30 24 30
SD 9.95 0 12.25 0

f2
Mean 30 30 30 30
SD 0 0 0 0

f3
Mean 1.08 29.4 6.04 30
SD 5.40 1.83 10.13 0

f4
Mean 0 0 0 30
SD 0 0 0 0

f5
Mean 30 30 10.48 29.72
SD 0 0 3.08 0.46

f6
Mean 0 0.2 0 0.12
SD 0 0.41 0 0.44

f7
Mean 27.56 30 28.8 30
SD 8.30 0 6.00 0

f8
Mean 2.2 30 2.36 29.52
SD 6.09 0 5.16 1.16

f9
Mean 22.8 30 5.24 30
SD 13.08 0 7.90 0

f10
Mean 6.36 29.76 7.4 29.96
SD 11.55 0.72 12.12 0.2

f11
Mean 0.68 30 1.6 29.6
SD 3.00 0 3.88 0.82

f12
Mean 0 6.28 0 30
SD 0 6.28 0 0

f13
Mean 0 25.44 0 8.72
SD 0 8.73 0 7.83

f14
Mean 3.28 28.36 0 27.12
SD 5.12 3.62 0 7.37

f15
Mean 3.92 30 2.52 29.56
SD 5.10 0 4.74 1.08

f16
Mean 26.4 30 27.6 30
SD 9.95 0 8.31 0
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on all the functions except f9 and f16. ACLPSO-1 finds an
unsatisfactory local optimum on f14 for all the runs,
ACLPSO-2 cannot locate the global optimum or a near-
optimum solution on f3, f10, f11, and f14 for all or some of the
runs, and ACLPSO-3 is not able to effectively solve f4, f6, f12,
f13, and f14 as the solutions found are unsatisfactory for all
or some of the runs. -e comparisons among ACLPSO,

ACLPSO-1, ACLPSO-2, and ACLPSO-3 validate that the
repairing of a particle’s dimensional position when tres-
passing the dimensional search space, the dimensional
independent and adaptive inertia weights and acceleration
coefficients, and the dimensional independent and adaptive
learning probabilities is appropriate to be employed by
ACLPSO.

Table 5: Two-tailed t-test results for the comparison of the global best fitness value results between ACLPSOwith the best (s, v) combination
and ECLPSO on all the benchmark functions.

Function f1 f2 f3 f4 f5 f6 f7 f8
t-test — 3.01E − 7 1.56E − 9 6.68E − 15 — 0.20 0.33 —
Function f9 f10 f11 f12 f13 f14 f15 f16
t-test 0.06 1.21E − 18 — 1.77E − 17 8.49E − 21 3.01E − 21 0.10 0.74

Table 6: Mean and standard deviation execution time results of ACLPSO with the best (s, v) combination, ECLPSO, and CLPSO on all the
benchmark functions.

Function f1 f2 f3 f4 f5 f6 f7 f8

ACLPSO Execution time (in ms) Mean 784.20 847.88 485.52 765.48 617.16 545.16 823.52 888.64
SD 32.11 37.07 63.98 50.57 26.41 39.47 41.14 39.62

ECLPSO Execution time (in ms) Mean 732.20 794.84 474.76 550.76 680.96 563.28 795.84 827.12
SD 24.49 28.65 22.78 26.11 31.31 26.37 30.06 40.16

CLPSO Execution time (in ms) Mean 322.68 363.08 370.40 411.36 448.40 428.16 443.64 497.96
SD 16.75 22.64 22.28 20.09 21.93 21.40 22.16 15.45

Function f9 f10 f11 f12 f13 f14 f15 f16
ACLPSO Execution time (in ms) Mean 672.04 531.96 887.88 745.08 821.24 1138.20 1102.04 1095.20

SD 46.41 86.05 40.16 39.98 42.10 79.25 37.37 46.11

ECLPSO Execution time (in ms) Mean 853.60 728.88 848.08 576.72 804.80 945.84 1010.16 1002.08
SD 58.39 36.64 90.89 30.85 38.12 33.49 60.72 39.65

CLPSO Execution time (in ms) Mean 487.24 380.84 519.04 435.84 660.28 794.28 738.80 663.08
SD 15.41 26.48 23.56 33.77 40.25 34.91 20.50 40.10

Table 7: Mean and standard deviation global best fitness value results of ACLPSO with other parameter settings on f3, f4, f12, and f14.

Function Parameter setting
Global best fitness value

Mean SD

f3
N � 40, s� 0.1, v � 0.2 1.89E1 2.66E1
N � 40, s� 0.1, v � 0.1 1.44E1 2.24E1

f4
N � 20, s� 0.1, v � 0.3 6.32E2 3.62E2
N � 40, s� 0.3, v � 0.3 1.72E2 1.34E2
N � 40, s� 0.9, v � 0.3 2.69E4 5.48E3

f12
N � 40, s� 0.1, v � 0.1 2.15E2 1.90E2
N � 40, s� 0.1, v � 0.2 − 4.18E2 1.18E2

f14
N � 20, s� 1.1, v � 0.3 7.56E2 5.21E2
N � 40, s� 0.9, v � 0.3 4.25E2 4.34E2
N � 40, s� 0.3, v � 0.3 5.61E2 6.43E2

Table 8: Mean and standard deviation global best fitness value and execution time results of CLPSO with other parameter settings on f1 and
f2.

Function Parameter setting
Global best fitness value Execution time (in ms)

Mean SD Mean SD

f1
N� 40; the number of FEs is 500,000 7.13E − 29 2.41E − 28 815.32 27.00
N� 80; the number of FEs is 500,000 3.13E − 19 5.15E − 19 805.48 28.88

f2
N� 40; the number of FEs is 500,000 9.39E − 22 1.72E − 21 844.08 13.77
N� 80; the number of FEs is 500,000 8.38E − 13 2.69E − 13 861.88 22.36
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Figure 2: -e changes of the global best fitness value during the search process of ACLPSO with the best (s, v) combination and in the best
run. (a) f2. (b) f3. (c) f4. (d) f12. (e) f13. (f ) f14.
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It can be seen from Table 4 that ACLPSO, in general,
outperforms the literature PSO variants including CLPSO,
ECLPSO, OLPSO-L, AGPSO, FLGPSO-QIW, and ALC-
GPSO in terms of the mean global best fitness value results.
CLPSO and ECLPSO both fail to obtain the global optimum
or a near-optimum solution on f3, f4, f12, f13, and f14 for all the
runs. ECLPSO fails additionally on f10 with the finding of an
unsatisfactory local optimum for all the runs. As the mean
and SD global best fitness value results of OLPSO-L, AGPSO,
FLGPSO-QIW, and ALC-GPSO are directly copied from
[7, 24], the symbol “—” represents an unavailable result in
Table 4. We can see unsatisfactory mean global best fitness
value results for OLPSO-L on f10, f13, and f14, for AGPSO on
f3, f4, f5, f12, f13, f15, and f16, for FLGPSO-QIW on f3, f4, f5, f6,
f12, f13, f15, and f16, and for ALC-GPSO on f3, f9, and f10. -e
accuracies of ACLPSO’s mean global best fitness value re-
sults are the best on f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, and f15.
-e symbol “—” also appears in Table 5 and denotes a
division by zero error. -e t-test results are less than 0.05 on
f2, f3, f4, f10, f12, f13, and f14; therefore, the global best fitness
value results of ACLPSO are significantly different from
those of ECLPSO on these 7 functions according to the
statistics perspective. Based on the observations, though
ECLPSO enhances the exploitation and convergence per-
formance of CLPSO, the exploration performance of
ECLPSO is as weak as that of CLPSO on some complex
problems; and ACLPSO successfully addresses significantly
bettering the exploration performance of ECLPSO, and
ACLPSO is still good at exploitation and convergence, owing
to the adoption of the dimensional independent and
adaptive maximum velocities, inertia weights, acceleration
coefficients, and learning probabilities.

ACLPSO and ECLPSO take advantage of more strategies
than CLPSO to significantly achieve better performance; as a
result, the mean execution time results of ACLPSO and
ECLPSO are more than those of CLPSO on all the functions
in Table 6. -e differences are most noticeable on f1, f2, f7, f8,
f11, f15, and f16, and the mean execution time of ACLPSO and
that of ECLPSO are both about 300 to 500ms more than that
of CLPSO on each of these 7 functions. It must be pointed
out that, for many real-world complex problems, the
function evaluation or, in other words, evaluating the fitness
of a position could be much time consuming, and ac-
cordingly, the execution time difference caused by more
strategies of ACLPSO and ECLPSO than CLPSO would
become relatively very small. -e mean execution time
results of ACLPSO are slightly more than those of ECLPSO
on f1, f2, f3, f7, f8, f11, and f13, considerably more on f4, f12, f14,
f15, and f16, slightly less on f5 and f6, and considerably less on
f9 and f10, meaning that the dimensional independent and
adaptive maximum velocities, inertia weights, acceleration
coefficients, and leaning probabilities essentially do not
increase execution time. With respect to ACLPSO, ECLPSO,
and CLPSO, the mean execution time spent on a rotated
function is more than that consumed on the corresponding
original function, as can be observed from the pair of the
mean execution time results on f13 and f5, the pair of f14 and
f9, the pair of f15 and f8, and the pair of f16 and f7. -e SD
execution time results of ACLPSO, ECLPSO, and CLPSO are

rather small as compared to the mean execution time results
on all the functions.

-e number of particles N is also a key parameter for
ACLPSO. As can be seen from Table 7, setting N as 20 on f4
and f15 renders much worse mean and SD global best fitness
value results, and ACLPSO cannot find the global optimum
or a near-optimum solution for all or most of the runs
because less particles lead to insufficient diversity. We can
also observe from Table 7 that letting the learning proba-
bility-based coefficient v to be more than 0.05 on f3, the
normative interval scaling coefficient s to be more than 0.1
on f4, v to be less than 0.3 on f12, and s to be less than 1.1 on
f14 causes ACLPSO to be unable to find the optimum or a
near-optimum solution for all or some of the runs.-emean
and SD global best fitness value and execution time results of
CLPSO on f1 and f2 in Table 8 indicate that simply by in-
creasing the number of FEs to 500,000 or even increasing N
to 80, CLPSO still cannot achieve high-accuracy mean global
best fitness value as ECLPSO, while the mean execution time
results of CLPSO are close to those of ECLPSO.-e PbE and
ALP strategies as well as the empirical values chosen for N
and the best (s, v) combination are thus appropriate.

As shown in Figure 2, ECLPSO is liable to get stuck in
premature stagnancy on f3, f4, f12, f13, and f14. -e exploi-
tation performance of ACLPSO is quite better than that of
ECLPSO on f2. ACLPSO escapes from an unsatisfactory local
optimum at the early stage of the search process on f4 and f14,
at the middle stage on f3 and f12, and at the late stage on f13.
According to Tables 2 and 3, ACLPSO takes the same best s
values on f3, f4, and f12, the same best v values on f4, f12, f13,
and f14, and the same best s values on f13 and f14; the mean
number of exploitation valid dimensions’ results is 30 for the
best (s, v) combinations of ACLPSO on f4 and f12, slightly
smaller than 30 on f13 and f14, and considerably smaller than
30 on f3. It is challenging to develop a unified setting for s and
v based on the generation counter and the dimensional
normative intervals.

6. Conclusions

In this paper, we have proposed ACLPSO for the purpose of
further significantly mending the exploration performance
of ECLPSO. ACLPSO introduces an independent inertia
weight and an independent acceleration coefficient corre-
sponding to each dimension and an independent learning
probability for each particle on each dimension. ACLPSO
determines the normative interval with respect to each di-
mension in each generation. Based on the dimensional
normative intervals, ACLPSO adaptively adjusts the di-
mensional independent maximum velocities, inertia
weights, acceleration coefficients, and learning probabilities.
Experiments on a variety of unimodal, multimodal, shifted,
rotated, and shifted rotated benchmark functions have
demonstrated that ACLPSO successfully addresses explo-
ration as well as exploitation and convergence as ACLPSO is
able to derive the global optimum or a near-optimum so-
lution on all the functions for all the runs with the normative
interval scaling coefficient and the learning probability-
based coefficient appropriately set. ACLPSO is a promising
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metaheuristic for global optimization. In the future, we plan
to dig out more critical information inherently embodied in
the search experience of the particles and try to develop a
high-performance PSO variant based on ACLPSO with a
unified parameter setting that works well on most global
optimization problems and complex real-world applica-
tions, e.g., optimal operation of power systems [50, 51].
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