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Feature selection is a known technique to preprocess the data before performing any data mining task. In multivariate time series (MTS)
prediction, feature selection needs to find both the most related variables and their corresponding delays. Both aspects, to a certain
extent, represent essential characteristics of system dynamics. However, the variable and delay selection for MTS is a challenging task
when the system is nonlinear and noisy. In this paper, a multiattention-based supervised feature selection method is proposed. It
translates the feature weight generation problem into a bidirectional attention generation problem with two parallel placed attention
modules. The input 2D data are sliced into 1D data from two orthogonal directions, and each attention module generates attention
weights from their respective dimensions. To facilitate the feature selection from the global perspective, we proposed a global weight
generation method that calculates a dot product operation on the weight values of the two dimensions. To avoid the disturbance of
attention weights due to noise and duplicated features, the final feature weight matrix is calculated based on the statistics of the entire
training set. Experimental results show that this proposed method achieves the best performance on compared synthesized, small,

medium, and practical industrial datasets, compared to several state-of-the-art baseline feature selection methods.

1. Introduction

With the development of IoT, more and more domains, e.g.,
social media and industries, have accumulated a large
amount of high-dimensional data with temporal orders, so-
called multivariate time series (MTS), which contain valu-
able information. MTS data containing a large number of
features become more and more common in various ap-
plications, such as in biology [1], multimedia [2], social
networks [3], energy [4], and industries [5, 6]. It has brought
the curse of dimensionality and volume. Excessive numbers
of features may greatly slow down the quality of the clas-
sifiers because irrelevant, redundant, and noninformative
features are highly confusing in the learning process [7-9],
while also increasing computational overhead. Thus, it is
important to fully exploit the complex relationship from
both temporal and variate dimensions and identify the most
related variates and their most appropriate feature time
stamps in respect to the supervision target. Figure 1 shows

the two different requirements for the feature selection in
MTS. Finding those variables and their time lags is often of
great importance in understanding physical/chemical
models of the underlying systems.

Feature selection, by removing irrelevant and/or redun-
dant features/variables, has been seen as an essential and
crucial data preprocessing step for machine learning [10]. The
supervised feature selection methods are normally catego-
rized as the wrapper, filter, and embedded methods [7, 11].
Different feature selection algorithms exploit various types of
criteria to define the relevance of features: similarity-based
methods, e.g., SPEC [12] and Fisher’s score [13], feature
discriminative capability, e.g., ReliefF [14], information-the-
ory based methods, e.g, mRmR [15], and statistics-based
methods, e.g., T-score [16]. However, those feature selection
methods normally suffer major problems: varying from
computation scalability to stability. Recently, advances in
tree-based solutions and deep learning-based feature selection
and many deep learning-based feature selection methods have
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FiGure 1: Two-dimensional feature selection in MTS: temporal
feature selection and variate selection, only partial variates and
certain time lags of those variates relevant towards the label y.

been proposed due to their effectiveness in processing massive
data and rich modeling capability. Random Forest [17] cal-
culates feature importance as the sum over number of splits.
The extreme popularity of the gradient boosting methods also
provides feature selection capabilities, e.g., the Xgboost [18]
and LightGBM [19] calculate feature weight basically
according to the numbers of times the feature is used. Li et al.
[20] proposed a deep feature selection (DES) by adding a
sparse one-to-one linear layer. Roy et al. [21] use the acti-
vation potentials contributed by each of the individual input
dimensions, as the metric for feature selection. Gui et al. [22]
in their recent work use an attention mechanism for the
general feature selection task as both attention mechanism
and feature selection focus on selecting partial data from the
high-dimensional dataset. However, those feature selection
algorithms are designed for general data and treating the two-
dimensional MTS data indiscriminately.

For MTS feature selection, partially due to its com-
plexity, most research studies are optimized for certain
domains, e.g., Wong et al. [23] propose the feature se-
lection method based on the adaptive resonance theory for
financial time series forecasting. Jimenez et al. [24] define
a wrapper feature selection method based on multi-
objective evolutionary algorithms for antibiotic resistance
outbreak prediction. Gonzalez-Vidal et al. [25] design a
feature selection method for smart buildings. Those ap-
proaches generally limit in their respective domains and
cannot easily be extended to other domains. Few feature
selection methods have been proposed for general mul-
tivariate time series. Most of them have major limitations.
For instance, Hido and Morimura [26] find the most
appropriate time stamps for the whole set of variates.
Some keep, e.g., Wong et al. 2012, the time windows
invariant or the same for all features [23]. Sun et al. [27]
used the Granger causality [28] discovery to identify
causal features as well as the effective sliding window sizes
in multivariate numerical time series. However, these
approaches face the same limitation of Granger causality
and may produce misleading results when the true rela-
tionship involves three or more variables and is incapable
of the nonlinear causal relationship.
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In this paper, a novel multiattention-based supervised
feature selection (m-AFS) method is proposed to explicitly
tackle the two different correlations. It translates the feature
weight generation problem into a bidirectional attention
generation problem with two parallel placed attention
modules. The input 2D data are sliced into 1D data from two
orthogonal directions, and each attention module generates
attention weights from their respective dimensions.

The major contributions of our work are as listed as
follows:

(i) An innovative biattention-based feature selection
architecture is proposed to make dimension-specific
feature selection methods with neural network-
based solutions. This method proposes a systematic
structure to generate two different feature weights
from a different perspective with one coherent
neural network structure. By reusing existing neural
network computation advances, this architecture
supports fast and scalable feature weight generation.

(ii) Two different attention-based modules are proposed
that formulate dimension-specific feature weight
generation problems into attention-based attention
weight generation problems: attention over time
(AoT) and attention over variates (AoV). Those two
modules are designed according to the different
characteristics of two-dimensional features.

(iii) A feature weight generation mechanism is proposed
to generate a final feature weight matrix to unify two
different feature weights across two dimensions
with simple dot product operation. As the attention
weight might have a huge disturbance during the
training, the final feature weight matrix is calculated
based on the statistics of the entire training set.

A set of experiments are designed on a set of datasets
including both regression and classification problems. The
highest predicting and classification accuracy, compared
with existing popularly used baseline algorithms, has been
observed on all tested datasets. To the best of our knowledge,
m-AFS is the first attention-based neural network solution
for MTS feature selection tasks.

2. Multiattention-Based Feature Selection

In this section, the overall architecture of m-AFS is illus-
trated and analyzed. Then, the major components of this
architecture are illustrated.

2.1. Notation. For the clarity of symbol usage, this paper
presents matrices as a bold uppercase character (e.g., A),
vectors as a bold lowercase (e.g., a), and normal lowercase
character for numerical values (e.g., a). For instance, a time
series is a series of observations,
x;(t);i=1,2,...,m;t=1,2,...,d, which is made sequen-
tially through time, where i denotes the index of the mea-
surements made at each time step ¢ and t denotes the index of
the time. Matrix X = {x; (t)li = 1,2,...,m;k=1,...,d} is
used to indicate the feature selection space with n features and
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d time points before time t. Here, d represents the maximum
time interval in respect to the current time t. For the feature
selection task, our goal is to find the appropriate feature and
time step with respect to the output y(t). Here, y(f) presents the
value for the label at time point . When 7 is equal to or greater
than 2, it is called MTS.

2.2. Architecture. As discussed in Introduction, for MTS data,
two different feature selection dimensions coexist: time di-
mension selection and variate dimension selection. Those two
dimensions have respective characteristics and have to be
handled differently. In the time dimension, the sequence of a
single feature’s correlation with the target at different time steps
generally is of close characteristics: (1) same unit: the unit of
value is uniform for the same feature; (2) continuity in values:
the values in time sequence are generally continuous. Normally,
the smaller the time interval, the smaller the difference between
the front and back of the sequence of features. However, in the
variate dimension, different features are heterogeneous in most
cases. Therefore, the ways in which features are correlated with
the label normally are quite different.

Similar to the embedded feature selection methods, m-AFS
generates feature weight during a learning process. As shown in
Figure 2, m-AFS consists of three connected modules, namely,
the AoT module, the AoV module, and the learning module.
The AoT and AoV modules are parallel arranged in the upper
of m-AFS. AoT is responsible for computing the time di-
mensional weights with transformed one-dimensional data
instead of the original data. Each variate has an AoT module
and a set of attention weights a’. is generated. Similarly, the
AoV takes all variates at the same time step as its inputs and
tries to find the correlation between variates and label. The two
attention modules are placed in parallel to avoid convergence
problem which exists in the sequential structure. The mutual
influence between two modules hampers the learning module.
The learning module aims to find the optimal correlation
between the weighted features and the supervision target by
solving the optimization problem. It connects the supervision
target and features by the backpropagation mechanism and
continuously corrects the feature weights during the training
process. The AoT, AoV, and the learning module build the
correlation that best describes the degree of relevance of the
target and features together.

As shown in Figure 2, m-AFS is a loosely coupled and
stacked structure. Thus, it is quite similar to extend the
feature selection to data with more dimensions, e.g., tem-
poral, spatial, and variable dimensions. Furthermore, the
learning module can also be customized according to spe-
cific learning tasks, e.g., CNN or RNN.

2.3. Design of the Attention Module. The AoV unit, as shown
in Figure 3, slices the sample along the time dimension and
uses the wvariate vector on a single time step
tj= {x1(j), %, (j), ..., x,,(j)} as input. Firstly, a dense layer
(denoted as E) is used to extract the intrinsic relationship to
eliminate certain noise or outliers. The introduced dense
network E compresses the original feature domain into a vector
with a smaller size (adjustable according to specific problems),

while keeping the major part of the information. As the size of
E is normally much smaller than the size of variables, certain
redundant variables will be discarded during this process.

Secondly, by using the extracted E as input, each U is
assigned with a shallow neural network corresponding to the
number of variables. The output of U represents the jth time
step’s variable attention distribution. To widen the difference
between variables and avoid to take an effect on the time
dimension, the softmax activation is used and the selection
possibility of feature j, p/ is calculated with equation (1) and
the output a{, is calculated with (2):

p = w{,tj +b{,, (1)

al, = softmax(tanh(wipj + bil)) (2)

For each input X with m feature and n time steps, the
AoV modules generate n different attention vectors ai, for
different time stamps j. Thus, it creates a weight matrix
Ay = {a{,lj =1,2,... ,d}. Note that the parameters of AoV
and AoT modules are summarized as 6,.

While the AoV unit calculates the variable attention, the
AoT unit integrates the input information of all moments in
the form of soft attention. It uses the time step vector of a
single variable x; = {x;(1),x;(2),...,x;(d)} as input and
calculates the ith variable’s corresponding attention vector
aili=1,2,...,mand matrix Ay =abli=1,2,...,m with a
series of transformations which are similar to the AoV unit.
For each variable, one AoT is used.

This design has two major functions: (1) the separation of
two dimensions avoids mutual influence and accelerates
convergence and (2) each component a} and aj, in the
interval (0,1) can force many feature coeflicients to be small,
or exactly zero to facilitate feature selection. Attention here
is similar to some sparse regularization terms used in many
sparse-learning-based feature selection methods.

2.4. Learning Module. The feature weights generated from
m-AFS are from AoT and AoV, respectively. Therefore, it is
important to merge the two sets of weights to facilitate global
feature selection. Two dimensions of the original data have
their different characteristics and cannot directly be used for
selection. But after the transformations of the attention
module, weights of both dimensions are unified within [0,1]
and can be directly used to identify the importance of
variables. Here, we contact the two attention weight matrices
Ay and A} by a pairwise multiplication operation ® and the
global dimension attention weight is as follows:

A=A, 0A,;. (3)

The 2D weighted inputs of the learning module G can be
accessed by the following equation:

G=AoX. (4)

A is constantly adjusted during the learning process with

backpropagation by solving the objection function as
follows:
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FIGURE 3: Attention structure for temporal dimension.

argming[fgl(AOX)—Y]+/\R(9), (5)
A
where 0 = (0,, 6,) and R(-) is often an L2-norm that helps to
speed up the optimization process and prevent overfitting.
Here, A controls the strength of regularization. The loss
function depends on the type of prediction task. For the
classification tasks, the cross-entropy loss functions are
usually used. For regression tasks, the mean absolute error
(MAE) is normally used. Note that f g () isa neural network
with parameters 0,.
For a specific learning problem, m-AFS can use a net-
work structure that best fits the particular task. For general

value-based regression and classification tasks, we adopt the
fully connected network for task learning. Other structures,
e.g., LSTM and CNN, are also adopted.

2.5. Feature Score Generation. Considering the much larger
amount of data and limited computing resources in the real
scenario, as well as the risk of trapping into local optimum,
the training of network is processed in batch. This limits us
to getting global attention weights of only one batch
inputted, resulting in degraded performance. To have a
better understanding of the attention distribution, we use the
trained model to evaluate the whole dataset, get each



Computational Intelligence and Neuroscience

sample’s global weight wy, and calculate the statistical feature
score using the following equation:

D
A
F:Z,:;) i (6)

where D is the size of the dataset and A; is the attention
matrix generated by the trained model for the sample i. The
average weight matrix F across the whole sample is used as
the basis for the feature selection.

3. Results

In this section, we will conduct experiments to answer the
following research questions:

(i) Q1: Does the selection achieve good accuracy or a
small error in those datasets?

(ii) Q2: Does it capable to select the most appropriate
features from both the temporal and variate
dimensions?

In the following section, we introduce the basic exper-
iment settings and the comparisons of different methods on
both synthetic and real-world datasets.

3.1. Experiment Settings. This section is divided into two
main experiments. The first experiment verifies the feasi-
bility of m-AFS on a synthetic data. Then, experiments on
several real-world datasets from the UCI Machine Learning
Data Repository are conducted.

3.1.1. Evaluation Setting. 'The ratio of training data to test data
is 8:2. m-AFS adopts the normalization method introduced in
Section 2.5 to generate global feature weight from the weights
of variable and the temporal dimensions. Other feature se-
lection methods do not have the concept of hierarchically
generating weights. Thus, other baseline algorithms select
feature directly via their feature weights across all features.

3.1.2. Baselines. The implementation of the feature selection
methods compared in this experiment is from the open-
source library [7] (https://github.com/jundongl/scikit-
feature). This experiment compares the m-AFS with the
following representative methods:

Similarity-based methods: Fisher’s score [29] and
ReliefF [30] select features by finding the near-hit and
near-miss instances using the 11-norm: FS_I21 (feature
selection with 12, 1-norm) [31]

Embedded method: RF (Random Forest) is a tree-based
feature selection method provided by scikit-learn package

3.1.3. Predictive Model Settings. The RF (Random Forest) is
used as the classifier for the experiments to avoid using the
same methods for feature selection and testing. Other clas-
sifiers are also tested, e.g., support vector machine (SVM) is
too slow to be used in the large dataset, and KNN is also much
slower than RF and displays no significant advantages over RF

in most of the tested datasets. Since the feature subsets se-
lected by different feature selection methods are different, it is
not appropriate to use the same hyperparameters for pre-
diction. Therefore, we use the grid search to find the optimal
parameters for the prediction model and use these parameters
to set the model and then test the prediction accuracy on the
reconstructed feature set. For the regression tasks, the mean
absolute error (MAE) is adopted while the percentage of
classification accuracy is used for classification tasks.

Model parameters are initialized with the truncated
normal distribution with a mean of 0 and a standard de-
viation of 0.1. The model is optimized by Adam. The batch
size is set according to the size of samples, 100 for small
datasets and 1000 for MNIST and noisy MNIST. The
learning rate is the default value of Adam optimizer in Keras
framework (0.002). Here, all trainable parameters are con-
strained by L2 regularization. The network setting of AoT is
one hidden layer and AoV is with two hidden layers: the first
layer E with 32 units and the second layer U with the length
of time steps and the number of the variables, respectively.
The E layer is with 512 units. As the structure is loosely
coupled, the learning module can be easily replaced. The
max training epoch is set at 100 and early stopping is
adopted to avoid overfitting.

3.2. Experiments on the Synthetic Data. In order to verify
whether m-ATP can accurately identify the related features,
we performed feature selection in a synthesized nonlinear
system with known dynamics. There are six variables that are
uniformly random distributed. The output y is generated
with the following function:

Y=X(t-1)*«X,t-2)+X5(t -5 +X,(t-1)
+ X, (t -4+ (7)
X, (t-5+X,(t-7)+X,(t-8)+0(0,0.1),

where x1 € [2,5],x2 € [10,30], x3 € [5,10], x4 € [30,70],
x5 € [100,200], x6 € [65,85], and uniformly distributed. As
can be seen from this equation, only xl~x4 variates are
related to y at certain time stamps. At the same time, in order
to simulate the noisy environment, Gaussian white noise
0(0,0.1) is added. The total number of samples of the
simulation dataset generated according to the above prin-
ciples is 5000. Here, T is set to 10, and the total number of
samples becomes 4991.

We tested various feature selection algorithms on the
datasets. Here, the major focus is to check whether those
algorithms can effectively identify the correct time stamps.
Thus, the feature weights generated by different methods are
illustrated in Figure 4. Note that as other methods generate
weight in ranges other than [0,1], in order to have
straightforward comparisons, those weights are normalized
to the same range. Of course, the order of feature weights for
feature selection is kept unchanged. The darker the feature,
the more likely it should be chosen. This figure clearly shows
that m-AFS can correctly find all the most relevant time
stamps. In contrast, none of the other methods can correctly
identify both variates and time stamps, or even some of
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FIGURE 4: Feature weight distribution in the synthetic data. (a) m-AFS feature weight; (b) trace ratio; (c) RF; (d) ReliefF.

them. For instance, although RF achieves very sparse feature
weight distribution, this distribution deviates significantly
from the real system dynamics. Thus, their results might give
misguidance towards the system’s characteristics.

3.3. Experiments on Real-World Datasets. To further dem-
onstrate the effectiveness of m-AFS in real-world cases, we
conducted experiments in six publicly available time series
datasets from UCI (https://archive.ics.uci.edu/ml/index.
php), including three regression datasets and three classi-
fication datasets. Details about the dataset are shown in
Table 1. The size of the data is calculated with the product of
sample instances, maximum time window, and the number
of variates to represent how many inputs are needed to be
calculated.

Table 2 shows the partial experiments results on the six
different MTS datasets with different percentages of selected
features. Due to the fact that MTS data normally have strong
autocorrelation in the temporal dimension, maximum 15%
of features are selected.

TaBLE 1: Dataset information.

Dataset Type Var.no. Win. size Train/test Size (million)
DC R 7 20 1900/475 0.266
SRU R 5 15 8053/2014 0.603
AEP R 27 20 15772/3944 8.516
EEG C 14 20 11968/2993 3.351
OD C 5 20 6499/1625 0.650
WFRN C 24 20 4349/1088 2.328

Table 2 shows that m-AFS and RF achieve the best
performance on almost all the datasets and normally have
big performance advantage over the other methods. RF leads
with small percentage over m-AFS in the top 5% range and
m-AFS ranks first in most top 10% features. However, their
performances are quite close. It shows that both methods can
identify the most influential factors for the prediction. Other
methods, e.g., the LS_121 have rather unstable performance
in different datasets. LS_121 ranks first in the OD dataset
while it ranks last in the EEG dataset. Both datasets are the
classification task. We also notice that more selected features
normally yield little improvement towards the final results.
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TaBLE 2: Regression and classification accuracy with different percentages of selected features with the RF classifier.
SRU (10°2) DC (1072) AEP (10°2) EEG (%) 0D (%) WERN (%)
Top 5% of selected features
m-AFS 1.65 6.55 3.09 89.98 95.38 92.74
Fisher 2.63 11.24 3.72 81.35 98.52 93.47
s score
ReliefF 2.74 9.39 5.53 70.09 97.48 94.30
Trace 2.80 5.94 4.05 68.09 84.74 90.71
LS_121 1.86 6.81 3.36 63.81 99.01 92.46
RF 1.40 5.37 3.29 82.15 98.58 98.34
Top 10% of selected features
m-AFS 1.3 3.18 3.22 95.16 99.26 95.96
Fisher 2.55 7.31 3.38 85.63 98.65 96.04
s score
ReliefF 2.52 7.73 5.29 76.54 98.46 95.31
Trace 2.58 5.62 3.44 75.67 86.77 92.09
LS_I21 1.57 5.24 3.23 67.65 98.52 93.29
RF 1.10 3.88 3.61 85.36 99.20 98.07
Top 15% of selected features
m-AFS 0.99 2.80 327 96.26 99.26 95.96
Fisher 2.52 7.03 3.30 89.31 98.71 96.87
s score
ReliefF 2.51 6.14 4.73 82.73 98.77 95.59
Trace 2.54 5.40 3.15 79.89 86.95 92.56
LS_I21 1.50 4.56 3.20 75.01 98.52 93.38
RF 0.96 2.81 3.60 86.97 99.32 98.07

And in the bigger range of top K, similar results are
observed.

Here, the Random Forest algorithm is chosen also as the
classifier for prediction and classification due to its per-
formance and accuracy. We have to admit that this choice
gives RF some advantages over the other methods. However,
SVM is too slow to finish those tasks and KNN displays not
so well accuracy in those tasks.

3.4. Interpretability. For many mission-critical domains, it is
important that the generated feature weights have good
interpretability and represent real system dynamics. Partial
feature weights from the best two methods: m-AFS and RF
for x2, x3, and x4 of the SRU dataset are shown in Figure 5. It
clearly shows that m-AFS generates more smooth feature
weights and clearly identifies the system lags for variates x2
(around 5 7), x3 (around 14), and x4 (around 8 10). This
result is quite close to the results deduced by domain expert
supported with domain-specific data mining solutions [32].
Their conclusion is x2 (6), x3 (14), and x4 (10). However,
results from RF hardly demonstrate this conclusion al-
though it has the best performance in SRU.

These results also show the possibility that the global
weight generation methods proposed have room for im-
provements. How to generate global consistent weights to
facilitate the feature selection with two different dimension-
specific weights still needs further investigations.

3.5. Computational Complexity. In Table 3, the computation
overheads of different feature selection methods are illustrated.
Note that AFS intentionally only uses the CPU rather than the

GPU as the calculation devices to make a fair comparison.
Theoretically, it can execute 3~9 times faster on the GPU.

The overhead is measured with the execution time for
the feature weight generation process. Results show that AFS
has moderate computation complexity. For the training with
1000 steps, it takes about 10s to 173 s for the feature weight
generation. Its execution time increases almost linearly as
the size of data increases. In contrast, Fisher’s score and
ReliefF suffer the high and unstable computation cost. Their
calculation time does not increase exactly with the increase
in data volume.

3.6. Discussions

3.6.1. Possible Applications. Obtaining the most relevant
features of the target system and the time node with the
greatest impact is essential for the modeling of any se-
quential system. As machine learning is more and more
applied to the modeling of time series systems, the accuracy
of the model is getting higher and higher, and the required
parameters are becoming more and more complicated. The
improvement of the accuracy of the model is of course very
important, but the increase in the complexity of the model
leads to a decrease in the intelligibility and robustness of the
model. For many application scenarios that require high
model availability and robustness, such as modeling of in-
dustrial systems, the existing deep learning models often
cannot meet the modeling requirements of intelligibility and
robustness. In our work, by identifying the most relevant
features, the most relevant time delays, and the important
system parameters and through the actual industrial data,
the delay calculation of this SRU dataset is consistent with
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TaBLE 3: Comparisons of the computation overhead (in seconds).

Meth. dataset DC SRU EEG AEP OD WEFRN
m-AFS 10 52 101 173 44 60
Fisher’s score 16 1511 68 128 21 5.6
ReliefF 633 45594 412 2707 72 45
Trace ratio 1.3 30 95 185 19.2 10
LS_L21 1 14 12 20 35 33
RF 3 9 33 124 1.5 7.8

the actual physical model, which effectively illustrates that
this work plays an important role in the modeling of un-
derstandable industrial systems.

3.6.2. Current Limitations. The current major limitation is
in the difference of feature weight evaluation. Traditional
feature selection solutions calculate the feature weights and
select the most influential features from the global per-
spective. In contrast, m-AFS calculates the feature weight
from two different dimensions. Although our solution
provides better interpretability, it introduces complexities in
evaluating their contributions in the global aspect. And we
need to balance the attention weight from multiple di-
mensions as proposed in Section 2.5. We are working on a
more effective solution to condense weights from multiple
dimensions.

4. Conclusion

In this paper, a novel multiattention-based feature se-
lection architecture is introduced for the supervised
feature selection for MTS data. In this architecture, two
different attention mechanisms are designed to make the
temporal and variable selection according to different
feature selection patterns. Specifically, for the temporal
dimension, the feature weight problem is formulated into
a weighted average problem. For the variate dimension,

the variate selection problem is transformed into a binary
classification problem for each variate. This architecture is
designed to be easily stackable so it is possible to be ex-
tended to data with more than two dimensions. Experi-
ment results show that m-AFS can achieve the best feature
selection accuracy on most tested different datasets,
compared with three oft-the-shelf and widely used
baselines.

In future work, we aim to develop more domain-op-
timized solutions for data with more than 3 dimensions.
We are also working on the data-driven physical dynamics

model reconstruction to enhance the model
interpretability.
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