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With the advent of the information age, human demand for information is increasing day by day.*e emergence of the concept of
big data has triggered a new round of technological revolution, and visual information plays an important role in information. In
order to obtain a better 3D model, this paper studies the reconstruction model of training motion 3D images based on a graphical
neural network algorithm.*is paper studies the problem of Sanda from the following two aspects. First, we try to apply two deep
learning algorithms, graphical neural network and recurrent neural network, to the boxing movement recognition task and
compare the effects with quadratic discriminant analysis and support vector machine. By comparing and analyzing the influence
of different network structures on the deep learning algorithm, it is concluded that recurrent neural network has more practical
application advantages than graph neural network in network structure parameter tuning.

1. Introduction

With the advent of the information age, the human demand
for information is increasing day by day. Visual information
occupies an important position in the information demand,
and the image is the main component of visual information.
With the rapid development of electronic technology, there
are numerous devices suitable for image information ac-
quisition. Different devices have different degrees of influ-
ence on the quality of imaging, while the imaging
environment also affects the quality of images [1]. Although
good electronic imaging equipment can improve the quality
of imaging images, however, because of its high cost and
poor universality, that is, different imaging results will ap-
pear in different environments, it cannot completely over-
come the adverse effects caused by external environmental
conditions. In summary, improving image quality does not
rely solely on imaging equipment [2]. *e digital image
processing technology is a series of image processing by the
computer so as to achieve the purpose of processing the

important part of the original image. In digital image
processing, image enhancement techniques occupy an im-
portant research position [3]. *e image enhancement
process can highlight the details of the image and thus
improve the clarity of the image. *is technique is not only
low cost but also highly adaptable, so it is an integral part of
image processing technology [4].

In recent years, image reconstruction techniques, as one
of the image enhancement techniques, have received at-
tention from many researchers. *e goal of image recon-
struction algorithms is to enhance low-resolution images to
high-resolution images with clear details. Image recon-
struction is considered a pathological problem due to the
irreversible image degradation process [5]. *e recon-
structed high-resolution images have different application
scenarios depending on the type of image that has been
corrupted. High-resolution images contain more detailed
information and can effectively support the functional
implementation of many computing devices, such as
mainframe computers, high-definition TVs, handheld
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devices, tablets, and cameras [6]. In addition, super-reso-
lution image reconstruction techniques have important
applications in static scenes such as target detection (es-
pecially small-size object detection), face recognition in
surveillance videos, medical image processing, remote
sensing imaging, astronomical imaging, and forensic image
processing [7].

*is paper is divided into five parts: Section 1 provides
the research background; Section 2 is the literature review
and analysis of the research results of the problem; Section 3
describes the introduction of algorithms related to graph
neural networks; Section 4 is a specific experimental analysis
of the graph neural network and it shows how the graph
neural network performs 3D image reconstruction of
sparring action and selects two groups of athletes for
comparison; and Section 5 concludes this study.

2. Related Works

*e following analysis is available for the image recon-
struction problem. First, the problem is an inverse problem
that does not apply [8, 9]. For reconstructing a high-reso-
lution image from the same low-resolution image, there are
multiple solutions rather than a unique solution [10–12].
*erefore, the solution space needs to be reduced based on
accurate a priori information. Second, the difficulty of the
problem increases when the scaling factor is large. With the
interference of complex factors, the image detail information
is lost, which makes the reconstruction process more
complicated and can lead to the reproduction of error in-
formation [13, 14].

Super-resolution image reconstruction methods can be
broadly classified into three major categories according to
their processing: interpolation-based methods, reconstruc-
tion-based methods, and deep learning-based methods
[15, 16]. In recent years, deep learning methods have become
a booming technology and are growing at an exponential
rate, and their performance on super-resolution recon-
struction tasks is much higher than that of traditional re-
construction methods [7, 17, 18]. *e purpose of deep
learning is to automatically learn the relationship between
input and output information from data using artificially
constructed neural network models under human control
[19–21]. Deep learning methods rely on a data-driven ap-
proach with training tuning optimization methods to obtain
an optimal network model, using which high-resolution
images can be reconstructed directly from low-resolution
images and the reconstructed images have more detailed
information [22]. Although traditional machine learning
algorithms can get the desired recognition accuracy in some
specific pattern recognition tasks, they suffer from insuffi-
cient generalization ability when dealing with some prob-
lems with large variations in data features [23]. To address
this point, we tried to use deep learning algorithms with
stronger generalization ability for classification. Graph
neural network (GNN) is a class of efficient classification
algorithms that have developed and grown in recent years
and has attracted extensive and sufficient attention. In this
paper, we investigate the image reconstruction method

based on the deep learningmethod GNN, using the principle
of the neural network [24].

3. Introduction of Algorithms Related to Graph
Neural Networks

3.1. Principle ofGraphNeuralNetworkAlgorithm. *is study
is centered on the athlete sparring recognition task, which is
to determine the current state of the athlete, using pattern
recognition methods, by using kinematic or biological in-
formation returned from the sensors on the legs. When we
perform pattern recognition, the data provided by the sensor
is used as input, and the corresponding terrain at this
moment is used as output, so this is a supervised learning
task and we can use a variety of algorithms including ma-
chine learning and deep learning for classification.

In the 1960s, Hubel and Wiesel analyzed the neural
structures used for local acuity and directional selection in
the cat cortex and learned that their special connectivity
structure could efficiently reduce the complexity of infor-
mation feedback neural network systems, leading to the
GNN. *e first concrete application of the graph neural
network structure was the new discriminator pointed out by
K. Fukushima in 1980. Since then, more researchers have
improved this model. Among them, the classic model is the
“improved cognitive machine” by Alexander and Taylor,
which combines the advantages of multiple optimization
approaches and avoids the computationally complex
backpropagation process.

*e leg parameters to be processed in this study have
some similarities with speech signals, both of which are
classified and recognized as time-series signals. *erefore,
borrowing from the way of processing data in speech rec-
ognition research, the leg parameters and time series con-
stitute two dimensions of GNN network input data, and the
final purpose of classification is achieved through feature
extraction of multilayer network structure. *e results of the
GNN network we mainly used during the experiment are
shown in Figure 1.

Among them, layer C represents the convolutional layer,
on which multiple convolutional kernels are convolved with
the input information of the previous layer to extract
common features. *e initial weights of the convolution
kernels are set randomly, and the weights of the convolution
kernels gradually converge to a stable value as the network
continuously receives new training data and continuously
reduces the cost function through the backpropagation al-
gorithm, which is actually the process of the neural network
learning to extract the features of the data itself. In addition
to the convolutional kernel weights, the size of the con-
volutional kernel and the number of convolutional kernels
are two parameters that need to be set artificially, which also
have a great impact on the final recognition rate. *e S layer
in the figure represents the pooling layer, which generally
alternates with the convolutional layer. *e main purpose of
this layer is to reduce the dimensionality of the data by
pooling the input data from the previous layer, which can
reduce the computation and avoid the problem of overfitting
the training data that often occurs in deep learning
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algorithms. *e pooling method used in this paper is to
divide the data in the previous layer by a certain percentage
and then average each piece. Among them, the proportion of
division is also one of the adjustable parameters. At the end
of the network, this study uses a softmax classifier to map the
previously extracted feature information to the gait
segmentation.

GNN is a common tool when dealing with sequential
data, and the core idea is that whenever a new sample is
added, instead of directly reconstructing a new knowledge
base, only the information brought by the new sample is
adjusted on top of the existing training model. *ere are
many GNN structures, and the most critical point of each
structure is how to evaluate the degree of similarity between
the new sample and the model in question. *is determi-
nation criterion affects the way the new samples are sub-
sequently changed for the old database. We used a GNN
algorithm designed for intelligent calf legs in our study; this
algorithm improved the accuracy of the recognition task
across days from 60% to 88.8% in a previous study, but the
number of days involved in the experiment for the cross-day
test were only two days; we refined and extended on the basis
of this study.

3.2. Graph Neural Network Automatic Marking. In order to
automate the training process, the recognizer first needs to
implement automatic pattern identification for the newly
completed gait cycle of the leg user. We used in our ex-
periments a dynamic time-based regularization algorithm
[38]. *is is a tool to determine the similarity of two
temporal signals, and it works well when dealing with signals
whose length is flexible in the time domain. *e results are
shown in Figure 2.

*e purpose of this method is to M match a sequence X
of a certain length to a template sequence, where the two
sequences can be expressed as follows:

M � m1, m2, ..., mi( 􏼁, (1)

where i ∈ [1, I], j ∈ [1, J], and x and m are vectors con-
taining 10 channels of IMU information. Define the cost
matrix C ∈ RJ×I, where the elements c(j, i) � ‖xj − mi‖

2.

Define the path P � (p1, p2, ..., pK), where p1 � (1, 1),
pk � (J, I), pK � (jk, ik) ∈ [1, J] × [1, I], and k ∈ [1, K];
then the total cost of the path P can be expressed as

C(X, M) � 􏽘
K

k�1
c jk, ik( 􏼁. (2)

Furthermore, we calculate the cumulative costD(X, M)

as the cost of the optimal path P∗, with the following
expression:

D(j, i) � min D(j − 1, i − 1), D(j − 1, i), D(j, i − 1)􏼈 􏼉 + c xj, mi􏼐 􏼑.

(3)

In this study, the sequence X ∈ R10× denotes F0 the
complete gait cycle from one F0 to the next for the same foot,
and Js denotes the number of frames contained in the first sh

gait cycle. A template was constructed M for each of the five
movement patterns of each subject, and during the auto-
matic tagging process, the data from the IMU was compared
with the template for each complete gait cycle completed by
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the subject, and the movement pattern corresponding to the
smallest cost D(X,M) was automatically tagged, as shown in
Figure 3.

3.3. Graph Neural Network Template Generation. *e tem-
plate for the class h movement pattern for one subject can be
calculated by the following equation:

tm,i �
1

Ki

􏽘

K

n�1
an,i, (4)

*e first h data point is a normalized IMU signal used to
generate the number of complete gait cycles of the template
and belongs to the first class h motion mode. It should be
noted that the length of each gait cycle is not a constant value
because there will be some differences between each step of
the subjects; therefore, in order to ensure that the gait cycle is
aligned with the gait cycle in an equal percentage, we use
three splines to interpolate the gait cycle Ni � N1,i + N2,i.
N1,i and N2,i denote the number of interpolation points in
the swing and support phases, respectively.

3.4. Postprocessing of Graph Neural Networks. *e data
processed by the automatic identification algorithm will be
applied to the subsequent classifier retraining, so the ac-
curacy of the identification computed by the dynamic time
regularization algorithm is an important factor affecting
the recognition effect. In order to reduce the error of
automatic identification, we add two methods for data
postprocessing after the dynamic time regularization cal-
culation of the data.

First, we compare the DTW results of two adjacent
complete gait cycles to see if they are the same, and if they are
not; the automatic identification results of the swing phase
data that overlap between the two gait cycles are removed
from the subsequent model retraining session. *e purpose
of this is to automatically filter out the data that cannot be
classified when gait transitions occur (e.g., from up-kick to
flat walk), and it is worth noting that for practical use of the
legs, gait transitions generally occur in the swing phase, as
shown in Figure 4.

Figure 5 shows a screenshot of the PC interface used to
receive the data in the experiment. We will use the pressure
sensing information to divide the gait cycle, while the 10
channels of IMU data used in the subsequent analysis in-
clude the triaxial acceleration, pitch angle, and roll angle of
IMU1 and the triaxial acceleration, pitch angle and roll angle
of IMU2.

*e experimental scenario is the same as the previous
one. In order to examine the effectiveness of GNN and the
classifier in the long time period and multiple days of re-
peated wear experiments, we asked two subjects to do
multiple days of experiments, and the number of experi-
mental groups and the number of days between experiments
are shown in Table 1. *e number of days between adjacent
experiments ranged from 1 to 21 days and increased, which
was designed to examine the effect of the length of the
interval on the recognition effect.

3.5. Parameter Setting of Graph Neural Network Classifier.
We use a qualifying filter to remove the random pulses from
the Euler angles when processing the raw signal acquired by
the IMU. If the absolute difference between two adjacent
samples is too large and exceeds a threshold, the latter is
considered as random noise. *e force sensor on the
footplate was used to divide a complete gait cycle into two
phases: support (stance) and swing (swing), and to define
two gait events: foot contact (FC) and foot-off (FO). We
segmented the IMU data using a sliding window of 300ms in
length and 10ms in step length.

In this experiment, we use the QDA, SVM, GNN, and
RNN algorithms mentioned in the previous section as
classifiers. SVM uses 10 binary classifiers in a one-to-one
strategy for the multiclassification task, and the decision
model is C-SVC with a polynomial kernel function.

*e network structure of the GNN algorithm is as fol-
lows: the first hidden layer C1 is a convolutional layer with
five convolutional kernels, each with a size of 5× 2; the
second hidden layer S1 is a pooling layer with a pooling ratio
of 2×1; the third hidden layer C2 is a convolutional layer
with eight convolutional kernels, each with a size of 4× 2;
and the fourth hidden layer S2 is a pooling layer with a
pooling ratio of 2×1.

*e RNN algorithm uses an LSTM structure with a
300ms sliding window and a 10ms sliding step.

3.6. Graph Neural Network Evaluation Method. In this ex-
periment, we still used separate training and testing phases
for the swing and stance phases, and the evaluation method
used a cross-test between groups. *e test group is the data
from the first experiment of two subjects, while the training
group is the combination of the data from the last five
experiments. *e recognition error rate is defined as follows:

RE �
Nmis

Ntotal
× 100%, (5)

where Ntotal denotes the total amount of data contained in
the test data set and Nmis denotes the number of data sets
whose classification results do not match the manual
markers during the actual test. *e recognition accuracy is
obtained by subtracting 1 from 1RE.

Since the pattern classification for the terrain recognition
task involves multiple modalities, we used the confusion
matrix approach in evaluating the recognition effect, whose
expression is as follows:

R �

r1,1 ... r1,S

⋮ ⋱ ⋮

rS,1 ... rS,S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

*e elements within the matrix are defined as follows:

rij �
sij

se

× 100%, (7)

where si denotes the total number of the first i motion
pattern in the test data and si,j denotes the number of the
first i motion pattern identified as the first j. Such a
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representation allows us to examine the recognition rela-
tionship between different categories more intuitively. *e
numerical magnitude of the diagonal elements of the con-
fusion matrix also directly reflects the recognition rate.

Based on the algorithm learning used in the study, the
output of the recognizer formed a stream of data and an
N-point (N � 5) majority vote was used to remove random
errors. In the postprocessing of the automatic identifi-
cation, the transition phase was considered successful if
the three categories of judgments were correctly labeled as
patterned gait events between the first five consecutive
outputs of the subsequent motion criticality. In this study,
a statistical test for recognition accuracy analysis was
performed with a significance level of 0.05.

In our study, we used an automatic marking algorithm
based on dynamic time regularization. For this algorithm,
we defined the recognition success rate SR as follows:

SR �
NC

NI

, (8)

where NC denotes the number of data sets that are correctly
identified automatically using the dynamic time regulari-
zation algorithm and NI denotes the number of all complete
step cycles that participate in the automatic identification
process.

In the postprocessing process, we also use a threshold k

value to further improve the accuracy of the automatic
identification. *e smaller the value of SR, the higher the
accuracy SR of dynamic time regularization, but at the same
time, the smaller the amount of data involved in template
generation. We define the data selection rate DR as follows:

DR �
DC

DI

, (9)

where DC denotes the number of gait cycles for which the
distance obtained by the dynamic time regularization al-
gorithm is C less than the parameter k and DI denotes the
number of all complete gait cycles used in the experiment. In
order to obtain a high recognition rate while ensuring an
adequate amount of data involved in the automatic marking
process, different parameters were tested, and their effec-
tiveness was measured using two metrics, SR and DR.

4. Results and Discussion

In previous experiments, the effect of interval days on the
training effect could only be assessed by varying the per-
centage of experimental data within the training set on the
same day as the test group, since only two days of experi-
mental data per subject were used as the object of analysis
[38]. In this paper, on the other hand, we experimentally

collected six days’ worth of experiments per subject so that
we can examine the effect of the specific value of the number
of days of interval on the recognition of motion patterns.

In Figure 6, we can see that the selection of k values
varies across subjects. We tested the best values for different
subjects by using a cross-test between groups in the morning
and afternoon on the same day, where the pattern recog-
nition algorithm used was long- and short-termmemory. As
shown in Table 1, for subject 1, the recognition accuracy SR
was 95.6%, and the data selection rate DR was 96.3% when
the k value was 0.15. *erefore, the value k for subject 1 was
kept constant at 0.15 in the subsequent experiments. For
subject 2, when the value k is 0.20, the recognition accuracy
SR can reach 92.7%, and the data selection rate DR can reach
94.2%, so the value k of subject 2 is chosen as 0.20 in the
subsequent experiments.

Since athletes cannot manually label movement patterns
during daily exercise, we can use the automatic recognition
algorithm described in the previous paper to automatically
label newly acquired data. To experimentally validate the
effectiveness of this incremental learning strategy, we ex-
perimentally simulated the training strategy under leg
movements.

*e results are shown in Figure 7, where the horizontal
coordinate Di indicates the results of training with the data
of the ith first experiment and testing with the data of the
first experiment. It is worth noting that in this process, we do
not use the automatic labeling method for training but use
the manual labeling method for training and testing. It can
be seen that although the time interval between the ex-
perimental set used as the training set and the first exper-
iment kept increasing, there was no significant monotonic
trend in the recognition rate, for both subjects. *is suggests
that the number of days between the data used as the training
set and the test data does not have a significant effect on the
recognition rate and that the similarity of some environ-
mental factors on the day of the experiment between the
training and test sets may have a greater impact.

To test the effectiveness of the automatic identification
algorithm in cross-day experiments, we compare the rec-
ognition error rates of the two training-testing strategies,
and the results are shown in Figure 8, where T indicates that
the data of one day are used for training and the data of
another day are used for testing, while AL indicates that the
data of one day are used as a template, the morning (first 24
groups) data of another day are automatically identified, and
then the data of the afternoon experiment are tested with the
new model. *e horizontal coordinate Di indicates that the
ith second experiment is used as the training group and the
first experiment is used as the test group and corresponds to
the T and AL models, respectively. It can be seen from the
figure that all recognition error rates decrease after using the
automatic marking algorithm. At the same time, the degree
of error rate decrease is related to the original high error rate.
Taking the result of subject 1 as an example, the highest
recognition rate was obtained when using the data of the
fifth experiment as the training group, and the recognition
rate was improved the most after using the fifth experiment
as the template for automatic identification. *erefore, we

Table 1: *e number of groups and the number of days between
subjects participating in the experiment.

Subjects k SR DR
Subject 1 0.15 0.9561 0.9632
Subject 2 0.2 0.9267 0.9417
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believe that using the autoidentification algorithm between
two groups of data with similar environmental factors can be
better for the motion pattern recognition task.

To further validate the effectiveness of the autolabeling
algorithm, we compared the training effects of generating
groups with different days of data as templates. *e results
are shown in Figure 9, where T indicates that the ratio of data
in the training and test groups is 1:1, no autolabeling al-
gorithm is used, and the training group does not contain
data from the same day of the test group. AL1 *e morning
data in the test group are automatically identified, while the
afternoon data are used for testing. It can be seen from the
figure that as the amount of data involved in generating the
automatic identification template increases, the recognition
results are better regardless of the classifier used. For subject
1, compared with other training combinations, when using
QDA and GNN for classification, the recognition AL4 error
rate decreased the most, even lower than AL5 and AL4. *e
data added on day 5 are generated as a template, as shown in
Figure 7, and the error recognition rate is also the lowest.

*is shows that adding the experimental group data more
matching with the test group to the template generation will
greatly improve the recognition effect. *e same phenom-
enon can be seen in Figure 9(b) for subject 2, where the
recognition error AL2 rate decreases the most, and the
corresponding Figure 7 also shows the lowest error rate for
D3 subject 2.

In summary, we can draw the following preliminary
conclusions: (1) the length of the interval between the
training group and the test group has no significant effect on
the accuracy of the recognition task; (2) for the combination
of training test results with low recognition rate without
automatic identification, the recognition error rate decreases
the most after the introduction of automatic identification,
and we believe that such a combination has the best
matching degree; and (3) when the experimental group with
the highest matching degree is added to the template gen-
eration library, the recognition effect is most obviously
improved when the automatic identification test is done with
this template.
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Figure 6: *e accuracy of automatic identification under different values of k: (a) participant 1 and (b) participant 2.
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5. Conclusion

In this paper, the problem of loose hitting in athletes is
studied in the following two aspects. We tried to use two
deep learning algorithms, graphical neural network and
recurrent neural network, in the action recognition task of
athletes’ sparring and compared them with the effects of
quadratic discriminant analysis and support vector machine.
After comparing and analyzing the effects of different

network structures on deep learning algorithms, it is con-
cluded that recurrent neural networks have more practical
use advantages than graph neural networks in terms of
parameter tuning of network structures. *e performance of
four classifiers, namely, quadratic discriminant analysis,
support vector machine, graph neural network, and re-
current neural network, in the above-mentioned recognition
tasks is then compared and analyzed, and it is concluded that
the long- and short-term memory structure (a type of
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Figure 9: *e training effect diagram of the group generated by using different days of data as a template: (a) participant 1 and
(b) participant 2.
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Figure 8: Recognition error rate results of two training and testing strategies: (a) participant 1 and (b) participant 2.
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recurrent neural network) can achieve about 95% recog-
nition accuracy in recognition tasks with different data
combinations, which is higher than the other three. Support
vector machines had the second-highest recognition rate,
graphical neural networks the second, and quadratic dis-
criminant analysis the worst.

Based on some of the above conclusions, we also have
some perspectives for the future. Ideally, we would like to be
able to test the new data by using the usage data of past days as
training so as to find out the data of past days with the best
match to the new data and use it as a template for automatic
identification of the new data. However, in practice, due to the
limitation of computing power, we cannot use online real-time
training to implement the above strategy. *erefore, on the
one hand, we can improve the speed of online training by
means of hardware acceleration and parallel computing. On
the other hand, we can also try to find a more clever training
strategy to make the historical data better support the new
data.*ese are all directions that can be explored in the future.
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