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An improved loss function free of sampling procedures is proposed to improve the ill-performed classification by sample shortage.
Adjustable parameters are used to expand the loss scope, minimize the weight of easily classified samples, and further substitute
the sampling function, which are added to the cross-entropy loss and the SoftMax loss. Experiment results indicate that im-
provements in all classification performance of our loss function are shown in various network architectures and on different
datasets. To summarize, compared with traditional loss functions, our improved version not only elevates classification per-
formance but also lowers the difficulty of network training.

1. Introduction

Loss function is used to measure the difference between the
output data of the model and the actual sample data and its
role is to guide the model to move towards convergence in
the training process, during which minimizing the loss value
is virtually to achieve model fitting of training data and the
minimum test error of the model and eventually to accu-
rately classify new samples [1].

SoftMax loss is considered as the very most fundamental
loss function in image classification, featuring easy optimi-
zation and quick contract. SoftMax loss is often in combined
application with cross-entropy loss to guarantee accurate
classification of the known categories [2, 3]. For some simply
classified image datasets, it is adequate to only ensure accurate
classification of the known categories. But when it comes to
fine image classification, adopting SoftMax alone is far from
enough. To achieve better generalization performance, more
elaborated classification characteristics are required, such as
“intra-class sampling variation” and “inter-class sampling
variation,” which are beyond the reach of SoftMax loss’s
direct optimized targets. 0erefore, researchers began to turn
their insights from Euclidean space to metric space to obtain
fine features for fine classification [4–6].

0e core idea of loss function on the metric space is as
follows: to shorten the similar images embedded in the space

and to push the dissimilar images far away. Simple metric
learning methods, such as DeepID2, are designed to gain
features by combining SoftMax loss and contrastive loss [7],
while the renowned Facenet further employs triplet loss. But
it is not enough [8] for loss function by employing simple
metric space. Given N samples, the complexity of SoftMax
loss after traversing all samples is only O(N); nevertheless,
the complexities of contrastive loss or triplet loss go up to
O(N2). Otherwise, it is impossible to traverse simply. Ef-
fectively searching for good training samples, or hard ex-
ample mining, is indispensable in the complex training
process, especially when categories in large quantity add
difficulty to find good examples. Margin loss on the basis of
image triplets, proposed by Wu et al. [5], adopts distance
weighed sampling to iron out training problems and to
search for good training samples. 0is sampling strategy
cushions the impact from data imbalanced samples, but
there is a high probability of omitting samples with huge
relevance and influencing training.

0e loss function we propose decreases the weight of
easily classified samples from the perspective of probability.
0e training difficulty is lower in our loss function and a
large volume of computation employed bymetric methods is
avoided. Additionally, our loss function avoids the issue of
omitting concerned samples in traditional sampling
methods. 0e innovative points of our research are listed as
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follows: (1) propose a new loss function, (2) employ the new
version to successfully lower training difficulty, and (3) apply
the new version to deliver better classification performance
compared with traditional loss functions.

To outline the paper, Section 2 focuses on related work of
current research development in image multi-classification.
Section 3 is an introduction of theoretical knowledge
employed in this paper and our loss function. Section 4
describes experiment methods and outcomes demonstrating
our loss function. Section 5 is a summary and discussions of
all the above experiments. Section 6 summarizes all the
contents.

2. Related Work

In recent years, the accuracy of image classification has been
significantly improved under the framework of deep
learning. Many researchers lay much emphasis on polishing
the framework rather than noticing loss functions [9–12].
0e work of image classification can be generally separated
into two parts: binary classification and multi-classification
[13, 14].

SoftMax is widely applied in image classification for its
easy optimization and quick contract. It enables all the
categories to possess the maximum logarithm likelihood in
the probability space, or, in other words, to guarantee the
accurate classification of all categories [2, 15]. 0e emer-
gence of classical SoftMax makes indispensable contribu-
tions to the development of image multi-classification
including accomplishing certain level of classification effect
in the current superior network architectures of deep
learning. However, better outcomes will be achieved through
adopting the improved loss function in some simple network
architectures.

One of the most technological routes is to reduce intra-
class distances and expand inter-class distances. 0en, these
improved methods are combined with SoftMax. Hadsell
et al. introduced contrastive loss function which simulta-
neously minimizes image pairs in positive samples and
predefines borders to expand distance between image pairs
in negative samples [16]. Similarly, Hoffer and Ailon pro-
posed a triplet loss substituting previous image pairs with
image triplets [6]. Combinatorial explosion of the quantity
of image pairs is the major weakness of the above two
methods. Contrastively, center loss [17] shuns this short-
coming without the necessity to calculate distances between
image pairs or image triplets. However, center loss mini-
mizes the distance between features and relevant classifi-
cation centers, which leads to inconsistent distance
measurement in feature space. Targeting this issue, Liu et al.
added phase margin to SoftMax loss function [2]. 0ough
such deep learning methods show well-performed features,
triplet loss may lead to training difficulties. 0erefore, to
reduce training difficulties, various sampling methods rise to
the occasion in the course of searching for training samples
on datasets. Wu et al. [5] proposed a margin loss on the basis
of triplet to lower the difficulty of network training, which
adopts distance weighted sampling to facilitate back prop-
agation of loss more prudently.

All methods mentioned above play a significant role in
image classification; however, poor classification results and
training difficulties also exist in the computation of loss
functions based on distance. From another perspective,
training difficulties caused by distance calculation can also
be diminished by distance itself. Apart from various sam-
pling methods in the classification, taking hard example
mining into account and reducing the weight of easily
classified samples can be an effective option.

3. Improved Loss Function

Metric learning in collocation with samplingmethod is often
used to reduce computational complexity in simple image
classification. Margin loss based on triplet employs distance
weighted sampling method resulting in omission of relevant
samples in the sampling course. 0erefore, this paper ex-
plores the direct reduction of the weight of easily classified
samples free of any sampling form to deal with the issue of
sample losses.

0e loss function proposed in this paper mainly solves
the problem of ignoring small inter-class samples by re-
ducing the weight of easily classified inter-class samples. On
the other hand, our loss function reduces the computational
complexity and diminishes the training difficulty.

3.1. Loss Function Design. Our loss function formulas are
listed as follows:

L(x) � −f(−βx)e
clog(f(x)). (1)

0e loss is visualized for several values of β ∈ [4, 10],
c ∈ [3, 10] in Figures 1 to 4 . From the figures, the best
experiment result is achieved when β equals 4 and c equals 5
simultaneously. Details are shown in the fourth part of the
paper. 0e definition of f(x) in formula (1) is

f(x) �
p, y � 1,

1 − p, otherwise. , and the framework of the

whole formula derives from cross-entropy loss for binary
classification [18]:

Lce �
−log(p), y � 1,

−log(1 − p), otherwise.
 (2)

In formula (2), the ground-truth class is specified by
y ∈ ± 1{ }. Moreover, p ∈ [0, 1] is the estimated probability
of the model for the class with label y � 1. 0e similar

definition is pn �
p, y � 1,

1 − p, otherwise. , and rewrite

Lce � −log(pn).
We mainly engage in image multi-classification where

most researchers combine loss functions with SoftMax loss
to elevate classification performance. To accomplish image
multi-classification, we introduce SoftMax function to for-
mula (3) to make that integration. 0e SoftMax function
formula is formula (3) and the combined version is formula
(4). In formula (3), the SoftMax value of zc is the ratio of the
index of the element to the sum of the indices of all elements.
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L(x) � −softmax(−βx)e
clog(softmax(x)). (4)

Our loss function has two properties. (1) When the
sample classification is inaccurate andf(x) is relatively small,
f(−βx) approaches 1 and no impact on loss occurs. When
f(x) tends to 1, f(−βx) approaches 0 and there is a loss
decline of well-classified samples. (2) 0e parameter ec ex-
pands differences among various samples. When f(x) ≈ 0,
the value of f(−βx)ec is huge and there is a huge discrepancy
between L(x) calculated by this formula and the loss

calculated without the parameter. When f(x) � 0.88, the
parameter also exerts influence on the result. It can be clearly
seen that adjusting the parameter not only reduces the control
of easily classified sample loss but also enlarges low loss scope;
for example, when an example is classified with f(x) � 0.88,
the loss value is lower than the cross-entropy loss by 107.

3.2. Derivatives. 0e gradient computations for the im-
proved loss are given in equations (5) to (8). Since the loss
function is mostly used for image multi-classification, gra-
dient computations are performed on the basis of the final
equation (4). For conciseness, we denote softmax(x) as s(x)

in all these equations.
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Figure 1: F1 change curve at different β values. Some curves
represented by other values are omitted due to coincidence.
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Figure 2: NMI change curve at different β values. Some curves
represented by other values are omitted due to coincidence.
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Figure 3: F1 change curve at different c values. Some curves
represented by other values are omitted due to coincidence.
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Figure 4: NMI change curve at different c values. Some curves
represented by other values are omitted due to coincidence.
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Considering both cross-entropy (CE) and our proposed
loss function, specifically, we define a quantity xt as follows:

xt � yx, (6)

where y ∈ ±1{ } specifies the ground-truth class as before.
We can then write pn � σ(xt), which is compatible with the
definition of pn in equation (1). An example is correctly
classified when xt > 0, in which case pn > 0.5.

For reference, derivates for cross-entropy function w.r.t.
x are

zC E

zx
� y pn − 1( , (7)

zL

zx
� e

c
ypn pn − 1(  log pn(  + 1( . (8)

It is worth noting that x is an input after being processed
by −β.

3.3. Assessment Criteria. To assess loss function, we applied
two criteria: F1 and NMI. F1, also called macro-F1 [19],
counts TP, FP, FN, and TN of various classifications and
calculates their precision and recall rate, respectively, to
obtain the average values of the F1 separately. Macro-F1 has
a more superb assessment capability by treating each clas-
sification equally and considering both their precision and
recall rate. NMI can be used to measure the fitting of the
distribution of these two datasets [20].0e larger the value is,
the more consistent the classification is with the real
situation.

4. Experiments

We mainly exhibit four groups of experiments in this sec-
tion. In the first group, we determined the values of β and c

in the formula above and selected the optimal parameters. In
the second group, we compared different kinds of loss
function on the CIFAR-10 [13], including margin loss,
triplet loss, and our loss function, and reported the F1 and
NMI values. In the third group, we verified that our loss
function boasted good performance in various network
architectures. In the fourth group, our loss function also
displayed the performance strength in other datasets. All
experiments were implemented under the PyTorch frame-
work, on NVIDIA 2080Ti GPU.

Figure 5 shows four main categories: frog, boat, truck,
and dog. Because the original dataset image is only 32∗32 in
size, the sample obtained by sampling shows a lower
sharpness. And these images are sampled by margin loss
framework.

4.1. Determination of Parameters. We have two variable
parameters β and c in our loss function, both of which serve
the smoothness of the loss function in order to strengthen its
information transmission capability in the course of back

propagation. In our experiments, we set β to 2, 3, 4, 5, 7, and
10 for CIFAR-10. Similarly, we set c to 3, 5, and 10. We first
set c to 3 and then adjusted β to the above six values
separately, tested the CIFAR-10 dataset through GoogLeNet
training, and selected the β value that maximized the values
of F1 and NMI. Provided the designated β value, we pro-
ceeded to the determination of the c value by selecting one
that also maximized the values of F1 and NMI in the ex-
perimental analysis. 0e outcome is shown in Figures 1–4.

To determine the β value, we first randomly selected the
first and the last values within the range of [2, 16]. Since
experiments showed little difference between the two cor-
responding F1 values and the slightly smaller F1 values, we
continuously tried different values by dichotomy within that
range and eventually determined the optimal β value as 4.
Several curves that overlapped are dismissed in Figure 1 due
to the relatively large number of curves.

In addition to F1 standard, we also adopted NMI
standard for assessment in the course of the determination
of β value. It can be seen from Figure 2 that NMI curve
shares the same changing trend with F1 curve under dif-
ferent β values, also verifying that the optimal β value is 4.
Again, several curves that overlapped are dismissed due to
the relatively large number of curves.

Similarly, we employed both F1 and NMI standards to
determine the c value. We selected the c value within the
range of [2, 21] and determined the optimal c value as 5.
Likewise, we also omitted several curves that overlapped in
the following graph due to the relatively large number of
curves. 0e F1 curve and the NMI curve are shown in
Figures 3 and 4, respectively.

4.2. Comparison with Other Loss Functions. 0e CIFAR-10
dataset altogether had 60000 colorful images of size 32 ∗32 in
Passage 3, which are classified into 10 categories, each with
6000 images. 50000 images constituted 5 training groups on
average and the other 10000 images formed one single testing
group. In the testing group, we selected 1000 images in each of
the 10 categories, leaving the rest randomly arranged to
constitute the training group. 0e number of images for each
category in a training group is not necessarily the same, but
each category has 5000 images generally [13].

For CIFAR-10, we trained the GoogLeNet [22] of depth
with different loss functions. 0e network was trained for 70
epochs and we set 0.00001 for the learning rate. We used a
weight decay of 0.0004 and themomentum number of Adam
was set to 0.9. 0e models were trained by ourselves on
CIFAR-10 dataset since the GoogLeNet with triplet loss or
margin loss had not been used in the previous works. 0e
proposed loss function outperformed the triplet loss and
margin loss for GoogLeNet models.

0e classification criteria are shown in Figure 6. Com-
pared with traditional loss functions including proxyna [23],
npair [24], triplet [6], and margin loss [5], whose F1 values
were eventually stable from 0.5 to 0.6, our loss function has
achieved a higher F1 value above 0.6 after training 70 epochs.
To be more specific, our loss function is eventually stable at
0.633 and demonstrates better classification results.
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As can be seen from Figure 7, the NMI value of the
tradition loss function was eventually stable from 0.4 to 0.5.
But our loss function has achieved a higher NMI value above
0.6, which is stable at 0.625 eventually.

4.3. Comparison in Other Network Architectures. 0e above
training and testing experiments were conducted under
GoogLeNet; furthermore, we also did similar comparison
experiments under ResNet [3]. On the CIFAR-10 dataset, we
trained the ResNet with triplet loss, margin loss, and other
loss functions. 0e network was trained for 14 epochs, and
the learning rate was set to 0.00001. We trained the network
for 70 epochs and 0.00001 was set for the learning rate. We
used a weight decay of 0.0004 and themomentum number of
Adam was set to 0.9. 0e models were trained by ourselves
on CIFAR-10 dataset since the ResNet with triplet loss or
margin loss had not been used in the previous works. 0e
proposed loss function outperformed the triplet loss and
margin loss for ResNet models. 0e comparison of classi-
fication performance is shown in Figure 8.

According to Figure 8, the two curves representing NMI
value and F1 value, respectively, by our loss function are

Figure 5: Some example images from the CIFAR-10 dataset. Here are four types of pictures in the CIFAR-10 dataset, namely, frogs, boats,
trucks, and dogs.
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Figure 6: Comparison graph of different loss functions with the
F1 standard. A higher F1 value above 0.6 after training 70
epochs.
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above the curves by other loss functions. It is indicated that
our loss function has better classification performance.
Despite the slightly smaller NMI value of our loss than that
of triplet, the F1 value of ours is 0.06 higher. 0erefore,
viewing comprehensively from the two standards, our loss
contributes greater than triplet loss and margin loss.

4.4.Accomplishments onOtherDatasets. We introduce other
commonly used datasets for the experiments. 0en, we
compare our loss function with other loss functions by using
renset50 or GoogLeNet on these datasets. 0e CIFAR-100
dataset, a fine classified dataset in image classification we

used, was divided into 20 categories and 100 subcategories.
Each subcategory contains 600 images: 500 for training and
100 for testing. Each image has two labels, “fine” and
“coarse.” In addition, Fashion-MNIST dataset was used to
test the algorithm performance. 0e image content of this
dataset is more complex than that of MNIST dataset, but its
data distribution is the same as that of MNIST, which is a
basic image dataset [25].

On the CIFAR-100 dataset, we trained GoogLeNet with
triplet loss, margin loss, and other loss functions. We
trained the network for 70 epochs, and 0.00001 was set for
the learning rate. We used a weight decay of 0.0004 and the
momentum number of Adam was set to 0.9. 0e models
were trained by ourselves on CIFAR-100 dataset since the
GoogLeNet with triplet loss or margin loss had not been
used in the previous works. 0e proposed loss function
outperformed the triplet loss and margin loss on Goo-
gLeNet models. 0e classification criteria are shown in
Table 1.

It can be seen from Table 1 that the advantage of the
proposed loss on the CIFAR-100 dataset is not as evident as
that on the CIFAR-10 dataset since the NMI value and F1
value of our loss are only slightly higher than those of other
loss functions. From the top-1 recall rate, the highest pro-
portion of correct classification for a certain class of samples
is 0.632, which was generated by the model with our pro-
posed loss function. 0ough the experiment results indicate
that metric methods used in margin loss and triplet loss are
capable of the strong classification for fine image classifi-
cation, our loss function is superior to other loss functions in
general.

On the Fashion-MNIST dataset, we changed the back-
bone of the training model to ResNet50. We trained this
model for 70 epochs, and 0.00001 was set for the learning
rate. We used a weight decay of 0.0004 and the momentum
number of Adam was set to 0.9. Evidently, the proposed loss
function outperformed the triplet loss and margin loss.
Figure 9 shows the classification performance of different
loss functions on Fashion-MNIST dataset. According to
Figure 9, the NMI value and F1 value of our loss function are
higher than those of the other two loss functions. 0e values
of β and c in the new loss are set to 4 and 10, respectively. It
means that the new loss is adopted to different datasets or
different classification tasks by changing the value of the
function parameter.

Furthermore, we used recall rate to verify the classifi-
cation effect of different loss functions on the validation sets.
0e following conclusion is given in Table 2. Compared with
margin loss and triplet loss, our new loss obtains higher top-
8 recall rate for all architectures on different datasets. Al-
though the top-1 recall rate obtained by our new loss is lower
than other loss functions for the ResNet with depth 50, the
overall trend of recall rate generated by the new loss is better
than others.

5. Discussions

In this paper, we applied our loss to the CIFAR-10 dataset
representing simple image classification and to the CIFAR-
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Figure 7: Comparison graph of different loss functions under the
NMI standard. A higher NMI value above 0.6.
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Figure 8: Comparison graph of different loss functions. 0e
comparison experiments, implemented on ResNet, also showed
that our loss has better performance.
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100 dataset symbolizing fine image classification. 0e ex-
periments proved that our loss function boasts relatively
strong generalization ability in image classification and
better classification performance than other loss functions in
both fine and simple image classification. It is worth noting
that our loss function has better classification performance
than others in simple image classification, demonstrating
that our loss’s classification performance is not lowered
when completing fine classification. In addition, our loss
function reduces the training difficulty of image classifica-
tion through ingeniously avoiding the complex computation
of image triplet distance. Currently, our research has not
considered the issue of classification imbalance; it is con-
sidered to adjust the loss functions or the network archi-
tectures in the future.

6. Conclusions

We proposed a loss function for reducing the difficulty of
training. In order to solve this, we proposed an improved
loss function which adds a modulation measure on the basis
of the cross-entropy loss for giving less learning weights on
easy samples. Extensive experiments demonstrate that the
loss function we proposed outperforms the effect of margin
loss or triplet loss was used for other frames on both small-
scale and large-scale datasets.

Data Availability

All data included in this study are available upon request by
contact with the corresponding author.

Table 2: Comparison of recall rates with three loss functions.

Dataset Model Loss function Recall@1 Recall@2 Recall@4 Recall@8

CIFAR-100

GoogLeNet
Margin loss 0.607 0.712 0.763 0.815
Triplet loss 0.610 0.708 0.772 0.810
New loss∗ 0.632 0.720 0.779 0.817

GoogLeNet
Margin loss 0.712 0.810 0.873 0.916
Triplet loss 0.695 0.801 0.869 0.912
New loss∗ 0.722 0.8291 0.8892 0.9294

CIFAR-10 ResNet50
Margin loss 0.7807 0.8496 0.8922 0.9312
Triplet loss 0.8067 0.8661 0.9045 0.9319
New loss∗ 0.7743 0.8638 0.918 0.9504

Fashion-MNIST ResNet50
Margin loss 0.8864 0.9273 0.9545 0.9704
Triplet loss 0.8909 0.9304 0.959 0.9742
New loss∗ 0.8749 0.9259 0.961 0.9801
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Figure 9: Comparison graph of different loss functions on Fashion-MNIST dataset.

Table 1: Comparison on the CIFAR-100 dataset.

Loss function NMI F1
Margin loss 0.512 0.541
Triplet loss 0.533 0.548
New loss∗ 0.542 0.550
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