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Parameter tuning of PID controller for liquid level control of beer filling machine was studied in this paper, which can meet the
demand of accurate controlling in beer production and improve the rapidity under the same conditions. Firstly, an improved
genetic algorithm was proposed which has been verified by eight kinds of test functions. Simulation results revealed that, in
comparation with other modified particle swarm optimization algorithm and modified genetic algorithm, the algorithm proposed
in this work is not only capable to improve the convergence speed and precision under the same experimental conditions but also
to improve the probability to converge to the optimal value. Finally, the proposed algorithm was applied to the parameter tuning
of the PID controller of beer filling machine for liquid level control. Superior property had been obtained, which implied an
effective improvement in the rapidity with the premise of steady-state error exclusion.

1. Introduction

Usually, in order to improve the performance of the control
systems, various measures need to be taken [1, 2]. PID
controller has been widely employed in control systems due to
its basal principle, excellent robustness, and considerable
reliability [3–7]. Nevertheless, the controlling performance of
PID controller relies on the value selection of scale coefficient,
integral coefficient, and differential coefficient. With the
purpose to improve the performance of the control system as
possible, the parameter tuning of PID controller has become
one of the research hotspots currently [8–10].

,e quantization factor and scaling factor were iteratively
optimized in the offline state by using particle swarm opti-
mization algorithm approach to adjust the fuzzy PID pa-
rameters rapidly, and the control system was simulated and
analyzed by MATLAB, which has been reported in pervious
literature [11]. Furthermore, Gao et Al. proposed a new
objective function construction method according to the
control system overshoot based on the conventional genetic
algorithm to realize the parameter optimization of PID [12].
As presented in literature [13], aiming to overcome the
shortages of the traditional quantum genetic algorithm, Jian-

xin FENG et al. had addressed the premature problem of the
traditional quantum genetic algorithm and improved the
convergence speed through the following five aspects in-
cluding coding method, population initialization, quantum
revolving gates, quantum mutation, and the increase of
quantum catastrophe. ,e optimized algorithm presented
above had been applied to the parameter optimization of
fuzzy self-tuning PID controller. Moreover, in order to deal
with the complexity of parameter tuning of the fractional-
order PID controller, Su WANG et al. had introduced the
chaotic perturbation into the Beetle Antennae Search algo-
rithm and promoted a parameter tuning approach of frac-
tional-order PID controller to enhance optimization
performance of algorithm according to the random pertur-
bation of individual positions resulted from the logistic
mapping formula [14]. As known that, BAS had been chal-
lenged by the local optimum and low precision due to its
prematurity, Shijiao SHAN et al. had integrated the efficient
BAS algorithm with the traditional bat algorithm and used it
for the PID parameter optimization to achieve a faster re-
sponse [15]. In addition, aiming at the problem of oscillation
caused by excessive selection of learning rate in the learning
process of the traditional BP neural network, Huangshui HU
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et al. had proposed a new adaptive tuning algorithm for PID
parameters of BP neural network to alleviate the oscillation
phenomenon effectively and accelerate the convergence speed
of the algorithm [16].. ,e convergence speed and stability of
the genetic algorithm were improved in literature [17] to
realize the online adjustment of PID control parameters with
the optimized initial weight of BP neural network employed.
Liu and Chen [18] presented tuned PID parameters with high
convergence accuracy and fast convergence speed by using
cellular genetic algorithm (CGA). Cao and Feng [19] designed
an adaptive fuzzy PID controller based on particle swarm
optimization algorithm according to the urban rail train
braking model. Ye [20] improved the searching ability of the
particle swarm optimization algorithm by adjusting the
adaptive inertia factor, which has been applied to adjust the
PID parameters of the temperature control system of injection
molding machine online and further improve the control
accuracy. Considering the limitations of the conventional PID
controller, Zhao and Fu proposed a scheme combining the
fuzzy system and BP neural network [21]. Meanwhile, whale
optimization algorithm (WOA) was adopted for further
optimization in the improvement of dynamic performance
and steady-state accuracy of the control system.

2. Improved Genetic Algorithm

,e improved genetic algorithm refers to the random di-
vision of variable interval according to the setting interval
number, while the initial population is generated according
to the fitness value of the midpoint of the interval and
roulette wheel selection. In the iterative process of the al-
gorithm, the PSO algorithm was introduced into the

crossover operation according to the probability. ,e in-
dividual with the lowest fitness value would be substituted by
random individuals generated via the same method in de-
veloping the population.

2.1. Flow Diagram of Improved Genetic Algorithm

Step 1: setting the parameters in the improved genetic
algorithm, including population numbers, interval
numbers, maximum iterations, crossover probability,
mutation probability, introduction probability of par-
ticle swarm optimization algorithm, learning factor,
maximum inertia weight, minimum inertia weight,
allowable error, etc.
Step 2: dividing the variable intervals randomly
according to the interval number settings in Step 1 and
substituting the midpoint of the intervals into the fit-
ness function of the algorithm to estimate the fitness
value. On this basis, according to the algorithm pa-
rameters set in Step 1 and the roulette selection, the
initial population of the algorithm has been generated.
Step 3: calculating the fitness value of each individual
among population to evaluate each individual and to
complete the selection operation.
Step 4: executing the crossover operation according to
the crossover probability and the introduction prob-
ability of the particle swarm optimization algorithm
which has been set in Step 1. ,e particle swarm op-
timization algorithm updates the speed and position
abiding to equation (1).

Vk+1
i � ω × Vk

i + c1 × rand 1 × pbesti − Xk
i  + c2 × rand 2 × gbestg − Xk

i ,

Xk+1
i � Xk

i + Vk+1
i ,

⎧⎪⎨

⎪⎩
(1)

where the optimum algorithm population, global
optimum, speed, and position of population size
were denoted as pbesti, gbestg, V, and X, respec-
tively. k referred to the iterations of the improved
genetic algorithm, while c1 and c2 referred to the
learning factors. rand 1 and rand 2 represented
the random numbers uniformly distributed within
(0, 1).
,e inertia weight has been labeled as ω, which di-
minished with four different strategies associated to the
probability to enhance the optimization ability during
the iterative process in improved genetic algorithm, as
revealed in equations (2)–(5) [22].

ω � ωmax −
era

max e
· ωmax − ωmin( , (2)

ω � ωmin + ωmax − ωmin(  ·
max e − era

max e
 

2
, (3)

ω � ωmin + ωmax − ωmin(  ·
max e − era

max e
 

3
, (4)

ω � ωmin + ωmax − ωmin(  ·
max e − era

max e
 

4
. (5)

,e maximum and minimum of inertia weights were
marked as ωmax and ωmin, where max e and era rep-
resented the maximum and the current number of
iterations in the improved genetic algorithm,
respectively.
Step 5: executing mutation operation according to the
mutation probability set in Step 1.
Step 6: calculating the fitness value for each individual
in population and generating a random individual with
the same method in generating the initial population of
the algorithm described in Step 2, which would be used
to substitute the individual with the lowest fitness value
at present.
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Step 7: determining whether the termination condition
of the algorithm has been met based on the number of
iterations and the allowable error of the algorithm. And
the algorithm would terminate or skip to Step 3 for
cyclic calculation.

2.2. Experimental Results of Improved Genetic Algorithm.
In order to verify the performance under the same exper-
imental conditions, the improved genetic algorithm had
been applied to the optimization of eight different kinds of
typical test functions. ,e simulation experimental envi-
ronment is MATLAB R2009 B version, in which numbers
including 50 in the population of the algorithm, 12 in the
number of intervals, 200 in the maximum number of

iterations, 0.90 in the crossover probability, 0.01 in the
mutation probability, 2×10−15 in the allowable error, 0.5 in
the introduction probability of particle swarm optimization
algorithm, and 0.90 and 0.10 in the maximum andminimum
inertial weight, respectively, had been set. Different algo-
rithms had been run 100 times each.

,e expressions of the eight kinds of test functions had
been demonstrated in equations (6)–(13), and corre-
sponding function images are given in Figure 1. ,e average
convergence curves of different algorithms are presented in
Figure 2 with the average convergence precision of different
algorithms shown in Table 1. ,e average convergence al-
gebras and the probabilities of convergence to the optimal
value are compared in Tables 2 and 3 .
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Among them, the improved genetic algorithm proposed
in this paper was presented as algorithm 1, while algorithm 2
was the modified particle swarm optimization algorithm
based on interval algorithm and modified elite strategy, and
algorithm 3 belonged to the improved genetic algorithm
promoted in literature [22].

As revealed from Tables 1–3, with the same parameter
settings in eight different test functions, the average
convergence values of algorithm 1, algorithm 2, and al-
gorithm 3 were 1.008 ×10−11, 4.9460 ×10−2, and
4.3543 ×10−2 with the average convergence algebras of 77,
155, and 159 and average probability of converging to the
optimal value of 98.8750%, 61.7500%, and 59.3750%,
respectively.

It is concluded that compared with algorithms 2 and 3,
the improved genetic algorithm proposed in this paper
improves the convergence accuracy, the convergence
speed, and the probability of convergence to the optimal
value of algorithm effectively, which is also implied in
Figure 2.

3. Parameter Tuning of PID Controller for
Liquid Level Control of Beer Filling Machine

3.1. Mathematical Modelling. Considering of the balance
between inflow and outflow volume of liquid, the height of
liquid level (H), the cross-sectional area of the liquid storage
tank (A), and the inflow (Q1) and outflow (Q2) liquid obey
the equation as follows [23, 24]:

A
dH

dt
� Q1 − Q2, (14)

which can be rewritten in the following form of increment:

A
dΔH
dt

� ΔQ1 − ΔQ2. (15)

To simplify the mathematical model of the control
system, we assumed that the outflow increment was pro-
portional to the liquid level increment and was inversely
proportional to the valve resistance of the load valve, which
has been shown in the following equation [23, 24]:
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Figure 1: Continued.
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Figure 1: Schematic diagrams of test function.
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Figure 2: Continued.
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Figure 2: ,e average convergence curves of different algorithms.

Table 1: Comparison of average convergence precision of different algorithms.

Test function Algorithm 1 Algorithm 2 Algorithm 3
Test function 1 0 6.9713×10−12 9.8716×10−13

Test function 2 5.8970×10−11 3.8843×10−5 4.0453×10−5

Test function 3 0 2.7837×10−3 4.0595×10−3

Test function 4 0 3.8579×10−1 3.3787×10−1

Test function 5 0 8.4037×10−5 3.4528×10−4

Test function 6 0 3.4295×10−3 1.0409×10−3

Test function 7 2.1673×10−11 2.0123×10−3 1.5920×10−4

Test function 8 0 1.5393×10−3 4.8283×10−3
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ΔQ2 �
ΔH
R2

. (16)

Based on equations (14) and (16),

RA
dΔH
dt

+ ΔH � RΔQ1. (17)

By using Laplace transformation, we get

G(s) �
H(s)

Q1(s)
�

R

RAs + 1
�

K

Ts + 1
. (18)

Considering the hysteresis of liquid level changes in
realistic engineering problems, the liquid level control
system can be approximately seen as a first-order inertial
hysteresis system with the transfer function shown in the
following equation [23, 24]:

G(s) �
H(s)

Q1(s)
�

K

Ts + 1
e

− τs
, (19)

where K, T, and τ are defined as 5, 160, and 3 in this paper.

3.2. Stability Analysis of Control System. Stability laid the
foundation for the operation of the control system. Hence, it
is a priority to determine the stability of a certain control
system. Since the control system consisted of a nonlinear
delay part, the analysis of stability has to be realized via the
observation of the unit step response curves and calculation
of the amplitude and phase angle margin of a control system,
instead of the Routh–Hurwitz stability criterion. ,e unit
step response curve of the control system is shown in
Figure 3, and the Bode diagram is shown in Figure 4.

Figure 3 illustrates the convergence in unit step response
curve of the control system. ,e amplitude margin of the
control system (24.5 dB) and the phase angle margin (96.3°)

were both larger than zero, as shown in Figure 4, which
confirmed the stability of the control system.

3.3. ParameterTuning of PIDController. In order to improve
the performance of the control system, algorithms 1, 2, and 3
have been employed to correct PID controller parameters,
and the fitness function is shown in the following equation:

F(X) �
1

ts + 10 × σ%
P(X), (20)

where X represented the variate of proportional coefficient
(KP), integral coefficient (KI), and differential coefficient
(KD) of the PID controller. ts, σ% were denoted as the
adjustment time and overshoot of the control system, re-
spectively. P(X) referred to the penalty function. ,us, the
expression is shown in the following equation:

Table 2: Comparison of average convergence algebras of different algorithms.

Test function Algorithm 1 Algorithm 2 Algorithm 3
Test function 1 88 159 160
Test function 2 21 59 62
Test function 3 56 152 161
Test function 4 110 200 200
Test function 5 88 181 197
Test function 6 111 196 195
Test function 7 63 121 136
Test function 8 75 175 160

Table 3: Comparison of probability of convergence to the optimal value of different algorithms.

Test function Algorithm 1 Algorithm 2 Algorithm 3
Test function 1 100 81 87
Test function 2 97 55 45
Test function 3 100 67 57
Test function 4 100 55 52
Test function 5 100 43 49
Test function 6 100 83 82
Test function 7 94 60 57
Test function 8 100 50 46
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Figure 3: ,e unit step response curve of the control system.
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P(X) �
1, if ess


< 10− 10

,

0, if ess


≥ 10− 10
,

⎧⎨

⎩ (21)

where ess is the steady-state error of the control system.
,e convergence curves of algorithms 1, 2, and 3 are

presented in Figure 5. Figure 6 shows the unit step response
curves of the control system corresponding to the optimal

results. Performance indexes of the control system are
shown in Table 4.

,e steady-state error (ess) of the control system had
been eliminated effectively and the adjustment time (ts) of
the control system was reduced after PID correction, which
were elucidated in both Figure 6 and Table 4. Moreover,
among these three types of algorithms, algorithm 1 had been
proved to have the most remarkable performance in this
paper.
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20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iterating times

F 
(X

)

Algorithm 1
Algorithm 2
Algorithm 3

Figure 5: Convergence curves of different algorithms with
equation (20) as the fitness function.
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However, it also caused a large oscillation which was
responsible for a large overshoot. Moreover, fitness function
presented in equation (22) can be applied to improve the
stability of the control system.

F(X) �
1
σ%

P(X). (22)

Maintaining the simulation experimental environment
and algorithm parameters, the convergence curves of al-
gorithms 1, 2, and 3 are provided in Figure 7. ,e unit step
response curves of the control system corresponding to the
optimal results are shown in Figure 8.

,e overshoot of the control system corresponding to the
optimal results for algorithms 1, 2, and 3 was 14.3807%,
20.2146%, and 19.1002%, respectively. For higher requirements
in stability of the control system, the penalty functionP(X) can
be modified, which will reduce the accuracy requirements
simultaneously.

4. Conclusion

Under the same experimental conditions, an improved
genetic algorithm was proposed in this work to improve the
convergence speed, accuracy, and the probability to con-
verge to the optimal value. ,e performance of the proposed
algorithm had been verified by eight different kinds of
typical test functions. Furthermore, the improved genetic
algorithm had been applied to the parameter tuning of PID
controller for liquid level controlling of beer filling machine,
which revealed the superiority in effectively improving the
rapidity of the control system with the premise of steady-
state error elimination.
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