
Research Article
Application of Dual-Channel Convolutional Neural Network
Algorithm in Semantic Feature Analysis of English Text Big Data

Yang Li1 and Chengbo Yin 2

1International Business School, Qingdao Huanghai University, Qingdao, Shandong 266400, China
2School of Data Science, Qingdao Huanghai University, Qingdao 266427, Shandong, China

Correspondence should be addressed to Chengbo Yin; yincb@qdhhc.edu.cn

Received 11 August 2021; Revised 10 September 2021; Accepted 18 September 2021; Published 6 November 2021

Academic Editor: Bai Yuan Ding

Copyright © 2021 Yang Li and Chengbo Yin. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

'e current Internet data explosion is expecting an ever-higher demand for text emotion analysis that greatly facilitates public
opinion analysis and trend prediction, among others. 'erefore, this paper proposes to use a dual-channel convolutional neural
network (DCNN) algorithm to analyze the semantic features of English text big data. Following the analysis of the effect of CNN,
artificial neural network (ANN), and recurrent neural network (RNN) on English text data analysis, the more effective long short-
term memory (LSTM) and the gated recurrent unit (GRU) neural network (NN) are introduced, and each network is combined
with the dual-channel CNN, respectively, and comprehensively analyzed under comparative experiments. Second, the semantic
features of English text big data are analyzed through the improved SO-pointwise mutual information (SO-PMI) algorithm.
Finally, the ensemble dual-channel CNN model is established. Under the comparative experiment, GRU NN has a better feature
detection effect than LSTM NN, but the performance increase from dual-channel CNN to GRU NN+dual-channel CNN is not
obvious. Under the comparative analysis of GRU NN+dual-channel CNN model and LSTM NN+dual-channel CNN model,
GRU NN+dual-channel CNN model ensures the high accuracy of semantic feature analysis and improves the analysis speed of
the model. Further, after the attention mechanism is added to the GRUNN+dual-channel CNNmodel, the accuracy of semantic
feature analysis of the model is improved by nearly 1.3%. 'erefore, the ensemble model of GRU NN+dual-channel
CNN+ attention mechanism is more suitable for semantic feature analysis of English text big data. 'e results will help the
e-commerce platform to analyze the evaluation language and semantic features for the current network English short texts.

1. Introduction

Statistics indicate that over half of the global publications are
in English, and 80% of the web pages or online information
is in English. Meanwhile, various English texts (such as
news, comments, and e-mail) are filling all aspects of peo-
ple’s life and work [1]. 'erefore, the research on new
English text semantic feature extraction and understanding
methods can solve such problems in artificial intelligence
(AI) as text classification, machine translation (ML), auto-
matic question answering, text generation, and human-
computer interaction (HCI) and promote the interlanguage
communication [2, 3].

With the technological maturity of natural language
processing (NLP) in AI, automatic English text semantics

can quickly understand the international situation, grasp the
orientation of international opinion, and ensure national
information security. 'erefore, with the development from
natural language processing (NLP) to natural language
understanding (NLU), people's attention has shifted to se-
mantic understanding methods and text semantic feature
extraction mechanisms [4].

Here, the realization of English semantic feature analysis
is mainly studied based on big data of English text using the
dual-channel convolutional neural network (CNN) algo-
rithm. 'en, the model with the highest accuracy in English
semantic feature extraction is found through comparative
analysis of different models. Innovatively, the attention
mechanism, gated recurrent unit (GRU) neural network
(NN), and long short-term memory (LSTM) NN are added
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to the dual-channel CNN algorithm, thereby greatly im-
proving the accuracy of the model.

2. Related Works

In the context of big data, the mechanism to analyze the
semantic features of English text using the dual-channel
CNN algorithm has been studied by many scholars.

Mamoon et al. found that deep neural network (DNN)
had achieved great success in semantic segmentation, but its
real-time application was still facing challenges. Due to a
multitude of feature channels, parameters, and floating-
point operations, the network had a slow speed with huge
amounts of computation, which was not desirable for real-
time tasks, such as robot and autopilot. However, most
methods often sacrificed spatial resolution to achieve real-
time reasoning speed, resulting in poor performance [5].
Wang and Xu proposed a feature fusion depth projection
CNN, which mainly used a new residual block, stepwise res
block, to mine high-level semantic features while retaining
low-level details. 'e framework used a specially designed
feature fusion module to further balance the features ob-
tained from different levels of the backbone network [6].
Javed et al. proposed a new generation antagonism network.
'e experimental analysis showed that loss reconstruction
using low-level loss and high-level structural similarity loss
was very effective in obtaining visually credible and con-
sistent texture [7]. Fraz et al. constructed a deep network for
simultaneous segmentation of microvessels and nerves in
conventional staining histological images, which could
predetect embedded feature attention blocks and uncer-
tainties [8]. Yong et al. put forward a bidirectional feature
pyramid network, which further enhanced the detection and
classification of some types of obstacles using the multilevel
detail features of the bottom layer and the strong semantic
features of the high layer in the network structure. 'e
detection and classification performance of the proposed
method was evaluated on the self-built dataset. Ablation
experiments and performance tests were carried out on open
datasets. Experimental results showed that the algorithm had
the best detection performance [9]. Rosewelt and Renjit
discovered that there was an abundant number of relevant
and irrelevant data in the current Internet resources. Se-
mantic analysis played an important role in text mining. In
this case, to extract relevant data successfully, data classi-
fication should be combined with semantic-based text
summarization.'erefore, a new feature selection algorithm
based on semantic analysis was proposed, which could select
relevant data of similar index from local repository orWorld
Wide Web (WEB) application [10]. Wang et al. proposed a
latent Dirichlet allocation (CL-LDD) topic model combined
with big data. 'e results showed that the CL-LDA model
could well adapt to the short text topic mining task in outer
hair cells (OHCs) with sparse semantics and very little co-
occurrence information. 'e research results could help
OHCs provide accurate information and improve service
quality [11]. Lou and Shi recognized and analyzed different
images through a series of algorithms, such as image feature
value extraction, recognition, and convolution [12].

Razzaghi et al. established a new method to learn the per-
ceptual grouping of features extracted by CNN to represent
the image structure. In CNN, the spatial hierarchical rela-
tionship between high-level features was not considered. To
do so, the perceptual grouping of features was utilized. To
consider the intrarelationship between feature maps, an
improved guided co-occurrence block was proposed and
applied to some known semantic segmentation and image
classification datasets, which achieved excellent performance
[13]. Yang et al. proposed a spatial synthesis technique to
generate meaningful synthetic virtual data for acoustic scene
classification. A large number of experiments on synthetic
data and real acoustic scene classification data sets show that
multiscale semantic feature fusion and label smoothing
spatial hybrid data enhancement can improve the acoustic
scene classification performance of DNN [14].

'e above research of CNN in different fields has
promoted the development and maturation of the CNN
algorithm, as well as its application to the semantic feature
analysis of English text. Meanwhile, the above research
results suggest that different types of NN will cause great
differences in the accuracy of the data. 'erefore, different
CNN algorithms will be selectively used here to maximize
the English text analysis ability of the model.

3. Model Establishment and Scheme Design

3.1. Affective Analysis of English Texts

3.1.1. Artificial Neural Network (ANN). ANN is a relatively
simple deep learning (DL) model, which can simply imitate
the working characteristics of the human brain. A complete
ANN is composed of neurons, the structure of which is
shown in Figure 1.

In Figure 1, X1, X2,. . ., and Xn represent the input values
of input neurons at the input end, and θ stands for the bias
term. W1, W2, . . . , and Wn denote the weights corre-
sponding to the input values and bias terms. yi indicates the
output of neurons. i is a neuronal node, and yi can be
calculated as follows:

yi � f 􏽘
n

i�0
wixi

⎛⎝ ⎞⎠, (1)

where f represents the activation function, in which the
sigmoid activation function and hyperbolic tangent acti-
vation function are widely used. 'e expression of the
sigmoid activation function is shown in the following
equation:

f(x) �
1

1 + exp(− x)
. (2)

An ANN is formed through the combination of many
neurons. Figure 2 depicts an ANN with the simplest
structure.

'e input layer gets the input vector and outputs the
calculation result to the hidden layer. Afterward, the hidden
layer outputs the calculation results to the output layer, and
finally, the output result is obtained in the output layer.
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Although the ANN seems to be very simple, due to the
characteristics of its results, neurons are interconnected with
those in the next layer. 'erefore, when the network be-
comes deeper, the parameters surge, the calculation becomes
more complex and leads to unsatisfactory results.

3.1.2. CNN. CNN is also a multilayer network structure,
which is mainly composed of the convolution layer, pooling
layer, and fully connected layer. After the convolution
calculation, the convolution layer can select the local features
of the upper layer. 'e essence of photo convolution in
image processing is the image filtering process using the
convolution kernel. 'e convolution calculation of the
image is shown in the following equation:

f(x, y)∗w(x, y) � 􏽘
a

s�− a

􏽘

b

t�− b

w(s, t)f(x − s, y − t), (3)

where f(x, y) represents the point gray value of the selected
image in a coordinate system, w(x, y) denotes the convo-
lution kernel, and a, b denote the size of the convolution
kernel. Individual neurons from different layers are com-
pletely interconnected in the fully connected layer of CNN.
'e fully connected layer can gather the data text features
extracted by the previous network layers. Compared with
other structures in the CNNmodel, the fully connected layer

contains the most parameters, where many computations in
the CNN model are accomplished. 'erefore, the model
computation can be reduced by introducing the dropout
technology in the fully connected layer while improving the
generalization ability. Meanwhile, a softmax classifier will be
added to the fully connected layer to calculate the probability
of a text being a specific emotion and determine the emo-
tional tendency of the text, as shown in Figure 3.

3.1.3. Recurrent Neural Network (RNN). RNN is a network
structure connected into a loop, in which the output of the
neural unit relates to the current input, as well as the value of
the previous time. 'is structural feature can deal with the
timing problem, as shown in Figure 4.

'e calculation of RNN can be expressed as in equations
(4) and (5).

Oi � g V · Si( 􏼁, (4)

Si � f U · Xi + W · Si− 1( 􏼁, (5)

where X represents the input data of the model, U denotes
the weight vector between the hidden layer and the input
layer, S stands for the data in the hidden layer, V indicates
the weight vector between the output layer and the hidden
layer, O refers to the output data of the model, and W is the
weight between the hidden layer and the hidden layer.
However, the oversized training text data cause long-term
dependence and over-lengthy sequences that will lead to
gradient explosion or disappearance. Given these short-
comings, the application of RNN is greatly reduced.

3.1.4. LSTM NN. 'e hidden layer of LSTM NN is com-
posed of three gate structures, including the output gate, the
forget gate, and the input gate, which can control infor-
mation transmission in the U-form. In each gate, there is a
point multiplication operation and a sigmoid layer. 'e
output value range of the sigmoid layer is [0,1], which can
describe the amount of information passed by each part,
where 0 means no pass and 1 means all pass.

(1) 'e input layer information Ct is calculated. Wij

represents the weight vector between the input data
and the hidden layer, wjc denotes the output weight
of the previous time, and bc stands for the offset.

Ct � tanh wijxt + wjcCt− 1 + bc􏼐 􏼑. (6)

(2) 'e input gate it is calculated. Wxi represents the
weight between the input gate and the input infor-
mation, wih denotes the weight between the input
gate and the output at the previous time, wci stands
for the weight between the input gate and the cell at
the previous time, and bi is the offset.

it � ψ wxixi + whihi− 1 + wcict− 1 + bi( 􏼁. (7)

(3) Similarly, the forget gate is calculated.

i

X1

X2
X3

Xn
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W2
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Figure 1: A neuron structure.
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Figure 2: Structure of an ANN.
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ft � ψ wxfxt + whfht− 1 + wcfct− 1 + bf􏼐 􏼑. (8)

(4) 'e status value in cell is calculated.

ct � ft ⊗ ct− 1 + it ⊗ ct. (9)

(5) 'e status value of the output gate is calculated.

Ot � ψ wxoxt + whoht− 1 + wcoct− 1 + bo( 􏼁. (10)

(6) 'e final output of the LSTM network is expressed as
follows:

ht � ot ⊗ tanh ct( 􏼁. (11)

3.1.5. GRU NN. 'e GRU NN is obtained through a sim-
plified LSTM NN. 'e LSTM NN has a complex gate
structure, so detection with LSTM NN is a complex and
time-consuming process [15]. Comparatively, the simplified
version of LSTM NN, GRU NN, has condensed the gate
structure into two, namely, reset gate and update gate. 'e
reset gate can control the discarding of the previous-time
state in the GRU cell structure, while the update gate can
control the discarding of the previous-time memory cell
information. Figure 4 shows the GRU structure.

'e update gate of the jth GRU cell at time t can be
calculated as follows:

Z
j
t � σ Wzxt + Uzht− 1( 􏼁

j
. (12)

'e reset gate at time t is calculated as follows:

r
j
t � σ Wrxt + Urht− 1( 􏼁

j
. (13)

Hence, equation (14) can be obtained.

h
j
t � 1 − z

j
t􏼐 􏼑h

j
t− 1 + z

j
t tanh Wrxi + U rr ⊙ ht− 1( 􏼁

j
􏼐 (14)

3.2. Data Processing

3.2.1. Data Processing Flow of Text Emotion Analysis Model.
Here, the semantic characteristics of English texts are an-
alyzed using the DL model. 'e specific process includes
several steps: the collection of English text data, the pre-
processing of English text data, the vectorization of the
obtained data, and the establishment of the optimal DNN
model and test. 'e collected English text semantic data are
divided into two parts: a test set and a training set [16, 17].

3.2.2. Data Preprocessing. 'e data of the obtained English
texts are preprocessed, just like all other experiments of
semantic feature analysis. Preprocessing can filter out the
irrelevant data to reduce the experimental error [18, 19]. 'e
flowchart of preprocessing is shown in Figure 5.

3.2.3. Improved SO-PMI (SO-Pointwise Mutual Information)
Algorithm. 'e original point mutual information (PMI)
algorithm is shown in the following equation:

PMI w1, w2( 􏼁 � log2
p w1, w2( 􏼁

p w1( 􏼁p w2( 􏼁
. (15)

(a)

Output layer

Hidden layer

Input layer

(b)

Figure 3: RNN structure. (a) Structure diagram. (b) Simplified structure diagram.
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Figure 4: GRU structure.
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'e calculation of the SO-PMI algorithm is shown in the
following equation:

SO − PMI(wor d) � 􏽘PMI(wor d, Pwor d)

− 􏽘PMI(wor d, Nwor d).
(16)

First, the SO-PMI distinguishes positive emotional
English texts from negative emotional English texts, clas-
sifies and calculates the texts, and then subtracts them to
obtain the emotional tendency of the English text [20].
However, the selection of different types of English texts
requires manual intervention and high professionalism, so
personnel selection is very meticulous. Moreover, every time
a new English word appears, the previous English emotional
dictionary should be adjusted, making the establishment of a
reliable English emotional dictionary extremely difficult
[21, 22]. Given these problems, the SO-PMI algorithm is
specifically chosen. Equations (17) and (18) are used for PMI
calculation:

PMI(w, pos) � log
p(pos|w)

p(pos)
, (17)

PMI(w, neg) � log
p(neg|w)

p(neg)
, (18)

where w represents any word appearing in English text
filtered out by the TF-IDF algorithm; P (POS) refers to the
occurrence probability of positive emotional words in the
English text dataset; P(POS|w) denotes the probability of
word w appearing in the whole English text dataset [23];
PMI (w, POS) stands for the correlation between wordw and
positive emotional words in English text; and PMI (w, POS)
> 0 indicates that the word w belongs to the positive
emotional type, and the greater the value is, the higher the
positive emotional intensity of word w is. On the contrary,
the smaller the PMI (w, POS) is, the weaker the positive
emotional intensity of word w is. PMI (neg) refers to the
occurrence probability of negative emotional words in the
English text dataset. P(neg|w) denotes the probability of
word w appearing in the whole English text dataset. PMI (w,
neg) stands for the correlation between word w and negative
emotional words in English text. PMI (w, neg)> 0 indicates
that the word w belongs to the negative emotional type, and
the greater the value is, the higher the negative emotional
intensity of word w is. On the contrary, the smaller the PMI
(w, neg) is, the weaker the negative emotional intensity of
word w is.

Next, the emotional tendency SO (w) of word w can be
calculated by subtracting PMI (w, neg) and PMI (w, POS)
according to the original SO-PMI algorithm:

SO(w) � PMI(w, pos) − PMI(w, neg). (19)

When SO (w)> 0, the word w belongs to the positive
emotional type, and the larger SO (w) is, the higher the
positive emotional intensity of the word w is. When SO (w)
gets closer to 0, the word w belongs to the neutral emotional
words. When SO (w)< 0, the word w belongs to the negative
emotional type, and the smaller SO (w) is, the higher the
negative emotional intensity of word w is.

3.2.4. Experimental Design. 'e efficiency of the improved
SO-PMI algorithm is verified for English text feature analysis
through the establishment of multiple models [24].

(1) CNN. 'e CNN model only contains one convolu-
tion layer, and the feature analysis is completed
through the combination of the convolution kernels.
Totally, there are 120 convolution kernels in the
convolution layer.

(2) LSTM NN. algorithm is verified through the Bi-
LSTM (bidirectional LSTM) NN, each layer of which
contains 50 LSTM NN units.

(3) GRU NN. 'e SO-PMI algorithm is verified through
the dual-channel GRU NN model, each layer of
which contains 50 GRU NN units.

English text feature classification can be detected
through the following indexes: F1 score, recall, precision,
and accuracy. Figure 6 shows these indexes expressed by a
confusion matrix.

In Figure 7, TP represents the number of positively
predicted positive English texts, and FN represents the
number of negatively predicted positive English texts. FP
represents the number of positively predicted negative
English texts, and TN represents the number of negatively
predicted negative English texts.

'e precision of the positive tendency (P+) and the
negative tendency (P− ) is calculated as in equations (20) and
(21), respectively.

P+ �
TP

TP + FP
, (20)

P− �
TN

TN + FN
. (21)

'e recall rate of the positive tendency (R+) and the
negative tendency (R− ) is calculated as in equations (22) and
(23), respectively.

R+ �
TP

TP + FN
, (22)

R− �
TP

TP + FN
. (23)

Start End

Denoising

Participle Remove stop
words

Text
Vectorization

Figure 5: Preprocessing flowchart.
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'e positive tendency (F1+) and the negative tendency
(F1− ) are calculated as in equations (24) and (25),
respectively.

F1+ �
2 ×(P+)(R+)

(P+) +(R+)
, (24)

F1− �
2 ×(P− )(R− )

(P− ) +(R− )
. (25)

'e accuracy of the whole model is calculated as follows:

accuracy �
TP

TP + FN + FP + TN
. (26)

3.3. Construction of Dual-Channel CNN Model. 'e dual-
channel CNN model is featured by two convolution
channels, both of which correspond to the pooling layer and
the convolution layer, respectively. 'erefore, interference
will not occur in the pooling and convolution calculations
[25], and the two CNN can train and construct the whole
model with the text data simultaneously, without mutual
influence. 'e emotional attributes of short text can be
minimized, and then the functions extracted from these two
channels are folded and input into the classifier that de-
termines the emotion of the text [26, 27]. Each channel of the
CNN directly affects the original data, and then the sub-
sequent layers of the multilayer CNN will affect the pro-
cessed data, so the CNN can extract more direct functions
from these two channels [28]. Figure 7 shows the operation
process of the model.

3.3.1. Data Input. 'e obtained English text data are input
into the dual-channel CNN model through the feature
matrix. Different from the single-channel CNN, the dual-
channel CNN model inputs the word vectors of English text
into different channels according to their features.

3.3.2. Convolution Layer and Pooling Layer. 'e convolu-
tion layer of the dual-channel CNN operates just the same as
that of single-channel CNN, which extracts text features
from English text data with the convolution kernel [29].

3.3.3. Feature Merging. Dual-channel CNN has two inde-
pendent convolution channels, as well as a merging layer.
'e merging layer can extract the features of two inde-
pendent convolution channels to establish a complete fea-
ture matrix that is input into the network to complete feature
analysis of English text.

3.3.4. Emotion Classification Using the Softmax Classifier.
After the above steps 1, 2, and 3, the feature analysis and
calculation of English text are realized through the softmax
classifier [30].

3.4. Improved Dual-Channel CNN Model

3.4.1. Dual-Channel CNN+Bi-LSTM. CNN can extract
local features from English text big data. CNN is less sen-
sitive to the temporal characteristics of the text. To better
combine the advantages of CNN and LSTM, a CNN model
combined with LSTM NN is proposed, namely, the dual-
channel CNN+Bi-LSTM model. Specifically, the LSTM NN
is connected with the whole model, and the experimental
results are verified. Firstly, the data are input into the LSTM
NN to get the synchronization information, and then they
are input into the fully connected layer for subsequent
operation. Here, the result of a common LSTM dual-channel
CNN is compared with the proposed CNN+Bi-LSTM
model, and the performance of the dual-channel CNN and
the ordinary LSTM NN is compared.

3.4.2. Dual-Channel CNN+Bi-GRU (Bidirectional GRU).
After simplification of the LSTM NN, GRU NN is obtained.
Based on the above model, a Bi-GRU NN is used to replace

FN TP

TP FP

Figure 6: Confusion matrix.

Input data

Convolution 
layer 2

Convolution 
layer 1

Pooling 
layer 2

Pooling 
layer 1

Feature 
merging

Output 
results

SO-PMI 
Algorithm

Figure 7: Flowchart of model operation.
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the Bi-LSTMNN in the CNNmodel.'en, the dual-channel
CNN+Bi-LSTM and CNN+Bi-GRU are compared and
analyzed.

3.4.3. Dual-Channel CNN with Attention Mechanism.
'e attention mechanism imitates the human visual
mechanism. When people recognize a scene through vision,
they do not look at all the details but rather focus on the key
points of the whole scene. Key points are more helpful to
understand the scene. When the weights are the same, the
performance of the proposed model for English text feature
analysis will decline, where the attention mechanism comes
to play and further improves the performance of the pro-
posed model for English text feature analysis.

3.4.4. Comparative Experiment Design. To enhance the data
contrast of this experiment, the DL algorithm and SVM
(support vector machine) algorithm are used for the com-
parative analysis between the models to further verify the
effectiveness of the attention mechanism model +GRU
NN+dual-channel NN in text feature analysis.

4. Analysis of Experimental Results

4.1. Vector Training Model of Emotional Words. Figure 8
shows the model training results using the emotional word
vector.

Figure 9 implies that when the word frequency is not
added to the trainingmodel, the result of the emotional word
vector obtained by the model is relatively poor, and the
parameters of the model have not improved but have de-
creased. Moreover, the accuracy of the model without word
frequency is lower than that of the ordinary model by about
0.68%.'is experiment also shows that the detection quality
is relatively low when the word frequency is not added to the
model, and the emotional word vector based on this model
does not perform well in the emotional feature analysis of
English text. Figure 9 shows the statistical results using the
LSTM NNmodel, and Figure 10 demonstrates the statistical
results using the GRU NN model.

Figures 9 and 10 suggest that the results of the LSTMNN
model and GRU NN model are consistent when they use
different types of English word vectors. Data comparison
shows that when English word frequency is not added in the
GRU NN, the accuracy of the model declines not obviously.
Meanwhile, the comparative analysis indicates that when the
English word frequency vector is not added into the model
and only the common word vector is used in the model, the
difference between the two is not big, and the accuracy of the
word vector training model decreases slightly. However,
when English word frequency is added into the model, the
accuracy of the model will be significantly improved, es-
pecially, the LSTM NN model. 'erefore, the comparative
analysis of the three groups of experiments proves that the
improved SO-PMI algorithm can automatically establish the

English emotion dictionary, and the method of adding the
semantic feature information from the English emotion
dictionary to the word vector can be realized.

4.2. Comparative Analysis Experiment under Dual-Channel
CNN. Figure 11 shows the comparison of the results of
single-channel and dual-channel CNN models.

Figure 11 implies that there is a big difference between
the accuracy of the dual-channel CNN and the single-
channel CNN in the text dataset. Comparatively, the ac-
curacy of the English text dataset established by the dual-
channel CNN can reach 96%, which is 4.45% higher than the
single-channel CNN model. 'e results also show that the
model established by the dual-channel CNN can extract
more comprehensive semantic features of big data English
text. Compared with the single-channel CNN, the dual-
channel CNN model shows better utilization value in the
short text of e-commerce reviews, At the same time, the
effect of semantic feature analysis of English text is very
significant. Figure 12 shows the comparison of the experi-
mental results between the dual-channel CNN and LSTM
NN.

Figure 12 shows that the semantic feature analysis effect
of the LSTM NN model in the English text dataset is not as
good as that of the dual-channel CNN model. 'e com-
parative analysis of the data between dual-channel CNN and
LSTM NN proves that when LSTM NN is added, the model
performance in the semantic feature analysis of English text
is improved, from 94.32% to 95.41% compared with that
without LSTM NN. Hence, the model performance on time
sequence feature analysis has improved when the LSTM NN
is added, so that the performance of the dual-channel CNN
model in English text features is further improved. Figure 13
shows the comparison of experimental results among dual-
channel CNN, dual-channel CNN+LSTM, and GRU NN.

Under the comparative analysis of the GRU NN+dual-
channel CNN model and the dual-channel CNN+LSTM
NN model, the GRU NN+dual-channel CNN model is
better for the detection of English text semantic features, but
the performance increase is less obvious from the dual-
channel CNN model to GRU NN+dual-channel CNN.
After respective model training, the semantic feature anal-
ysis time of the dual-channel CNN+LSTM NN model is
longer. Here, the GRU NN+dual-channel CNN model is
selected for the experiment because it ensures a higher
accuracy of semantic feature analysis, improves the analysis
speed of the model, and has very good practical value.
Figure 14 shows the experimental detection results of GRU
NN+dual-channel CNN after the attention mechanism is
added.

Figure 14 reveals that when attention mechanism is
added, the accuracy of semantic feature analysis of GRU
NN+dual-channel CNNmodel is improved by nearly 1.3%.
'us, the expected results of adding attention mechanism
are well obtained, which improves the accuracy of the GRU
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Figure 8: Statistical results of emotional word vector training model. (a) Ordinary English word vector. (b)'e vector of English emotional
words without word frequency. (c) English emotional word vector with word frequency.
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Figure 9: Continued.
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Figure 9: Statistical results of the LSTMNN training model for emotional word vector. (a) Common English word vector. (b)'e vector of
English emotional words without word frequency. (c) English emotional word vector with word frequency.
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Figure 10: Continued.
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Figure 10: Statistical results of the GRUNN training model for emotional word vector. (a) Common English word vector. (b)'e vector of
English emotional words without word frequency. (c) English emotional word vector with word frequency.
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Figure 11: Continued.
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Figure 11: Comparison of single-channel CNN model and dual-channel CNN model results. (a) Single-channel CNN model. (b) Dual-
channel CNN model. (c) Comparison of accuracy difference between dual channel CNN and single channel CNN.
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Figure 12: Continued.
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Figure 12: Statistical comparison of the experimental results of dual-channel CNN and LSTM NN. (a) LSTM NN. (b) Dual-channel CNN.
(c) LSTM NN+dual-channel CNN.
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Figure 13: Continued.
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Figure 13: Comparison of experimental results. (a) Dual-channel CNN. (b) Dual-channel CNN+LSTM NN. (c) GRU NN+dual-channel
CNN.
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Figure 14: Continued.
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NN+dual-channel CNN model. Obviously, it is a good
method to apply the attention mechanism to GRU
NN+dual-channel CNN model.

5. Conclusion

Here, the application of the dual-channel CNN algorithm is
mainly studied for the semantic feature analysis of English
text big data. First, LSTM NN and GRU NN are introduced,
and their effects on feature analysis of English text data are
analyzed. 'en, the improved SO-PMI algorithm is used to
analyze the semantic features of English text big data. Fi-
nally, a dual-channel CNN model is implemented. 'rough
experiments, it is found that the effect of dual channel CNN
model in English text semantic feature analysis is signifi-
cantly different before and after adding LSTM-NN, and the
effect in semantic feature analysis is improved from 94.32%
to 95.41%. LSTM-NN model can improve the ability of time
feature analysis of the model, so as to further enhance the
ability of dual channel CNN model to analyze English text
features. Meanwhile, the GRU NN model has a better de-
tection effect than the LSTM NN, but the performance
increase from the dual-channel CNN model to GRU
NN+dual-channel model is less obvious. 'e model
training experiment shows that the LSTM NN+dual-
channel CNN model takes more time in semantic feature
analysis than the GRU NN+dual-channel CNN model.
When the attention mechanism is added, the accuracy of
semantic feature analysis of the GRU NN+dual-channel
CNN model is improved by nearly 1.3%, and the expected
results of adding attention mechanism are well obtained,
which improves the accuracy of the GRU NN model.
'erefore, GRU NN+dual-channel CNN+ attention
mechanism model is more suitable for semantic feature
analysis in English text big data. However, there are still
some limitations: the experiment has not involved specific

analysis of different types of English parts of speech, such as
adjectives, nouns, and verbs, so the addition of parts of
speech analysis should be considered in the follow-up re-
search to further improve the semantic feature analysis
ability of the model.
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