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With the rapid development of the marine industry, intelligent ship detection plays a very important role in the marine traffic
safety and the port management. Current detection methods mainly focus on synthetic aperture radar (SAR) images, which is of
great significance to the field of ship detection. However, these methods sometimes cannot meet the real-time requirement. To
solve the problems, a novel ship detection network based on SSD (Single Shot Detector), named NSD-SSD, is proposed in this
paper. Nowadays, the surveillance system is widely used in the indoor and outdoor environment, and its combination with deep
learning greatly promotes the development of intelligent object detection and recognition. 0e NSD-SSD uses visual images
captured by surveillance cameras to achieve real-time detection and further improves detection performance. First, dilated
convolution and multiscale feature fusion are combined to improve the small objects’ performance and detection accuracy.
Second, an improved prediction module is introduced to enhance deeper feature extraction ability of the model, and the mean
Average Precision (mAP) and recall are significant improved. Finally, the prior boxes are reconstructed by using the K-means
clustering algorithm, the Intersection-over-Union (IoU) is higher, and the visual effect is better.0e experimental results based on
ship images show that the mAP and recall can reach 89.3% and 93.6%, respectively, which outperforms the representative model
(Faster R-CNN, SSD, and YOLOv3). Moreover, our model’s FPS is 45, which can meet real-time detection acquirement well.
Hence, the proposed method has the better overall performance and achieves higher detection efficiency and better robustness.

1. Introduction

With the rapid development of the shipping industry, there
are more frequent human activities on the ocean in recent
years. 0erefore, robust ship detection is strongly needed to
meet the demand. Currently, ship detection is used in port
transportation management, sea area monitoring over illegal
activities, and ship abnormal behavior detection for navi-
gation safety. Modern radar target tracking equipment and
ship automatic identification systems are mainly based on
positioning, and thus, ship detection needs substantial
improvements. In response to these problems, many re-
searchers have used traditional machine learning methods to
explore this field in search of better results. For example,
they used features of ships combined with classifiers [1, 2].
Although these methods achieve good results, they require

manual extraction of features and a classifier with good
performance, which needs further validation in terms of
efficiency and accuracy. Fortunately, the development of
deep learning has enabled object detection to be widely used
in many scenarios, such as surveillance security and au-
tonomous driving. In 2019, Jiao et al. [3] provided a com-
prehensive analysis of the current state and future trends of
deep learning-based object detection. Convolutional Neural
Networks (CNN) can effectively learn the corresponding
features from massive samples, which avoids the compli-
cated feature extraction process and achieves higher accu-
racy. In 1998, Lecun et al. [4] proposed LeNet-5 and
achieved success in the recognition of handwritten char-
acters. Since then, the performance of CNNs has been
improved with the appearance of deeper and more complex
CNNs such as AlexNet [5], VGGNet [6], GoogLeNet [7],
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ResNet [8], and DenseNet [9]. In 2020, Abdollahi et al. [10]
used a generative adversarial network (GAN) architecture to
extract building footprints from high-resolution aerial im-
ages. However, the algorithms of regular CNNs combined
with feature pyramid networks (FPN) have become a new
focus in the field of object detection. 0e object detection
algorithms currently mainly include two technical routes:
two-stage detection and one-stage detection. 0e two-stage
detection is divided into two steps. First obtain the region
proposals, and then, these region proposals are classified and
regressed to get the final detection results. Two-stage de-
tectors mainly include R-CNN [11], SPP-Net [12], Fast
R-CNN [13], Faster R-CNN [14], andMask R-CNN [15]. For
one-stage detection, it treats the object detection problem as
a regression problem. A unified CNN completes the object
classification and location, which is an end-to-end target
detection solution. One-stage detectors mainly include
OverFeat [16], SSD [17], and YOLO [18–21]. Many scholars
proposed improved YOLOv3 and SSD for object detection
and obtained outstanding detection performance [22, 23].
0e two-stage detection algorithm such as Faster R-CNN has
high accuracy, but its region proposal network (RPN) is
time-consuming and therefore reduces the detection effi-
ciency. On the contrary, although the YOLO series has a
great advantage in terms of detection speed, they cannot
achieve high accuracy.

0e SSD is used as a one-stage detector and introduces a
multiscale feature layer for object detection, which has faster
detection speed but accuracy needs to be improved. In this
paper, the SSD is applied to ship detection and several
improvements are used to improve the overall performance
of the network.

(1) To address the problem of poor performance of small
target detection, we apply a dilated convolution on the low-
level feature layer to expand the receptive field so that the
low-level feature layer can also contain more feature in-
formation. At the same time, we perform multiscale fusion
on the original feature layers after up-sampling so that the
network can make full use of the contextual information. (2)
We introduce a residual structure in the prediction module
of the network to enable the network to extract deeper
dimensional feature information for better classification and
regression. (3) We use the K-means clustering algorithm to
reconstruct the prior bounding box so as to obtain a more
suitable scale and aspect ratio, which can improve both the
visual effect and the efficiency of ship detection. Finally, we
propose a new SSD-based network, called NSD-SSD, which
is significantly better than the original SSD. Compared with
SSD and other detection networks, the proposed network
provides a good trade-off between real-time detection and
accuracy.

0e rest of this paper is organized as follows. In Section
2, we introduce the related work of the ship detection. In
Section 3, we give detailed program of our proposed ap-
proach. Section 4 outlines the experimental results and
comparisons against other state-of-the-art methods. Finally,
conclusions are made in Section 5.

2. Related Work

0is paper categorizes the previous work of ship object
detection to traditional methods and deep learning methods.

0e traditional detection methods include two types. (1)
Ship-radiated noise-based methods: Kang et al. [24] pro-
posed a multiple classifier fusion algorithm based on many-
person decision theory to identify ship radiated noise, with
accuracy rate of over 96%. Zhao et al. [25] proposed a
decision tree support vector machine (SVM) classification
method based on the ship-radiated noise multidimension
feature vector for the measured radiated noise of three kinds
of ship targets. Luo and Wang [26] used the time-frequency
range characteristics of ship noise to distinguish ship’s stern,
ship’s mid-aft, and ship’s middle part to complete the po-
sitioning and identification of ship targets. Peng et al. [27]
proposed a ship-radiated noise model based on the winger’s
higher-order spectrum for feature extraction. (2) Ship
structure and shape characteristics-based methods: Zhu
et al. [28] proposed a novel hierarchical method of ship
detection from spaceborne optical image based on shape and
texture features, and this method can effectively distinguish
ships from nonships on the optical image dataset. Liu et al.
[29] used segmentation and shape analysis to detect inshore
ships and proved their method was effective and robust
under various situations. Shi et al. [30] proposed an ap-
proach involving a predetection stage and an accurate de-
tection stage to detect ships in a coarse-to-fine manner in
high-resolution optical images. Wang et al. [31] proposed a
detection method based on DoG (Difference of Gaussian)
preprocessing and shape features to detect ship targets in
remote sensing images.

Most of the traditional methods use manually extracted
features, which will lead to low efficiency and high time
consumption. At the same time, even if a classifier with good
performance is used to classify these features, the accuracy
cannot meet the actual demand. 0erefore, the recognition
rate of these methods in complex environmental back-
ground and multivessel classification is not ideal.

0e deep learning detection methods: with the boom
development of deep learning, many ship object detection
methods based on deep CNN have been proposed. Zou et al.
[32] proposed an improved SSD algorithm based on
MobilenetV2 [33] and finally achieved better detection re-
sults in three types of ship images. Zhao et al. [34] proposed a
new network architecture based on the Faster R-CNN by
using squeeze and excitation for ship detection in SAR
images. Shao et al. [35] proposed a saliency-aware CNN
framework and coastline segmentation method to improve
the accuracy and robustness of ship detection under com-
plex seashore surveillance conditions. Nie et al. [36] pro-
posed an improved Mask R-CNN model, which can
accurately detect and segment ships from remote sensing
images at the pixel level. Guo et al. [37] proposed a novel
SSD network structure to improve the semantic information
by deconvoluting high-level features into a low-level feature
and then fusing it with original low-level features, and the
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model performed well on both the PASCAL VOC and
railway datasets. Huang et al. [38] proposed a new network
by referring to the feature extraction layer of YOLOv2 and
feature pyramid network of YOLOv3, and the new network
model can detect seven types of ships. Zhao et al. [39]
proposed the Attention Receptive Pyramid Network
(ARPN), which detected multiscale ships in SAR images. Li
et al. [40] proposed a new method, combining the Saliency
Estimation Algorithms (SEAs) and the Deep CNN (DCNN)
object detection to ensure the extraction of large-scale ships.
In 2021, Zhao et al. [41] proposed a feature pyramid en-
hancement strategy (FPES) and a cascade detection mech-
anism to improve SSD, and the improved model can be
applied to vehicle detection quickly and efficiently.

In short, although the existing ship target detection
methods have made major breakthroughs, they still have
certain limitations. Firstly, the low-level feature map con-
tains less semantic information but can accurately present
the location of the target. In contrast, high-level featuremaps
contain rich semantic information but cannot accurately
display the location of objects. In addition, the previous
methods cannot extract the features of small objects well. In
this paper, we use a multiscale feature fusion algorithm,
which considers the ability of the entire network to combine
the context information and improve small target detection
performance. In addition, we have also improved the pre-
diction module and the settings of prior boxes. Finally, we
test the improved model on the ship dataset.

3. Materials and Methods

3.1. Single-Shot Multibox Detector. Figure 1 shows the SSD
network structure diagram with a backbone network VGG-
16. VGG-16 has stable network structure and good feature
extraction capabilities. 0e SSD network converts FC6 and
FC7 in VGG-16 into convolutional layers, removes all
Dropout layers and FC8 layers, and adds four additional
convolutional layers: Conv6, Conv7, Conv8, and Conv9.0e
feature pyramid structure is to detect objects of different
sizes. In the process of detection, a large number of prior
boxes are usually generated, and these prior boxes have
multiple predefines scales and ratios. Finally, it is required to
apply a Nonmaximum Suppression (NMS) process to obtain
the final test results. 0e biggest advantage of the SSD
network is that classification and regression are carried out
at the same time, which improves the detection speed
compared with other models such as Faster R-CNN.

3.2. Our Proposed Network. 0e overall architecture of the
Novel Ship Detection SSD (NSD-SSD) is shown in Figure 2.
From the figure, the architecture mainly is formed by three
parts, a dilated convolution layer, a multiscale feature fusion
layer, and a prediction layer. In addition, the prior boxes are
reconstructed within this network. Ship images are sent to
the NSD-SSD network for a series of operations, and finally,
the specific location and type of ship can be obtained.

To understand the features extracted by the network
more clearly, a visualization of the feature maps is given in

Figure 3. In the figure, from left to right, the input image, the
feature maps extracted by SSD, and the feature maps
extracted after feature layer fusion are shown. From the
figure, we can see that the feature maps extracted by the
original SSD network lack rich semantic information. For
example, the main characteristics of the low-level feature
layer Conv4_3 are small perceptual field and too poor ability
to extract target features. However, after the dilated con-
volution and features fusion, the feature information of the
target is greatly enriched. Similarly, all other scale layers also
extract a large amount of meaningful contextual information
after feature fusion, which greatly improves the accuracy of
object detection.

3.2.1. Dilated Convolution Layer. Traditional SSD network
mainly uses low-level feature layer Conv4_3 to detect small
objects. However, due to insufficient feature extraction in the
Conv4_3 layer, the detection effect of small objects is not
ideal. To address this issue, we use dilated convolution to
map high-dimensional features to low-dimensional input. In
this paper, we choose the lower-level feature layer Conv3_1
for dilated convolution and merge it with Conv4_3 for
feature fusion. In this way, the range of the receptive field can
be enlarged without loss of image detail information and
obtains more global information.

Dilated convolution is to inject dilation on map of the
standard convolution to increase the receptive field. 0e
dilated convolution has another hyperparameter called the
dilation rate, which refers to the number of intervals of the
convolution kernel. Assuming that the original convolution
kernel is f and the dilation rate is α, the new convolution
kernel size n after dilated convolution is

n � α ×(f − 1) + 1. (1)

0e receptive field size r after dilated convolution is

r � 2(α/2)+2
− 1􏽨 􏽩 × 2(α/2)+2

− 1􏽨 􏽩. (2)

Suppose that there is a dilated convolution with f � 3
and α � 1, which is equivalent to a standard convolution. Its
receptive field is 3 × 3. When f � 3 and α � 2, according to
equations (1) and (2), its new convolution kernel is 5 × 5, and
the receptive field size is expanded to 7 × 7 without losing
detailed information.

In this paper, we choose the Conv3_1 layer for dilated
convolution. 0e original kernel is 3 × 3, stride is 2, pad is
2, and dilation rate is 2. From equation (1), the new
convolution kernel is 5 × 5. 0e original feature map of
Conv3_1 layer is 75 × 75 × 256. After performing dilated
convolution, it obtains a feature map size which is
38 × 38 × 512. From equation (2), the receptive filed is
7 × 7. 0e Conv3_1 layer undergoes feature map fusion
with the Conv4_3 layer after dilated convolution. 0ere are
two main ways of feature map fusion: additive fusion and
cascade fusion. Because the cascade fusion has a small
amount of calculation and high accuracy, in this paper, we
choose cascade fusion method. Figure 4 shows the process
of feature map fusion.
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To better explain how the dilated convolution improves
the performance of the network with the addition of feature
maps, Figure 5 shows the feature maps of the image before
and after the dilated convolution.

In the figure, (a) is the original image, (b) are the feature
maps of Conv4_3 in the SSD network, and (c) are the feature
maps with dilated convolution and feature fusion. 0e
original features of the Conv4_3 activation area and

perceptual field are small and cannot detect the ship targets
at the corresponding scales well. 0e original features of the
Conv4_3 activation area and perceptual field are small and
cannot detect the ship targets at the corresponding scales
well. On the contrary, the dilated convolution and feature
fusion are able to more richly extract the texture and detail
features on the low-level feature maps, and the contours and
shapes are more clearly distinguished.
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3.2.2. Multiscale Feature Fusion Layer. 0e original SSD
network uses the Feature Pyramid Network (FPN) to detect
different feature layers so that it can adapt to different object
sizes. Although this detection method provides the possi-
bility of multiscale object detection, it does not consider the
combination of shallow features and deep features. In this
study, on the basis of the original SSD network, we introduce
a multiscale feature fusion mechanism. 0is method can
synthesize shallow high-resolution features and deep se-
mantic features to make joint decisions. 0e green dotted
box in Figure 2 shows the specific fusion connections of
different feature layers. 0e left half of the figure is the
original SSD network feature layer, and the right half is the
fused feature layer. 0e specific implementation process of
this feature fusion method will be described in detail below.
First, perform 1 × 1 convolution of Conv11_2 to obtain P6,
then perform up-sampling of P6, and finally perform 1 × 1
convolution of Conv10_2 with the feature layer obtained by
up-sampling P6 to obtain P5. 0e purpose of up-sampling
here is to obtain the feature map of the size required for
fusion. After the same fusion process, the fused feature layers
are successively P4, P3, P2, and P1. In this way, the com-
bination of shallow features and deep features is considered
comprehensively, and it is possible to improve the detection
accuracy. P1 is formed by fusion of dilated convolutional
layer and P2 up-sampling. 0e parameters of the prediction
layer are shown in Table 1.

3.2.3. Improved Prediction Module. 0e SSD network uses a
set of convolution filters at each effective feature layer to
obtain prediction results. For each effective feature layer
with a size of h × w with dchannels, use a 3 × 3 convolution
operation on each route to obtain the score of each category
and the change of each prior bounding box.

MS-CNN [42] points out that improving the subnetwork
of each task can improve the accuracy. DSSD [43] follows
this principle and proposes an improved prediction module,
and experimental results show that this method can improve
detection accuracy. 0erefore, we transplant the idea of
DSSD into our network model to better improve the de-
tection performance.0e prediction layer corresponds to the
red box in Figure 2. 0at is, on the basis of SSD, the original
structure is changed to a residual module. 0e residual
prediction block allows the use of 1 × 1 convolution to
predict the score of each category and the changes of prior
boxes. 0e structure of the original predictor and the im-
proved predictor are shown in Figure 6. In this way, deeper
dimensional features can be extracted for classification and
regression.

3.2.4. Reconstruction of Regional Prior Box. 0e perfor-
mance of deep learning object detection algorithms largely
depends on the quality of feature learning driven by training
data. In the SSD object detection task, the training data is the
regional prior box. 0e SSD network has selected a total of 6
effective feature layers as the prediction layer, the sizes of
which are (38, 38), (19, 19), (10, 10), (5, 5), (3, 3), and (1, 1),
but the number of a prior bounding boxes set on each feature

map is different. 0e prior bounding box has two hyper-
parameters: scale and aspect ratio. 0e scale of a prior
bounding box in each prediction layer is

Sk � Smin +
Smax − Smin

m − 1
(k − 1), k ∈ [1, m]. (3)

Among them, m refers to the number of feature maps
(m � 6 in the SSD algorithm), sk represents the ratio of the
prior box size of the kth feature map to the picture, Smin
represents the minimum value of the ratio, and the value is
0.2, and Smax indicates the maximum value of the ratio, and
the value is 0.9. 0e aspect ratio of the prior bounding box is
generally set to ar � 1, 2, 3, 1/2, 1/3{ }. 0e width and height
of the prior bounding box are as follows:

w
a
k � Sk

��
ar

√
,

h
a
k �

Sk
��
ar

√ .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

By default, each feature map will have a prior bounding
box with ar � 1 and a scale of Sk. In addition, the prior
bounding box with a scale of Sk

′ �
�����
SkSk+1

􏽰
will be added. In

this way, each feature map has two square prior bounding
boxes with an aspect ratio of 1 but different sizes. 0e
maximum side length of the square prior bounding box is
Sk
′ �

�����
SkSk+1

􏽰
, and the minimum side length is Sk. Table 2

lists the min-size and max-size of the prior bounding boxes
used in this paper.

As shown in Figure 7, 4 prior bounding boxes are
generated, two squares (red dashed line) and two rectangles
(blue dashed line). At this time, the aspect ratio ar � 1, 2{ }.
Among them, Sk ∗ 300 is the side length of the small square
and

�����
SkSk+1

􏽰
∗ 300 is the side length of the large square. 300

is the size of the input image in the SSD algorithm.0e width
and height of the corresponding two rectangles are

��
ar

√ ∗ Sk ∗ 300,
1
��
ar

√ ∗ Sk ∗ 300,

��
1
ar

􏽳

∗ Sk ∗ 300,
1

����
1/ar

􏽰 ∗ Sk ∗ 300.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

When 6 prior bounding boxes are to be generated, the
aspect ratio ar � 1, 2, 3{ }. 0e center point of each prior box
is (i + 0.5/|fk|, j + 0.5/|fk|), i and j ∈ [0, |fk|], and fk is the
size length of the feature map. In this paper,
fk � 38, 19, 10, 5, 3, 1{ }. Table 3 shows the detailed param-
eters of the prior bounding boxes of the SSD algorithm.

In the SSD algorithm, the scale and aspect ratio of the
prior boxes in the network cannot be obtained through
learning, but manually set. Since each feature map in the
network uses different prior bounding boxes in scale and
shape, the debugging process is very dependent on expe-
rience. In this paper, we use the K-means algorithm to
predict the scale and proportion of the prior bounding box
to improve the detection efficiency of the network. 0e
standard K-means clustering algorithm uses Euclidean
distance to measure distance. But if Euclidean distance is
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used here, the larger boxes will produce more errors than the
small boxes. 0erefore, we use other distance measurement
methods, and the specific equation is as follows:

d(box, centroid) � 1 − IOU(box, centroid)

� 1 − IOU xj, yj, wj, hj􏼐 􏼑, xj, yj, Wi, Hi􏼐 􏼑􏽨 􏽩.
(6)

IoU is the intersection ratio between the regional prior
bounding boxes and the ground truth boxes, and we expect a

larger IoU. 0e purpose of clustering is that the prior
bounding boxes and the adjacent ground truth have a large
IoU value. Equation (6) just ensures that the smaller the
distance, the larger the IoU value.

In this paper, we will traverse different types of labeled
boxes in the dataset and cluster different types of boxes.
Some specific parameters in equation (6) are as follows:
(xj, yj, wj, hj), j ∈ 1, 2, . . . , k{ }, is the coordinates of the
label boxes. (xj, yj) is the center point of the box, (wj, hj) is
the width and height of the boxes, and N is the number of all
label boxes. Given k cluster center points (Wi, Hi),
i ∈ 1, 2, . . . , k{ }, where Wi andHi are the width and height of
the prior bounding box. Calculate the distance between each
label box and each cluster center, and the center of each label
box coincides with the cluster center during calculation. In
this way, the label box is assigned to the nearest cluster
center. After all the label boxes are allocated, the cluster
centers are recalculated for each cluster. 0e equation is as
follows:

Table 1: Parameters of the prediction layer.

Prediction layer Kernel size Padding Kernel numbers Strides Feature map
P1 3× 3 1 1024 1 38× 38
P2 3× 3 1 1024 1 19×19
P3 3× 3 1 512 1 10×10
P4 3× 3 1 256 1 5× 5
P5 3× 3 1 256 1 3× 3
P6 3× 3 1 256 1 1× 1
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Figure 6: 0e prediction process of the feature layer. (a) 0e original SSD predictor: obtain the score of each category and the change of the
prior box after two convolution routes. (b) 0e improved predictor: add the residual structure on the basis of (a) to obtain the prediction
result.

Table 2: Size of prior bounding boxes for different feature layers.

Feature layer Min-size Max-size
Conv4_3 30 60
FC7 60 111
Conv8_2 111 162
Conv9_2 162 213
Conv10_2 213 264
Conv11_2 264 315
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Wi
′ �

1
Ni

􏽘 wi,

Hi
′ �

1
Ni

􏽘 hi,

(7)

where Ni is the number of label boxes in the ith cluster, that
is, find the average of all label boxes in the cluster. Repeat the
above steps until the cluster center changes very little.

In this paper, we set the number of cluster center k� {0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to conduct experiments and use the
average IoU tomeasure the results of the experiment, so as to
complete the reconstruction of the prior box. It can be seen
from Figure 8 that when k≤ 6, the average IoU increases
greatly, and when k> 6, it basically tends to be flat. By
combining the calculation amount of the entire algorithm
for comprehensive consideration, we choose k � 6. At this
time, the aspect ratio of the prior bounding box is predicted
to be [0.35, 0.89, 1.18, 1.69, 1.89, 2.86]. Table 4 shows the
specific parameters of the prior bounding box setting in the
NSD-SSD algorithm.0rough themethod of prior bounding
box reconstruction, the error of the algorithm is reduced
with improved accuracy and efficiency.

3.3. Loss Function. When training the detection network, we
need to measure the error between the candidate boxes and

the truth value boxes and minimize this error. At this time,
for each candidate box, the offset of the center point of the
candidate box relative to the center of the truth box and the
confidence of the candidate box needs to be calculated. In the
training phase, there are generally two samples, called
positive samples and negative samples. Here, we consider the
matching value of the candidate box and the truth box to be

Figure 7: Schematic diagram of the prior bounding box. At this time, the aspect ratio ar � 1, 2{ }, and there are 4 prior bounding boxes.

Table 3: 0e specific parameters of prior bounding boxes in the SSD algorithm.

Feature map Size Numbers ar

Conv4_3 38× 38 4 1, 2
FC7 19×19 6 1, 2, 3
Conv8_2 10×10 6 1, 2, 3
Conv9_2 5× 5 6 1, 2, 3
Conv10_2 3× 3 4 1, 2
Conv11_2 1× 1 4 1, 2
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Figure 8: 0e clustering map of the prior bounding box.
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greater than the threshold as positive samples, denoted by
d1, and other candidate boxes that do not satisfy minimum
matching value are considered negative samples, denoted by
d2. In order to ensure the balance of the sample, the ratio of
positive and negative samples is required to be at most 3: 1.

0e loss function of the NSD-SSD algorithm is basically
similar to that of the SSD. In this study, the total loss
function includes the classification loss and the localization
loss:

L(x, c, l, g) �
1
N

Lcls(x, c) + αLloc(x, l, g)( 􏼁, (8)

where N is the number of the positive samples. If N � 0, we
set the loss to 0. c is confidence, l is the predicted box, and g

is the ground truth box. α is the balance coefficient between
classification loss and localization loss, and its value usually
is 1.

0e localization loss is smooth L1 loss, xp
ij is an indicator,

and x
p
ij � 0, 1{ }. When x

p
ij � 1, it means that the ith can-

didate box matches jth ground truth box of ship category p:

Lloc(x, l, g) � 􏽘
N

i∈d1

􏽘

m∈ cx,xy,w,h{ }

x
k
ijsmoothL1 l

m
i − 􏽢g

m
j􏼐 􏼑, (9)

where

smoothL1(x) �
0.5x

2
|x|< 1,

|x| − 0.5 otherwise.

⎧⎨

⎩ (10)

0e classification loss is the Softmax loss. When clas-
sifying, the confidence level belonging to the ship category p

is expressed by cp, and the confidence level belonging to the
background is expressed as c0:

Lcls(x, c) � − 􏽘
N

i ∈ d1

x
p

ijlog 􏽢c
p

i􏼐 􏼑 − 􏽘
i∈d2

log 􏽢c
0
i􏼐 􏼑, (11)

where 􏽢c
p
i � exp(c

p
i )/􏽐pexp(c

p
i ). In the first half of equation

(11), the predicted frame i and the real frame j match with
respect to the ship category p. 0e higher the predicted
probability of p, the smaller the loss. In the second half of the
equation, there is no ship in the predicted box. 0at is, the
higher the predicted probability of the background, the
smaller the loss. In this study, we use Stochastic Gradient
Descent to optimize the loss function to find the optimal
solution. 0e final loss function curve of NSD-SSD is shown
in Figure 9. Note that due to the result of deep learning in
this model, the loss function in the early stage will fluctuate,
but it will eventually become stable.

4. Experimental Results

To prove the effectiveness of our proposed method, we
designed experiments and quantitatively evaluated the
proposed method on the public ship dataset. Subjective and
objective results will be presented in this section, and the
results will also be analyzed.

4.1. Dataset. In this paper, we use a public dataset called
SeaShips [44] for ship detection. 0is dataset consists of 6
common ship categories and 7000 images in total, including
ore carrier, bulk cargo carrier, general cargo ship, container
ship, fishing boat, and passenger ship. All of the images are
video clips taken by surveillance camera, covering all pos-
sible imaging changes, with different proportions, hull parts,
background, and occlusion. All images are marked with ship
category labels and bounding boxes. 0e example images of
each ship category are shown in Figure 10. In order to better
train and evaluate the model, we divided the dataset into a
training set, a validation set, and a testing set. 0e 3500
images were randomly selected as the training set, 1750
images as the validation set, and the rest as the testing set. In
particular, the validation set was useful to avoid overfitting
for better model selection.

4.2. Test Settings. All the models in our experiment are run
on a 64-bit Ubuntu operating system using a 2.9GHz Intel
Core-i5 with 15.6GB of RAM and NVIDIA GTX 1080Ti

Table 4: 0e specific parameters of prior bounding boxes in the NSD-SSD algorithm.

Feature map Size Numbers ar

Conv4_3 38× 38 6 1, 2, 3
FC7 19×19 6 1, 2, 3
Conv8_2 10×10 6 1, 2, 3
Conv9_2 5× 5 6 1, 2, 3
Conv10_2 3× 3 6 1, 2, 3
Conv11_2 1× 1 6 1, 2, 3

tr
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Figure 9: 0e loss function curve of the NSD-SSD.
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GPU with 11GB of video RAM. 0e deep learning frame-
work that we use is Pytorch which runs on GPU.

Our proposed network structure is modified from SSD,
and the NSD-SSD and SSD use the same hyperparameters
for training. 0e batch size we used is 32, and the num_-
workers is 4. 0e initial learning rate is set to 0.001. Mo-
mentum is 0.9, and weight decay is 0.0002.

4.3. Evaluation Index. Since this article studies the task of
ship object detection, several mature indicators are needed
to evaluate the detection model. 0ese indicators will be
described in detail below.

(1) Intersection-over-Union (IoU): IoU is a standard for
measuring the accuracy of detecting the position of
corresponding objects in a specific dataset. In other
words, this standard is used to measure the corre-
lation between real and predicted. 0e higher the
correlation, the greater the value. 0e equation is as
follows:

IoU �
Gt ∩Dr

Gt ∪Dr

. (12)

In equation (12), Gt is the ground-truth bounding
box, Dr is the predicted bounding box, Gt ∩Dr is the
intersection of Gt and Dr, and Gt ∪Dr is the union of
Gt and Dr. 0e range of IoU is 0-1; in this paper, we
set the threshold to 0.5. Once the IoU calculation
result is greater than 0.5, it is marked as a positive
sample; otherwise, it is also a negative sample.

(2) Average precision: After the IoU threshold is given,
there will be two indicators called precision and
recall. 0e precision refers to the number of ground
truth ships in all predictions. 0e recall refers to the
number of ground truth ships predicted in all ground
truth ships. So, precision and recall are as follows:

precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(13)

According to precision and recall, a precision-recall
curve can be drawn, referred to as the PR curve. AP is
the area enclosed by this curve, and the specific
equation is as follows:

(a) (b)

(c) (d)

(e) (f )

Figure 10: 0e ship category in our used dataset. (a) Bulk cargo carrier. (b) Container ship. (c) Fishing boat. (d) General cargo ship. (e) Ore
carrier. (f ) Passenger ship.
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AP � 􏽚
1

0
P(R)dR, (14)

(3) mean Average Precision (mAP): mAP shows the
average values of APi of each class i:

mAP �
􏽐

n
i�1 APi

n
. (15)

Here, n represents the number of classes of ships that
need to be detected.

(4) Frames Per Second (FPS): the FPS is used to judge the
detection speed of different models, and the larger
the FPS value, the faster the speed.

4.4. Results and Analysis. Our model is based on the SSD
network with the backbone of VGG16. To test the detection
performance of NSD-SSD, the comparative experiments are
implemented using several popular baseline methods: Faster
R-CNN, SSD series, and YOLO series. 0e backbone net-
works of these models are pretrained on ImageNet. To
achieve a fair comparison, we train and test the four models
using the same dataset. At the same time, to ensure the
consistency of training, we set the hyperparameters and the
number of training echoes of these three baseline models to
be the same as the NSD-SSD.

According to our detection method (NSD-SSD), the AP
performance of the six categories of ship is shown in Fig-
ure 11. 0e IoU threshold is set to 0.5 in the experiment.

We record the accuracy of the four models based on the
evaluation indicators, as shown in Table 5. 0e detection
performance of Faster R-CNN is significantly better than
YOLO series and SSD series. On average, Faster R-CNN’s
mAP is 22.5% and 17.8% higher than SSD series and 12.5%
and 8.2% higher than YOLO series, respectively. Although
our proposed model (NSD-SSD) has a little gap with Faster
R-CNN in mAP, our approach significantly improves the
performance of SSD. Moreover, it performs better than
Faster R-CNN on general cargo ship.

Our proposed method is based on SSD (VGG16). 0e
detection effect of the original SSD network is indeed not
good, and the accuracy is extremely average. But compared
with SSD, the mAP of each category of ship in our model has
a good improvement and the NSD-SSD’s mAP is 20.2%
higher than original SSD. Among six categories of ships, the
container ships have the best detection results. Because they
mainly transport containers, and these cargoes have very
distinct shape characteristics that are different from other
ships. 0e ore carriers also achieve excellent detection re-
sults. Because they usually transport ore, they have the
special features like container ships. In addition, since the
general cargo ships are very large in the images, their results
are also extremely good. On the contrary, the performance of
fishing boats is the worst among these six categories of ships.
0e main season is that fishing boats are too small, occu-
pying a few pixels in the 1920 × 1080 image. Detectors are
generally not good at detecting small objects. After layers of
convolution, the feature information of small objects will
become blurred, and even the SSD model is worse.

We perform structural improvements on the basis of
SSD and add detailed detection techniques, which makes it
possible for us to better detect small targets and improve the
overall accuracy. For fishing boats, we have increased from
60.4% to 82.4%, which already exceeds the mAP of the
YOLOv3 model. As shown in examples in Figure 12, our
proposed method greatly improves the detection effect of
fishing boats against SSD. For the passenger ships, our
method has increased by nearly 10%. For the general cargo
ships, our method makes their performance become better
and has a significant improvement over Faster R-CNN.

In terms of detection speed, FPS of 24 is called the
standard for real-time detection in object detection. As can
be seen from Table 6, the detection speed of YOLOv3 is
much better than other detectionmodel, and the FPS reaches
79. Unfortunately, its detection effect is not good. 0e de-
tection speed of SSD series can be ranked second, and the
FPS can reach 75 and 68.0, respectively, but detection
performance is worse. Since the Faster R-CNN is a two-stage
detector, the detection process is more complicated, which
results in its FPS of only 7 and cannot meet real-time de-
tection. Our proposed model adds many parameters and
calculations on the basis of SSD, thereby reducing the speed.
0e FPS given by our method is 45, which not only guar-
antees the real-time detection requirements but also im-
proves the detection accuracy. In addition, we also give the
parameters of IoU and recall for different models, and our
method is better than other methods.

In Figure 13 we show the detection examples of our
model against Faster R-CNN and YOLOv3, and our pro-
posedmethod has a better visual effect. Specifically, when the
two ships are very close together, the bounding box of
YOLOv3 is much larger or smaller than ship, but our
method can mark a more accurate box. Furthermore, the
Faster R-CNN sometimes detects the background as a ship,
but our proposed method can avoid the false detection.

We compare the proposed method with [35], and they
propose a detection method that combines YOLOv2 and
saliency detection and achieve good results. 0e comparison
results are shown in Table 7. From the table, our method is
slightly better than the comparisonmethod onmAP. Among
the six categories of ships, container ships and fishing boats
can achieve better results. Specifically, these two categories
of ships’ AP is 7.7% and 4.1% higher than the comparison
method, respectively. For passenger ships, our method is
3.8% lower than Shao’s method because the color charac-
teristic of passenger ships is very salient, the performance of
their proposed saliency detection is particularly good, and
the accuracy is higher. In addition, the IoU of our method is
higher and the detection visual effect is better, but the FPS of
Shao’s model is 4 higher than the FPS of our model.

To verify the effectiveness of our proposed various
modules, we conduct the ablation experiment for comparison,
and the original SSD is the baseline network. Moreover, our
proposed three modules are considered as setting items, and
the experimental results are shown in Table 8.

As can be seen from the table that the detection accuracy
of SSD is 10.7% higher than that of the backbone network
VGG16, indicating that SSD is a better detection network.
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When introducing the feature fusion in SSD, the mAP has
increased from 69.1% to 83.2%. Because our algorithm
considers the combination of shallow features and deep
features and makes full use of contextual information. When
adding the remaining two parts of modules, the mAP has
increased by 6.1%.0e above results prove that our proposed
method can effectively improve the accuracy of ship
detection.

Furthermore, we validate our proposed method under
practical extreme conditions, as shown in Figure 14, and
under different weather conditions, such as sunny, rainy,
and night. On the contrary, the ships in the images are
incomplete. However, our method still achieves excellent
detection performance, and the marked bounding boxes
and the classifications are reasonable and accurate,
respectively.
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Figure 11: Precision-recall curves of our proposed method (NSD-SSD) on six categories of ships.
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Table 5: Detection accuracy of different detection models.

Model mAP Bulk cargo ship Container ship Fishing boat General cargo ship Ore carrier Passenger ship
Faster R-CNN 0.916 0.893 0.986 0.908 0.927 0.914 0.868
SSD (VGG16) 0.691 0.661 0.801 0.604 0.703 0.620 0.755
SSD (Mobilev2) 0.738 0.703 0.876 0.635 0.742 0.686 0.783
YOLOv3 0.791 0.681 0.959 0.690 0.893 0.734 0.786
YOLOv4 0.834 0.849 0.929 0.732 0.851 0.778 0.862
NSD-SSD 0.893 0.863 0.980 0.824 0.937 0.908 0.848

(a) (b)

(c) (d)

(e) (f )

Figure 12: Some fishing boats’ detection results. (a–c) 0e original SSD. (d–f) Our proposed method.

Table 6: 0e detection results of other indicators for different detectors.

Model IoU Recall FPS
Faster R-CNN 0.603 0.865 7
YOLOv3 0.616 0.834 79
SSD (VGG16) 0.781 0.700 75
SSD (Mobilev2) 0.745 0.787 68
YOLOv4 0.716 0.854 56
Ours 0.808 0.936 45
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(a) (b)

(c) (d)

Figure 13: Ship detection results. (a) 0e Faster R-CNN. (b) YOLOv3. (c, d) Our proposed model.

Table 7: Detection results of different detection models.

Model IoU mAP Bulk cargo ship Container ship Fishing boat General cargo ship Ore carrier Passenger ship FPS
Ours 0.8082 0.893 0.863 0.980 0.824 0.937 0.908 0.848 45
Shao’s 0.7453 0.874 0.876 0.903 0.783 0.917 0.881 0.886 49

Table 8: 0e results of the ablation experiment.

VGG16 SSD Feature fusion Improved predicted module Prior boxes reconstruction mAP
✓ 0.584

✓ 0.691
✓ ✓ 0.832
✓ ✓ ✓ ✓ 0.893

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 14: Continued.
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5. Conclusion

In this paper, based on real-time ship detection task as our
basic goal as well as the characterization of the ship dataset, a
novel ships’ detector in visual images captured by the
monitoring sensor, named NSD-SSD, is proposed. 0e
NSD-SSD is mainly based on multiscale feature fusion
(MFF), predicted module (PM), and reconstruction of prior
boxes (RPB). Regarding the problem of small objects de-
tection, the dilated convolution is used to expand the re-
ceptive field of low-level feature layers, and the network can
fully use the contextual information by the MFF. For the
problem of setting prior boxes manually, we propose RPB by
using the K-means clustering algorithm to improve the
detection efficiency. In addition, the PM is introduced to
extract deeper features. We train our model on the ship
dataset and compare it with other conventional methods.
0e experimental results prove that our proposed method is
able to acquire higher accuracy and recall, and it can meet
the requirement of real-time detection. Moreover, the NSD-
SSD can also guarantee high-quality detection performance
in the relatively extreme environment. We also noticed that
the method could be improved for ship detection in complex
backgrounds. We will address this issue in our future work.
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