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With the rapid development of big data, big data research in the security protection industry has been increasingly regarded as a
hot spot. 0is article mainly aims at solving the problem of predicting the tendency of juvenile delinquency based on the
experimental data of juvenile blindly following psychological crime. To solve this problem, this paper proposes a rough ant colony
classification algorithm, referred to as RoughAC, which first uses the concept of upper and lower approximate sets in rough sets to
determine the degree of membership. In addition, in the ant colony algorithm, we use the membership value to update the
pheromone. Experiments show that the algorithm can not only solve the premature convergence problem caused by stagnation
near the local optimal solution but also solve the continuous domain and combinatorial optimization problems and achieve better
classification results. Moreover, the algorithm has a good effect on predicting classification and can provide guidance for
predicting the tendency of juvenile delinquency.

1. Introduction

At present, many researchers simulate biological group
behavior to solve calculation problem and they have formed
a theoretical system that is focused on group intelligence.
0rough the observation and study of biological groups,
group intelligence which is produced by the cooperation and
competition of individuals in biological groups can provide
efficient solutions to specific problems [1]. 0e ant colony
algorithm [2] was first proposed by Marco Dorigo et al. in
1991. 0ey found that the ant colony can quickly find the
goal by secreting a biological hormone called pheromone
when the ant searches for food. Based on the above, they
proposed the ant colony algorithm that is based on the
positive feedback principle. According to the observation of
insect scientists, although ants are visually underdeveloped,
they can find the shortest path from food source to lair
without any hints. After the surrounding environment
changes, they adaptively search for the new best path. And,
when ants are looking for food sources, they can release a

hormone, called pheromone, in the path they traveled; thus,
other ants within a certain range can detect. When more and
more ants pass through some paths, pheromone is also more
and more, so that the ants have a higher probability of
choosing this path. 0en repeatedly, the pheromone in this
path becomes more. 0is selection process is called the
autocatalytic behavior of ants. For a single ant, it does not
have to find the shortest path, it should just choose the
shortest path according to probability. However, for the
whole ant colony system, they can achieve the objective
effect of the original algorithm to find the optimal path. 0at
is group intelligence [3].

Combining the rough set theory, in this paper, we
propose an ant colony algorithm based on rough set, called
RoughAC algorithm. It obtains a membership value through
the rough set theory firstly. 0en, it uses membership value
to update pheromones. Exhaustive experiments show that
the RoughAC algorithm can not only overcome the
shortcomings of original algorithm but also improve the
accuracy of classification and reduce the cost of time.
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2. Related Work

0e ant colony algorithm is inspired by the mechanism of
biological evolution. By simulating the behavior of natural
ant’s search path, a new type of simulated evolutionary
algorithm [4] is proposed, which is a main algorithm in the
field of group intelligence theoretical research [5]. 0is
method is used to solve TSP problems, allocation problems,
and job-shop scheduling problems, which achieves good
experimental results. Although the study time is limited, the
current research shows that the ant colony algorithm has
certain advantages in solving complex optimization prob-
lems [6–8], indicating that it is a promising algorithm. Ant
colony algorithm is different from most application opti-
mization algorithm based on gradient [9–11]; swarm in-
telligence relies on probabilistic search algorithm [12–14].
Compared with gradient methods and traditional evolu-
tionary algorithms, the probabilistic search algorithm usu-
ally uses more evaluation functions, which has significant
advantages. 0e advantages mainly are embodied in the
absence of centralized control constraints and will not affect
the entire problem due to individual failures. 0e solution
ensures that the system is more robust. 0e indirect in-
formation exchange method ensures the system’s scalability
and parallel distributed algorithm model, making full use of
multiple processors.

In the 90s, the ant colony optimization algorithm-ant
system was first proposed and applied to solve the classical
traveling salesman problem (TSP) in computer algorithms
[15]. Starting from the ant system, the basic ant colony
algorithm has been continuously developed and perfected
and has been further verified in the TSP and many practical
optimization problems. One of the common features of these
improved versions of the Ant System (AS) is to enhance the
ability to explore the optimal solution during the ant search
process. 0e only difference between them is the search
control strategy. Moreover, Ant Colony Optimization
(ACO) with best results is achieved by introducing a local
search algorithm [16–18]. Actually, it is a combination of the
standard local search algorithm and the hybrid probabilistic
search algorithm, which is conducive to improving the
solution quality of the ant colony systems in the optimi-
zation problem.

Initially, there are three versions of AS: Ant-density,
Ant-quantity and Ant-cycle. In Ant-density and Ant-
quantity, ants update pheromone after each movement
between two positional nodes. Different from Ant-density
and Ant-quantity, in Ant-cycle, pheromone is updated after
all ants have completed their own journey. 0e pheromone
released by each ant is expressed as a function that reflects
the quality of the corresponding trip [19]. Compared with
other more general heuristic algorithms, the solving ability
of these three basic algorithms is ideal in a TSP no larger
than 75 cities, but the problem solving ability of AS is greatly
reduced when the problem scale is extended. 0erefore, the
subsequent ACO research work mainly focused on the
improvement of AS performance. One of the earlier im-
provements is the elite strategy.0e idea is to give additional
enhancements to all the best paths found since the algorithm

was started and record the subsequent itinerary as the global
optimal itinerary. When updating pheromone, these trips
are weighted and the ants which pass through these trips are
marked as “elites,” which increases the chances for a better
trip.0is improved algorithm can get a better solution faster.
However, if too many elites are selected, the algorithm will
lead to premature stagnation of the search due to earlier
convergence to the local suboptimal solution.

0e German scholar 0omas Stutzle et al. proposed
another general improved ant colony algorithm: Maximum
Minimum Ant Colony System (MMAS), which uses the
upper and lower bounds of the given information volume, to
make the quantity of pheromone on the path less than the
lower limit and not exceed the upper limit, avoiding the
drawback that all ants choose the same path. Gambardella
et al. proposed a modified ant colony algorithm (ACA),
which updates the global pheromone, solves the problem of
slow convergence, and difficultly produces effective solution
when solving large-scale problems. However, there are still
some deficiencies in ant colony algorithm: (1) the problem of
premature and early convergence is caused by the stagnation
around the domain of some local optimal solutions; (2) the
correct solution cannot be obtained on some combinatorial
optimization problems.

Inspired by the above discussion, this paper proposes an
ant colony algorithm based on rough set. 0e algorithm first
uses the concepts of rough and upper approximation sets to
obtain the membership function. 0en, the membership
value is used to improve the pheromone renewal of the ant
colony algorithm. It can not only get the correct results in the
combinatorial optimization problem but also solve the
problems of stagnation, early maturity, early convergence,
and so on.

3. Preliminary Knowledge

3.1. Principle of Standard AG Algorithm. Ant colony algo-
rithm is a kind of bionic algorithm that simulates the path
finding method of natural ants. During movement, ants can
leave a substance called pheromone on the path it passes
through for information transfer. Ants can sense this sub-
stance during exercise and use it as a guide to their
movement direction. 0erefore, the ant colony behavior
consisting of a large number of ants shows a positive
feedback phenomenon: the more ants that pass through a
path, the greater the probability that the latecomers will
choose the path. 0e algorithm is based on the following
basic assumptions.

Assumption 1. Ants communicate through pheromones and
the environment. Each ant responds only to the local en-
vironment around it and only affects its surrounding local
environment.

Assumption 2. 0e ant’s response to the environment is
determined by its internal model. Because ants are genetic
organisms, the behavior of ants is actually the adaptive
performance of their genes, that is, ants are responsive
adaptive entities.
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Assumption 3. At the individual level, each ant only makes
independent choices according to the environment; at the
group level, the behavior of a single ant is random, but the
ant colony can form a highly ordered group behavior
through the self-organization process.

From the above assumptions and analysis, we can see
that the optimization mechanism of basic ant colony al-
gorithm contains two basic stages: adaptation stage and
cooperation stage. In the adaptation phase, each candidate
solution constantly adjusts its own structure according to the
accumulated information. 0e more ants pass through the
path, the greater the amount of information, the easier the
path can be selected; the longer the time, the smaller the
amount of information; during the collaboration phase, the
candidate solutions exchange information with each other to
expect a better performance solution, similar to the learning
mechanism of learning automata.

0e total number of ants in ants can be defined as

m � 
n

i�1
bi(t), (1)

where bi(t) represents the number of ants in element i at
time t, τij(t) is the amount of information in path (t, j) at
time t, and n represents the size of TSP.
Γ � τij(t)|ci, cj ⊂ C  is the set of residual information

on the two-by-two connections lij of elements in set C at
time t. 0e amount of information on each path is equal at
the initial time, and τij(0) � const is set.0e basic ant colony
algorithm is optimized by directional graph g � (C, L, Γ) .

0e ant k�(k� 1,2, ...,m) decides its direction of
movement according to the amount of information on each
path during the movement. 0e tabu table
tabuk(k � 1, 2, . . . , m) is used here to record the cities that
the ant k currently walks through, and the collection is
dynamically adjusted along with the tabuk evolution pro-
cess. During the search process, ants calculate the state
transition probability based on the amount of information
on each path and the heuristic information of the path.pk

ij(t)

represents the probability of transition of ant k from element
i to element j at time t, as in fd2:

p
k
ij(t) �

τij(t) 
α

· ηik(t) 
β

s⊂allowdk
τis(t) 

α
· ηis(t) 

β, j ∈ allowedk,

0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where allowedk � C − tabuk  represents the city that ant k is
allowed to choose next. α is the information heuristic factor,
which reflects the role played by ants in the running process
of ants during their movement. 0e greater the value of the
ants, the more the ants tend to choose the path passed by
other ants, and the stronger their collaboration. β is the
expected heuristic factor, which reflects the importance of
the heuristic information in the ant selection path during the
movement of the ant.0e larger the value, the closer the state

transition to the greedy rule. ηij(t) is a heuristic function
whose expression is as follows:

ηij(t) �
1

dij

, (3)

where dij represents the distance between two adjacent
cities. For ant k, the smaller the dij, the larger the ηij(t) and
the larger the pk

ij .
In order to avoid the problem of flooding the heuristic

information due to the excess of residual pheromone, after
each ant has completed one step or completed the traversal
of all n cities, the residual information is updated. 0erefore,
the amount of information on path (i,j) at time t + n can be
adjusted according to the following formula:

τij(t + n) � (1 − ρ) · τij(t) + Δτij(t), (4)

Δτij(t) � 
m

k�1
Δτk

ij(t). (5)

where ρ represents the pheromone volatilization coefficient,
1− ρ represents the pheromone residual factor, and Δτij(t)

represents the increment of pheromone on the path (i, j) in
this cycle. At the initial time Δτij(0) � 0, where Δτk

ij(t)

represents the amount of information left by the k-th ant on
the path (i, j) in this cycle.

According to different pheromone renewal strategies,
they are divided into three different basic ant colony
algorithm models: Ant-Cycle model formula (6), Ant-
Quantity model formula (7), and Ant-Density model
formula (8). 0e difference is that the A method is dif-
ferent. In the Ant-Cycle model,

Δτk
ij(t) �

Q

Lk

, if the kth ant passes (i, j)in this cycle,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where Q represents the strength of pheromone, which affects
the convergence speed of the algorithm to a certain extent
and Lk represents the total length of the path taken by the k-
th ant in this cycle.

In the Ant-Quantity model,

Δτk
ij(t) �

Q

dij

, if the kth ant passes (i, j)between [t , t + 1],

0, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

In the Ant-Density model,

Δτk
ij(t) �

Q, if the kth ant passes (i, j)between [t , t + 1],

0, else.


(8)
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0e algorithm contains a series of control parameters
that have an important impact on the performance of the
algorithm, including the following: (Algorithm 1) [20].

(1) Heuristic factors α and β: α represents the impor-
tance of pheromone and reflects the relative im-
portance of the amount of information remaining in
the ant colony’s movement in guiding the ant colony
search. 0e greater the α, the greater the role of the
pheromone in path selection, the greater the pos-
sibility that the ants will choose the path they have
walked before, and the randomness of the search will
be weakened. 0e smaller the α is, the ant colony
algorithm will fall into the local optimum prema-
turely. When α� 0, pheromone information will not
be used. Search is reduced to greedy search. β rep-
resents the importance of visibility and reflects the
relative importance of heuristic information in
guiding the ant colony search process. 0is heuristic
information is manifested as a priori and deter-
ministic factor in the optimization process. 0e
greater the β, the greater the effect of the distance
between cities on path selection, and the greater the
possibility of ants choosing the local shortest path at
a local point. Although the convergence speed is
accelerated, the randomness is weakened and the
local optimum is easy to fall into. When β� 0, the
explicit tendency to attractive solutions is ignored,
and the algorithm is equivalent to the poorly per-
forming Simple Ant Colony Optimization (SACO).
α and β determine the relative importance between
the past search experience and the inherent heuristic
information of the problem.0ey appear in most ant
colony algorithms and have a crucial impact on the
performance of the algorithm. Since α and β are the
two major determinants of the transition probability
pk

ij that strikes a balance between the pheromone
concentration and heuristic information, the rela-
tionship between exploration and development can
be handled well through the knots a and β.

(2) Pheromone volatilization coefficient ρ: imitating the
characteristics of human memory, as new infor-
mation increases, old information will be gradually
forgotten and weakened. 0erefore, ρ is introduced
to represent the volatilization rate of information
cables. In order to prevent unlimited accumulation
of information, the value range of ρ is set to [0,1].0e
size of ρ is directly related to the global search ability
and convergence speed of the ant colony algorithm.
If ρ increases, pheromone volatilization speeds up,
and it is less sensitive to past historical experience,
highlighting the influence of the information left by
the recent route seven on the choice.

(3) Pheromone intensity factor Q: Q represents the total
view of information released by the ants in a cycle or
a process. To a certain extent, it affects the conver-
gence speed of the local algorithm. 0e larger the Q,
the more information requests are left each time the

ant passes, and the faster the accumulation of in-
formation requests on the traversed path. Enhancing
the positive feedback of the ant colony search is
helpful to the rapid convergence of the algorithm.

3.2. Rough Set. Rough set theory [21–23] is a new mathe-
matical tool for dealing with uncertainties and inaccuracies.
It is very important for artificial intelligence and cognitive
science, and it provides a very effective theoretical frame-
work for information processing in the fields of machine
learning, data mining, knowledge acquisition, decision
analysis and support systems, pattern recognition, expert
systems, granular computing, approximate reasoning,
control science, and so on. At the same time, the rough set
method has important applications in many aspects such as
medicine, finance, meteorology, graphic processing, speech
recognition, and character recognition. 0erefore, since its
inception, it has received extensive attention. 0e main
problems of rough set theory processing include knowledge
reduction of knowledge expression system, discovery of
knowledge relevance, evaluation of data significance, ac-
quisition of decision control algorithm, approximate clas-
sification [22, 24, 25], and approximate reasoning. Rough
sets can express not only fuzzy concepts but also clear
concepts. Both fuzzy set and rough set theory can deal with
the problems of uncertainty and inaccuracy. 0ey are the
generalization and important development of classical set
theory. However, their focus is different. For example, the
degree of membership of the object x in the fuzzy set theory
does not depend on other objects in the domain, which is
generally given directly by the expert or obtained by sta-
tistical methods. It can reflect the changing laws of objective
things, but it also has a strong subjectivity and lack of ac-
curacy. 0e value of the membership function of the object
in the rough set theory depends on the knowledge base. It
can be obtained directly from the data to be processed,
without any external information. 0erefore, it is more
objective to use it to reflect the ambiguity of knowledge. At
the same time, there is also a connection between the two,
because given an equivalence relationship (knowledge) R on
the universe of U and U, any subset A (concept) of the
universe actually corresponds to a fuzzy set B. Its upper and
lower approximations are equivalent to the kernel and
branch set of the fuzzy set, namely,

R(A) � Core μA(  � x|μA(x) � 1 ,

R(A) � Suup μA(  � x|μA(x)> 0 .
(9)

From this, we can see that the lower approximation is a 1
cut set of A, and the upper approximation is exactly the
strong 0 cut set of A. In short, fuzzy sets and rough sets can
describe the uncertainty of knowledge, but their respective
focus is different.0ere is a strong complementarity between
fuzzy set theory and rough set theory. Two theories have
been shown stronger functions through optimization and
integration to deal with the uncertainty and incompleteness
of knowledge. For example, projection set theory is
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developed in the framework of fuzzy set theory, but the
method of processing information is similar to a rough set,
and its application in some fields shows advantages. 0ere
are many fuzzy rough set hybrid models that solve practical
problems that some single models cannot solve. 0is shows
that the fusion of two theories is an effective way to solve
complex problems.

4. Rough Ant Colony Algorithm

4.1. RelatedConcepts. 0e ant colony algorithm not only can
be intelligently searched and globally optimized but also has
the characteristics of robustness, positive feedback, dis-
tributed computing, and easy combination with other al-
gorithms, constructiveness, which can be used for artificial
ants to join the characteristics of natural ants such as
prospective and backtracking according to the needs. 0e
advent of ant colony algorithm provides a powerful tool for
solving complex optimization problems in many fields.
Although ant colony algorithm has many advantages, it also
has some defects. Compared with other methods, the al-
gorithm generally requires a long search time, and the
complexity of the ant colony algorithm can reflect this.
Although the increase in computer computing speed and the
inherent parallelism of the ant colony algorithm can alleviate
this problem to some extent, it is still a big obstacle for large-
scale optimization problem. Moreover, this method is prone
to stagnation phenomenon.0at is, after the search reaches a
certain level, the solutions found by all individuals tend to be
consistent, and the solution space cannot be further
searched, which is not conducive to finding a better solution.
In the ant colony algorithm, ants always rely on the feedback
information of other ants to strengthen the learning and do
not consider the accumulation of their own experience. Such
blind and obedient behaviors tend to lead to premature and
stagnation phenomena, and thus the convergence speed of
the algorithm becomes slower. In view of the above draw-
backs, the ant colony classification algorithm using rough
sets can solve the above problems better.

Definition 1. Approximate accuracy
Given an equivalence relation R on the universe ofU and

U, the approximate accuracy and roughness of the set X
defined by the equivalence relation R is as follows:

αR(X) �
R(X)

R(X)
,

ρR � 1 − αR(X).

(10)

0e inaccuracy of the set is caused by the existence of the
boundary domain. 0e larger the boundary, the lower the
accuracy. For each R and X⊆U, 0≤ αR(X)≤ 1. When
αR(X) � 1, the R-boundary domain of X is an empty set, so
the set X is an exact set of R; when αR(X)< 1, the set X has a
non-null R-boundary domain, so the set X is a R-rough set;
when X is an empty set, we specify αR(X) � αR(∅) � 1. 0e
R-roughness of X is opposite to the accuracy, which reflects
the incompleteness of our understanding of the category of
expression of Set X under knowledge R.

Let us give an equivalence relationship R between the
discourse U and the universe U, and a subdivision π(U) �

X � X1, X2, · · · , Xn  over the universe U, and this division
is independent of the knowledge R. Among them, subset
Xi(i � 1, 2, · · · , n) is an equivalence class that divides π(U).
0e lower and upper approximations of R for π(U) are

R(π(U)) � R X1( ⋃


R X2( ⋃


· · ·⋃


R Xn(  (11)

R(π(U)) � R X1( ⋃


R X2( ⋃


· · ·⋃

R Xn(  (12)

αR(π(U)) �


n
i�1 R Xi( 





n
i�1 R Xi( 




�
car d R (π(U))( )

car d(R(π(U)))

�
R(π(U))

R(π(U))

(13)

(1) Initialization: let time t � 0 and the number of cycles Nc�0, set the maximum number of cycles Ncmax
, place the antm on n elements

(cities), and make the initial amount of information τij(t) � const for each edge (i, j), where const represents a constant, and the
initial τij(0)�0.

(2) Cycle index Nc←Nc + 1.
(3) Tabu table quotation marks for ants k�1.
(4) 0e number of ants k ←k + 1.
(5) 0e ant individual selects the element j and advances j ∈∈ C − tabuk  according to the probability calculated by the state transition

probability formula (2).
(6) Modify the tabu table pointer, that is, select the ant to move to the new element, and move the element to the tabu table of the ant

individual.
(7) If the element traversal is completed in set C, that is, k<m, then jump to step 4, else execute step 8.
(8) According to formula (4) and formula (5), update the amount of information on each path.
(9) If the end condition is satisfied, that is, if the number of loops is Nc >Ncmax

, the loop ends and the program calculation result is
output. Otherwise, the tabu list is cleared and the process jumps to step 2.

ALGORITHM 1: Taking TSP as an example, the specific implementation steps of the basic ant colony algorithm are as follows :
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cR(π(U)) �


n
i�1 R Xi( 




|U|

�
car d R (π(U))( )

car d(U)

�
R(π(U))

|U|

(14)

Based on the above definition, the approximate R-
classification accuracy and the approximate classification
quality of the partition π(U) are, respectively, defined as
follows:

Definition 2. Importance degree.
Given a knowledge base K � (U, S), R ∈ IN D(K)

represents a group or individual system parameters de-
scribing the characteristics of the system. ∀X⊆U and the
partition π(U) � X � X1, X2, · · · , Xn  of the universe U
that are independent of the system parameter R, and the
importance degree of the set X regarding the system pa-
rameter R is expressed as

sigR(X) �
U − bnR(X)




|U|
(15)

sigR(π(U)) �


n
i�1 U − bnR Xi( 

n|U|
, (16)

where bnR(X) represents the boundary domain of the X, the
U representation domain. When sigR(X) � 1, it is shown
that R can accurately describe the set X; when sigR(X) � 0, it
indicates that R cannot determine whether the sum of any
element in the universe U belongs to X.

Definition 3. Roughness.
Intuitively, the rough set theory does not require any

prior knowledge about the inaccuracy of things. It only
depends on the given expression system and directly cal-
culated by the upper and lower approximation operators.
0is is totally different from the theory of probability and
fuzzy set theory. From the perspective of rough set theory,
the inaccuracy of objective things is caused by the limited
nature of the knowledge we have. In other words, it is caused
by the result of the limited ability of the objects to be
classified. 0erefore, people can deal with inaccurate nu-
merical features through classification without any prior
knowledge and then express the accuracy of the concept.0e
formula of roughness is shown as follows:

powR(X) � 1 − αR(X) (17)

Definition 4. Degree of membership.
Introducing the membership value obtained by the

approximate accuracy of the rough set can eliminate the
stagnation phenomenon of the basic AG algorithm near the
neighborhood of one or some local optimal solutions, be-
cause the approximate accuracy itself has a balance between
maintaining global and local search capabilities. 0is makes
each search ant leave an appropriate amount of pheromone

on the path that may be the optimal solution component
based on the investigation table.0e formula of membership
degree is

P �

powmin −
powmax − powmin( ∗ f − fmin( 

favg − fmin

f≤favg

powmax f>favg,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

where powmax and powmin are the maximum and minimum
membership values, f is the current information amount;
fmin is the minimum information amount of the current ant
colony; and favg is the average value of the minimum in-
formation amount of the current ant colony.

Rough ant colony algorithm uses the above definition to
modify the amount of information on the path and gets the
following expression:

τij(t + n) � (1 − ρ) · τij(t) + Δτij + P · τij(t). (19)

4.2. Algorithmic Description. According to the above defi-
nition and analysis, the steps to improve the algorithm are as
follows (Algorithm 2) [20].

0e most critical step of this algorithm is the update
pheromone concentration of Step 7. When all ants reach the
end point, the information concentration of each path must
be updated again. 0erefore, the update of the pheromone is
divided into two steps: (1) after each round, the pheromone
on all paths in the problem space will evaporate, and a
membership function is obtained by the rough set theory. (2)
All ants release the pheromone on the edge of their own turn
according to the length of their own path and then use
equation (19) to update the pheromone.

5. Experimental Results and Analysis

5.1. Experiments in TSP Instances. In order to test the results
of RoughAC algorithm’s optimal path, this paper applies ant
colony algorithm to TSP and implements it with Matlab.0e
test algorithm example is selected from TSPLIB.0e number
in the case name indicates the number of cities. In this
algorithm, α � 1 and β � 2.0eMMAS is compared with the
algorithm of this paper to test the optimization effect of
RoughAC algorithm. MMAS is the largest and smallest ant
system that uses a local update strategy and a global update
strategy. Table 1 is the experimental data.

We know that, in solving small-scale, medium-scale, or
large-scale TSP problems, the superiority of the algorithm
can be seen by comparing the quality of the solution. Here,
the MMAS, SCA, SSA, MFO, and WOA algorithms are
compared with the improved RoughAC algorithm. 0rough
data statistics, it can be understood that the performance of
the improved algorithm is excellent. Table 2 shows the
statistics of 10 experiments on the experimental data of
Table 1:

0e comparison of the deviation of the average optimal
solution of the algorithm is shown in Figure 1.
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Among them, the TSP instance is the corresponding TSP
problem, and the optimal solution of the algorithm repre-
sents the best one that obtained in 10 runs. 0e algorithm’s
average optimal solution represents the average of the 10
best paths. 0e first deviation represents the deviation of the
conventional ant colony algorithm from the improved ant
colony algorithm. 0e second deviation represents the de-
viation between the best one and the best known solution
found by the two algorithms. From the first deviation, we
can see that in the column of the optimal value deviation, the
deviation of all the problems is positive and the average
deviation of the MMAS algorithm is 2.9% less than that of
the RoughAC, which not only shows that the quality of the
improved algorithm is higher than MMAS in all the
problems, but the gap is also very large. In terms of the
average deviation, the deviation of all the problems is
positive, and the average deviation of the MMAS is 3.19%.
0is shows that the improved algorithm is far more stable
than MMAS in the stability of the solution. In the second
deviation, it can be seen that RoughAC has some deviations
of 0 and has a very high solution quality. 0erefore,
RoughAC algorithm is better than MMAS algorithm both in
solving quality and solving stability.

5.2. Experiments in Data Classification. In order to test the
result of the RoughAC classification algorithm, experiments
were performed using 13 true classification datasets on UCI.
Compared with the MMAS classification algorithm, the
ACA algorithm, the KNN algorithm, and SVM algorithm,
MMAS is an improved ant colony algorithm and ACA is an
original ant colony classification algorithm. 0ese types of
algorithms are representative ant colony classification al-
gorithms. 0e actual dataset on the experimental UCI is
shown in Table 3. 0ese datasets are commonly used test
datasets and have a certain degree of differentiation in the
number of attributes and the number of clusters. For the case
where the attributes of some datasets are not in the same
order of magnitude, they are normalized.

0e evaluation criteria for the experimental results were
accuracy (Acc) and time. Accuracy is widely used in the field
of information retrieval and statistics to evaluate the quality
of classification results. 0e time is used to represent the

speed of the classification algorithm and to reflect the time
complexity of the algorithm.0e larger the index value of the
accuracy rate, the better the classification effect. 0e smaller
the time, the higher the efficiency of the representative al-
gorithm. 0e definition of accuracy is as follows:

Acc �


k
i�1 ai

|U|
. (20)

Among them, k is the number of clusters, ai represents
correctly classified into clusters, and U is the whole sample.

0e RoughAC classification algorithm experiment uses
13 real datasets provided by UCI to train and test the al-
gorithm. 0e data are shown in Table 3. 0e experimental
method adopts a random test method. 0e 9/10 data in the
dataset are selected randomly as training set, and the
remaining 1/10 data are used to test the classification per-
formance. For each dataset, 100 random samples were taken
and the average of the 100 classification performances was
counted as the result of this classification. Table 4 shows the
accuracy of each classification method.

Table 5 shows the expected convergence time for each
method on each dataset.

According to the data in Table 4 and Figure 2, it can be
seen that the accuracy of the RoughAC algorithm is higher
than that of the ACA algorithm and the MMAS algorithm.
0erefore, it can be seen that the improved RoughAC al-
gorithm based on rough sets can be used for classification
problems, the accuracy rate is greatly improved compared

(1) Initializing Q, C, and maximum number of iterations place m investigation ants in m cities. Each investigation ant centers on its
city, detects other m-1 cities, calculates investigations according to equations (2) and (3), and puts the result in b(i,j).

(2) 0e initial number of iterations Nc is 0.
(3) Randomly select the initial position of each search ant, and place this position in the corresponding tabuk table for each search ant.
(4) 0e initial location of each search ant is calculated to be set to j, assuming the previous position is i and put j into the tabuk table

corresponding to the search ant k until each search ant completes a loop.
(5) Calculate the objective function value Lk(k � 1, 2, . . . , n) for each search ant and record the current best solution.
(6) If you reach the specified number of iterations or if the solution you have obtained has not improved significantly in recent

generations, skip to step 10; otherwise, skip to step 8.
(7) Update the information on each path according to formula (16).
(8) Set Δτij to 0, set the tabuk table empty, Nc←Nc + 1, and skip to the fourth step.
(9) Output optimal solution.

ALGORITHM 2: Rough ant colony algorithm flow.

Table 1: TSPLIB experimental data.

TSP examples Optimal solution
Att48 33522
Berlin52 7542
Eli51 426
Lin105 14379
Ch130 6110
Bier127 118282
Ch150 6528
Pr439 107217
D198 15780
KroA100 21282
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with the original ant colony algorithm, and the accuracy rate
of the other improved MMAS classification algorithms is
also significantly improved. 0erefore, RoughAC is effective
for classification. 0e expected convergence time describes
the expected time for the first time that the ant colony al-
gorithm reaches the global optimal solution with probability.
0e smaller the convergence time is, the faster the ant colony
algorithm converges and the higher the efficiency is. 0is
algorithm uses 16 datasets to test the expected convergence
time of the algorithm and other improved ant colony al-
gorithms. It can be seen from Table 5 that the expected
convergence time of RoughAC algorithm on all test datasets
is smaller than that of ACA and MMAS. 0erefore, the
convergence speed of this algorithm is faster than that of the
other two algorithms, and its efficiency is also higher than
that of the other two algorithms.

5.3. Experiments on Adolescents’ Blind Obedience Psychology
and Criminal Behavior. In order to prove the validity of the
correlation prediction model between adolescent blind
obedience and criminal behavior based on multiobjective
evolutionary algorithm, an experiment is needed. 0e ex-
perimental data were collected from 12 prisons (including
women’s prisons) in 8 provinces, autonomous regions and
municipalities directly under the Central Government. 0e
number of prisoners was 1000, including 500 males and 500
females. 0e average age was under 18 years old. 0e cor-
relation between juvenile blind obedience psychology and
criminal behavior is predicted by using the algorithm and
the original algorithm, respectively. Under different ex-
perimental times, the comprehensive performance of the
correlation prediction of different models is compared. 0e
accuracy, efficiency, and stability of different models are
taken as the evaluation indexes of the comprehensive per-
formance. 0e result is shown in the figure.

Analysis of Figure 3 shows that the average prediction
accuracy of this model is about 93.94%, the average pre-
diction accuracy of traditional model is about 70.72%, and
the prediction accuracy of this model is about 32.81% higher
than that of traditional model. Analysis of Figure 4 shows
that the average prediction efficiency of this model is about
93.71%, the average prediction efficiency of traditional
model is about 71.02%, and the prediction efficiency of this

model is about 31.93% higher than that of traditional model.
Figure 5 shows that the average predictive stability of this
model is about 92.72% and that of the traditional model is
about 70.19%. 0e predictive stability of this model is about
32.08% higher than that of the traditional model.

Figure 6 shows the error rate that changes over different
iterations.0e lower the error rate, the accuracy of themodel
is higher. As the number of iterations increases, the error
rate is correspondingly lower and lower. 0e solid line
represents the cost. As the number of iterations increases,
the error rate of the cost also decreases. 0e more the it-
erations, the penalty cost assigned to the model is more

Table 2: Experimental optimal solution.

TSP example
Algorithm optimal solution Deviation %

MMAS SCA SSA MFO WOA RoughAC MMAS SCA SSA MFO WOA RoughAC
Att48 35442 32940 34182 32673 34291 33530 5.4 1.9 2.0 2.7 2.4 0
Berlin52 7592 7584 7577 7571 7579 7543 0.6 0.5 0.4 0.4 0.4 0
Eli51 442 440 441 441 441 430 3.9 3.7 3.0 3.0 3.0 1.2
Lin105 15105 15010 13892 14970 13924 14410 5.1 2.4 2.1 1.5 1.2 0.8
Ch130 6521 6482 6475 6361 6329 6269 6.5 5.1 4.7 4.0 3.3 2.6
Bier127 125050 124545 124287 123328 123295 122720 5.7 5.3 5.0 4.6 4.1 3.7
Ch150 6755 6396 6694 6427 6639 6590 3.5 3.1 2.9 2.6 1.9 1.4
Pr439 117310 116274 115742 111923 113194 112520 9.4 7.5 6.7 5.9 5.4 4.9
D198 16340 14765 16337 14972 16314 15980 6.3 5.9 5.1 4.6 3.7 3.2
KroA10 22832 22753 22337 22358 21984 21530 4.5 3.7 2.4 2.6 1.9 1.2

Table 3: UCI real dataset.

Dataset Number of instances Attribute Class number
Iris 150 4 3
Wine 178 13 3
Heart 270 13 2
Vote 435 16 3
Glass 214 10 7
Sonar 208 60 2
Zoo 101 17 7
Cancer 699 10 2
Vehicle 846 18 4
Car 1728 6 4
Abalone 4177 8 3
Anneal 798 38 5
Hepatitis 155 19 2
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Figure 1: Comparison of average optimal solution deviation.
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accurate and the accuracy of model is higher.0e dotted line
represents the error rate of the current optimal value of the
particle. It also decreases as the number of iterations in-
creases, indicating that the current optimal value of the
particle is also constantly approaching the global optimal
value, and the accuracy of the model is higher.

Figure 5 shows the accuracy of the model under different
feature subsets. It can be seen from the figure that all features

are not required to achieve high accuracy, and only half or
less of them can be used to achieve satisfactory accuracy,
which reduces the running time and reduces the required
memory space. 0e size of the feature subset will affect the
accuracy of the model to a certain extent. It can be seen from
the figure that the accuracy is relatively high when the
number of feature subsets is substantially half of the overall
feature subset. 0at is to say, a complete feature set is not

Table 4: Comparison of classification results.

Dataset KNN SVM ACA MMAS SCA SSA MFO WOA RoughAC
Iris 90.67 76.70 77.32 78.26 89.24 93.82 92.61 93.08 95.0
Wine 92.70 88.20 88.78 90.87 91.38 94.57 93.26 92.95 96.85
Heart 82.10 77.80 78.4 81.00 81.99 83.81 82.98 82.26 84.96
Vote 93.70 90.40 91.64 93.16 92.85 93.30 92.82 93.17 94.57
Glass 58.88 67.78 70.79 72.65 77.65 80.41 79.73 79.52 81.32
Sonar 82.56 73.10 73.56 81.67 82.88 85.48 84.26 83.97 86.32
Zoo 85.64 77.58 78.45 83.64 90.71 95.04 93.75 93.08 96.14
Cancer 91.30 86.20 87.28 90.24 91.67 95.32 94.63 94.09 96.35
Vehicle 84.24 76.82 77.79 83.86 84.93 86.85 85.71 85.14 88.01
Car 94.56 78.34 79.56 94.14 95.60 97.74 96.62 96.73 98.28
Abalone 80.23 69.78 70.64 78.15 83.85 86.63 85.55 85.08 87.35
Anneal 90.21 82.35 83.29 89.48 90.98 93.01 91.96 91.20 93.24
Hepatitis 81.40 77.60 75.12 80.75 82.48 83.71 92.84 92.16 84.58
0e results of the classification are compared as shown in Figure 2.

Table 5: Comparison of expected convergence time.

Dataset KNN SVM ACA MMAS SCA SSA MFO WOA RoughAC
Iris 0.56 0.49 1.24 1.02 1.08 1.24 1.33 1.17 0.19
Wine 0.75 0.62 1.25 0.60 1.05 1.56 1.48 1.41 0.54
Heart 1.45 1.23 1.17 0.65 1.53 1.72 1.81 1.68 0.60
Vote 1.94 1.72 1.14 1.02 1.85 2.19 2.07 1.98 0.89
Glass 1.89 1.77 1.03 0.75 1.97 2.36 2.17 2.02 0.54
Sonar 2.78 2.10 1.2 0.81 2.80 3.86 3.14 2.98 0.73
Zoo 0.89 0.64 0.97 0.56 0.97 1.08 0.94 0.86 0.13
Cancer 1.83 1.34 1.15 0.78 1.98 2.61 2.33 2.05 0.65
Vehicle 2.31 1.95 1.32 1.02 2.21 2.89 2.52 2.37 0.85
Car 3.84 3.20 3.32 1.83 3.92 4.61 4.36 4.08 1.54
Abalone 4.15 3.97 4.21 3.42 4.25 5.29 4.88 4.93 2.93
Anneal 1.75 1.63 1.41 1.07 1.83 2.49 2.06 1.97 0.96
Hepatitis 1.61 1.25 1.30 0.76 1.54 2.10 1.95 1.89 0.68
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Figure 2: Comparison of classification results.
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required to achieve satisfactory accuracy for a dataset with a
large dimension. It is only necessary to be able to take half or
less of the feature set without reducing the accuracy of the
model.

It can be seen from Figure 7 that the feature subset of the
RoughACmodel is more accurate and the number of feature
subsets used is also less, so that the model has less running

time and memory. On the contrary, when the number of
feature subsets reaches the maximum, the accuracy of the
model is reduced, so that it is known that there is a higher
accuracy without using more features, and some features
may affect the accuracy of the model. 0e ant colony al-
gorithm is less accurate, and due to using more features, the
runtime and memory of the model will increase accordingly.
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Figure 3: Comparisons of prediction accuracy of different algorithms.
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Figure 4: Comparison of prediction efficiency of different algorithms.
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Figure 5: Predictive stability comparison of different algorithms.
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Overall, the performance of the proposed model is better
both in terms of accuracy and the number of feature subsets
used.

6. Conclusion

0is paper takes teenagers as the object and studies the
tendency of juvenile delinquency as motivation and pro-
poses a rough ant colony classification algorithm that up-
dates the pheromone by membership value. 0e algorithm
uses the concept of upper and lower approximate sets in
rough sets to determine the degree of membership and then

uses the value of the degree of membership to update the
pheromone. It solves the shortcomings of the original al-
gorithm such as continuous domain and combination op-
timization, premature convergence, and local optimal
solution. A large number of experiments show that in terms
of classification, RoughAC algorithm not only has more
advantages than AGA, MMAS, and other ant colony algo-
rithms but also has a higher accuracy rate than KNN, SVM,
and other classification algorithms. 0is enables the
RoughAC algorithm to accurately classify juvenile crimes for
better management. In terms of prediction, the RoughAC
algorithm can accurately predict the tendency of young
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Figure 6: Error rate in the different iteration.
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people to commit crimes through existing problems. 0is
algorithm has made a great contribution to the study of
youth psychological crime.
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