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A pure acoustic signal can be easy to realize signal analysis and feature extraction. However, the surrounding noises will affect the
content of acoustic signals as well as auditory fatigue to the audience. .erefore, it is vital to overcome the problem of noises that
affect the acoustic signal. An indoor acoustic signal enhanced method based on image source (IS) method, filtered-x least mean
square (FxLMS) algorithm, and the combination of Delaunay triangulation and fuzzy c-means (FCM) clustering algorithm is
proposed. In the first stage of the proposed system, the IS method was used to simulate indoor impulse response. Next, the FxLMS
algorithm was used to reduce the acoustic signals with noise. Lastly, the quiet areas are optimized and visualized by combining the
Delaunay triangulation and FCM clustering algorithm..e experimental analysis results on the proposed system show that better
noise reduction can be achieved than the most widely used least mean square algorithm. Visualization was validated with an
intuitive understanding of the indoor sound field distribution and the quiet areas.

1. Introduction

An acoustic signal is the most widely used signal in real life.
However, there is a lot of noise that disturbs the original
acoustics signal. Excessive environmental noise harms
people’s physiological and psychological health [1]. Fur-
thermore, long-term exposure to a high noisy environment
will cause serious harm to people’s health and affect their
daily life [2]. Statistics show that more than 70 percent of the
world’s urban residents are affected by noise pollution [3].
And it is difficult to communicate with people in noisy
environments. Even the phenomenon that you cannot hear
or not hear clearly occurs..erefore, acoustic enhancements
have caused growing concern all over the world.

Acoustic enhancement algorithms include commonly
spectral subtraction, wiener filtering, and adaptive filtering.

Boll proposed firstly the spectral subtraction algorithm with
low computational complexity and easy implementation [4].
However, the music noise is caused for nonlinear processing
of inaccurate amplitude estimation, and the speech
roughness was produced for the lack of phase information of
the pure signal. .en, Berouti et al. proposed nonlinear
spectral subtraction [5], Gustafsson et al. proposed adaptive
gain average spectral subtraction [6], and SIM et al. pro-
posed minimum mean square error spectral subtraction [7];
these methods are not perfect. Lim and Oppenheim [8, 9]
proposed the wiener filtering algorithm of speech en-
hancement. .e premise of the wiener filtering is that the
speech can be calculated by the AR model. .en, the noise
can be reduced by estimating the AR parameters of pure
speech. Compared with spectral subtraction and Wiener
filtering methods which require prior knowledge of noise
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and pure acoustic signals, adaptive filtering methods can
dynamically adjust filter parameters using adaptive algo-
rithms under unknown noise conditions to ensure optimal
noise suppression performance. .erefore, noise reduction
algorithms based on adaptive filtering have been widely
used.

Active noise reduction methods eliminate the noise
mixed in the useful signal using an adaptive algorithm,
adjusting the parameters adaptively [10, 11]. .is method
is widely used due to its lower complexity and better
controllability. Among the active noise reduction algo-
rithms, the least mean square (LMS) algorithm is classical
adaptive algorithms [12, 13]. However, due to the fact that
its fixed-step manner slowly reaches the optimal coeffi-
cient of the whole system, the convergence speed of the
LMS algorithm is relatively slow. As a result, the noise
cannot be processed and analyzed in real time. .erefore,
the filtered-x least mean square (FxLMS) algorithm can
eliminate both high- and low-frequency noises [14, 15].
Furthermore, when the error between the received noise
and the expected residual becomes more significant, the
step is increased to accelerate its convergence to the
wiener solution and vice versa.

.ere are three indoor acoustic simulation methods:
wave acoustic method, statistical acoustic method, and
geometric acoustic method [16]. .e wave acoustic method
focuses on studying the effect of standing wave resonance in
the room by wave theory [17]. Craggs proposed the finite
element method [18] based on the wave acoustic theory.
Kopuz and Lalor proposed the boundary element method
[19], and Botteldooren proposed the time-domain finite
difference method [20]. .e statistical acoustic approach
focuses on measuring the energy, ignoring the acoustic wave
characteristics [17]. Forssen et al. proposed the statistical
energy analysis (SEA) to realize the sound field in the railway
[21]. .e geometric acoustic method ignores acoustic wave
characteristics and uses sound lines to describe the sound
propagation path when studying the free sound field’s dif-
fusion. Krokstad et al. proposed the ray tracing method
(RTM) [22]. Allen and Berkley proposed an image source
method based on geometric acoustics [23]. Finally, Vor-
lander combined the tracking method with the image source
method [24] to improve the efficiency and accuracy of the
indoor acoustic simulation.

.e wave-based method is limited to some specific
situations, which are used in a small room with uneven
frequency distribution and less resonant frequency in low
frequency. In addition, the statistical acoustic method is
suitable for high frequency and large-sized space. .e
geometric acoustic method ignores the acoustic fluctuation
and is applicable when the indoor sound propagates to an
interface whose size is much larger than the sound wave-
length. Among the methods mentioned above, the geo-
metrical method has both high accuracy and more
applications. .e image source (IS) method is the most
typical geometrical acoustic method, and it has been widely
used in practical applications [25, 26].

In indoor environments, unreliable prior knowledge
between noise and pure acoustic signals, and difficult-to-

estimate noise degrade the performance of acoustic en-
hancement and pose great challenges for attaining the
pure acoustic signals. Aiming at a better performance on
acoustic enhancement, we propose a novel indoor
acoustic signals enhanced method. .e basic idea of this
method is to produce adaptively the reverse signal equal
to the external noise, then to get pure signal by the ad-
dition of the received signal and the reverse signal. Fi-
nally, the quiet areas are optimized and visualized by
combining the Delaunay triangulation and FCM clus-
tering algorithm..emain contributions in this paper are
as follows:

Noise reduction based on the FxLMS algorithm is
presented for indoor spatial structure. .e comparison
between the FxLMS algorithm and the LMS algorithm
has been researched for noise inhibition of indoor
environments. .e results demonstrate that the per-
formance of the noise reduction based on the FxLMS
algorithm has dramatically improved.
We propose to adopt the Delaunay triangulation and
FCM clustering algorithm to analyze the acoustic
signal and visualize noise inhibition in indoor envi-
ronments. .e visualization demonstration of noise
inhibition is more conducive to examining the indoor
effect and specific distribution of indoor noise
reduction.

.e remainder of this article is arranged as follows. In
Section 2, we discuss noise reduction and the visualization of
acoustic field distribution. .e proposed method is intro-
duced in Section 3 including the FxLMS algorithm and FCM
clustering algorithm. Experimental results are depicted in
Section 4. Finally, the conclusions are summarized in Sec-
tion 5.

2. Related Work

2.1. Noise Reduction. Active noise reduction is realized with
superposition and cancellation of the controlled acoustic
wave and original noise. It can effectively suppress low-
frequency noise that is difficult to reduce in the passive
method.

.e FxLMS algorithm is an active noise control method.
.e secondary channel composed of a loudspeaker and error
sensor is used in the FxLMS algorithm [15, 27]. .e input
reference signal is processed to get the control signal. .e
weight vector of the FxLMS algorithm is modified by
comparing the control signal with the error signal so that it
can be adjusted at all the target frequency bands. Erkan
completed the headset design of a single channel, which is
realized by the FxLMS algorithm [28]. Liu analyzed the
performance of a narrow-band active noise control system
based on the FxLMS algorithm [29]. Kuo researched the
FxLMS algorithm on an embedded platform [30]. Jordan
and Elliott constructed a multichannel FxLMS active noise
reduction system to suppress the multiline spectrum
superimposed noise generated by the yacht engine and
proposed a method to determine the convergence coefficient
of each channel [31].
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2.2. Noise Inhibition Visualization. Visualization is an in-
tuitive method to help researchers know acoustic fields.
However, visualizing acoustic fields is a complex problem in
the acoustic simulation since sound will incur the reflection
and absorption during the propagation. Oikawa et al. de-
scribed the united visualization for acoustic field and the
source fluctuation using the 3D laser [32]. Acoustical ho-
lography is the most widely used acoustic visualization
technology. Wang and Bei applied an optimization method
in the design of a microphone array [33]. Koprinkova-
Hristova and Alexiev proposed a dynamic visual approach
for acoustic camera perception [34] and created a 3D vi-
sualization of acoustic wave propagation in time. To visu-
alize acoustic fields, the sound is typically estimated using
active noise control (ANC) in the room at a given time in this
paper; the sound field distribution during propagation and
the quiet areas after noise reduction is visualized.

3. Proposed Method

In this section, a novel indoor acoustic signal enhanced
method is proposed, aiming to realize a better performance
for noise reduction and the conducive visualization of the
acoustic signal distribution. .e framework of our proposed
method includes three stages. In the first stage, a rever-
beration acoustic signal is simulated by the IS method..en,
the reverse signals equal to the noises are produced by the
FxLMS algorithm, and the denoised signal is gained by the
addition of the reverberation signals and the reverse signal.
After noise reduction, the data can be divided into different
subsets. .en, all the quiet points are clustered through the
FCM clustering algorithm. We adopt the Delaunay trian-
gulation to subseparate the quiet points set. Lastly, visual-
ization is developed for indoor acoustic signal distribution
and the quiet areas in the room.

3.1. Acoustic Signal Simulation. In this paper, the source
acoustic signal is recorded by the audiorecorder function of
MATLAB, its sampling frequency fs� 8000Hz, and the
format is audio1� audiorecorder (8000, 16, 1). .e IS
method [23] is adopted to simulate the impulse response in
indoor environments. .erefore, the acoustic simulation
results of the received position in the space can be obtained.

In indoor environments, the sound may be reflected in
each wall. .erefore, an image sound can be considered at
each reflection. .e distributions of the sound source and
image source and the received position in 3D space are
shown in Figure 1. S and R denote the sound source position
and the received position, respectively. S1, S2, S3, and S4 are
the image source positions. In Figure 1(b), a solid arrow
represents the direct path between the source position S and
the received position R, and reflected paths between the
image source positions and the received position R are
represented by the dotted arrow.

Suppose the virtual room is a ∗ b ∗ c, the received
position R � Rx Ry Rz􏽨 􏽩, and the source position
S � Sx Sy Sz􏽨 􏽩. Only analyze two boundaries y� 0 and
y� b for simplicity without loss of generality. .e two image

positions will be S1 � Sx −Sy Sz􏽨 􏽩 and
S2 � Sx 2b − Sy Sz􏽨 􏽩, and the distances from S1, S2 to R
can be computed. We can also obtain the other image source
positions and calculate the distances in the same way; the
impulse response of the room is obtained by the image
source (IS) method. .erefore, the total acoustic signals of
the received position should be gained by the acoustic and all
reflected acoustics in the received position.

As a result, the sound will be reflected in each boundary,
and image sound can also be propagated and reflected at
each border. .e number of image sounds will increase
exponentially, and the calculation will be much more
complex with multiple reflections considered. However, the
farther the image sounds are from the received position, the
more the attenuation will be. It is crucial to analyze the
reflected distribution for simulating indoor sound withmore
accuracy. Given K be the number of reflections, let k be [−K:
K].

.erefore, the array composed by image acoustic signal
path can be expressed as follows:

Mk � k + 0.5∗ 1 +(−1)
k

􏽨 􏽩. (1)

After determining all image positions, the distance from
the source position S to the received position R is presented
as

Dk � (−1)
k ∗ S + Mk ∗M − R

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

where M denotes room position. Sound signals of the re-
ceived position are got if multiple acoustic signals arrive at
the received position.

.e acoustic signal must be convolved to get acoustic
fluctuation at the received position. .e convolution is
represented as

G(k) � 􏽘
j

Q(j)φ(k − j + 1), (3)

where Q is the source data after normalization and φ is the
spatial impact factor vector. .en, the indoor image acoustic
signal simulation model can be expressed. .e signal G can
be obtained by the convolution of the function φ and the
source signal Q. Hence, the final output G is the fixed-point
acoustic simulation result of the received position under the
condition of indoor space based on the image source
method.

To simulate the acoustic signal in the indoor environ-
ment, we suppose that the parameters as follows: room size is
5× 7× 3m3, the boundary of the walls is not rigid, the
absorption coefficient is 0.4, acoustic source position is S�

[0.5 0.5 2.5] m, and reflection coefficient K � 0 5 15􏼂 􏼃.
Figure 2 shows the simulation results with different

received positions..e distanceD1 from the source position
S to received position R1� [3.5 5.0 1.3] m is D1� 5.5399m,
the distance D2 from the source position S to received
position R2� [2.0 3.0 1.3] m is D2� 3.1528m, and the
distance D3 from the source position S to received position
R3� [0.5 5.0 1.3] m is D3� 4.6573m. .en, the signal
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Figure 1: .e distribution of sound source and image source and received position in 3D space: (a) space structure of sound source point
and received position and (b) the distribution of direct path and reflected path.
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Figure 2: Continued.
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reaches the received positions R1, R2, R3 at [129, 74, 109] as
shown in Figure 2(a) at K� 0.

3.2. FxLMS Algorithm. FxLMS algorithm [14] structure is
shown in Figure 3. In Figure 3, P(z), S(z), and 􏽢S(z) are the
transfer function of the primary path, the secondary path,
and the secondary path model, respectively. .e desired
signal d(n) is the output signal of the primary path. .e
coefficient of the secondary path is controlled by the residual
noise or error signal e(n) that minimizes the noise.

If the filter W(z) has L-order transverse structure,
therefore input signal X(n) of the filter w(n) can be de-
scribed as

X(n) � [x(n), x(n − 1), . . . , x(n − L + 1)]
T

. (4)

.e residual noise or error signal e(n) is given by

e(n) � d(n) − s(n)∗ w(n)
T
X(n)􏽨 􏽩, (5)

where ∗ is the convolution sum.
Assuming that M is the length of the secondary path,

then E[e2(n)] at the nth time is expressed by

E e
2
(n)􏽨 􏽩 � E d(n) − 􏽘

M− 1

i�1
si(n) 􏽘

N− 1

j�1
wj(n − i)(n − i − j)⎡⎢⎢⎣ ⎤⎥⎥⎦

2

.

(6)

We get the gradient of mean square error as follows:

zE e
2
(n)􏽨 􏽩

zw(n)
� 2e(n) 􏽘

M−1

i�1
si(n)

zx(n − i)

zw(n)
, (7)

If the update step of weight coefficient is small enough,
then

zJ(n)

zW(n)
� 2e(n)x′(n). (8)

.e gradient descent algorithm of adaptive weighting
coefficient is used in the ANC, so the weighting vector can be
gained:

w(n + 1) � w(n) + μe(n)X′(n), (9)

where μ is the convergence factor. It affects convergence
speed and stability in the FxLMS algorithm. To ensure
stability, the convergence factor must be less than the
maximum eigenvalue of the autocorrelation function.

.e coefficient of the secondary path is determined
according to the error signal during the convergence pro-
cedure. A trial-and-error process is used to make sure the
factor emerges stable response, and it is slowly decreased
until it emerges durable response.
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Figure 2: Impulse response on the different received positions R1, R2, R3: (a) K� 0, (b) K� 5, and (c) K� 15.
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Initially, ANC was used for a single channel, and later, it
was extended to the multichannel. In comparison with
single-channel noise suppression, the multichannel noise
suppression has better performance to gain large quiet re-
gions. .erefore, multichannel noise suppression based on
the FxLMS algorithm is designed in this paper.

In the FxLMS algorithm, the results of noise reduction
under different parameters are obtained so as to further
judge the best noise reduction performance. .e antinoise
signal is calculated as

Gm(k) � 􏽘
j

Ym
′ (j)φ(k − j + 1), (10)

where Ym
′ is the control signal of the secondary path.

.e signal received at the error microphone is

em(k) � dK − Gm(k). (11)

.e implementation of the ANC is defined as follows:

Multichannel ANC includes one reference micro-
phone, two control loudspeakers, and one error
microphone
Choose one acoustic sound position and three control
positions

Figure 4 shows the error waveform in different received
positions after and before ANC. At the same time, it shows
the error waveform in different influence factors. .e signal
at the received position is consistent with the source signal at
different positions. Meanwhile, variations of the signal at the
received position are almost compatible with the source
signal, except for some differences.

3.3. FCM Clustering Algorithm. FCM clustering is a flexible
algorithm [35]. By calculating the membership matrix of the
sample, the FCM clustering algorithm divides the objects
into same-sized clusters with the greatest similarity and the
different clusters with minor similarity. Although, in actual
most cases, the dataset cannot be divided into distinctly
separate clusters, assigning an object to a particular cluster
can be rigid and can be error-prone. .erefore, it is better to
use fuzzy c-means with natural, nonprobability character-
istics in the FCM clustering algorithm.

Supposing the data are divided intoC subsets,C centers of
the subset are gained. .en, uij is the degree of membership
that data i belongs to subset j. FCM clustering algorithm aims
to find minimum value as following function [36, 37]:

J U, c1, . . . , cC( 􏼁 � 􏽘
C

j�1
Jj � 􏽘

C

j�1
􏽘

M

i�1
uij xi − v

2
j

�����

�����, (12)

with the constraints:

􏽘

C

j�1
uij � 1, ∀i; 0≤ uij ≤ 1,∀j,

􏽘

M

i�1
uij > 0, ∀i,

(13)

where c1, . . . , cC􏼈 􏼉 is the set of clustering centers, ‖ · ‖ ex-
presses the Euclidean distance, and M is the data length.
.erefore, the equation can be solved by

uij �
1

􏽐
C
l�1 xi − vj/xi − vl􏼐 􏼑

(2/m− 1)
, j � 1, 2, . . . , C; i � 1, 2, . . . , n,

vij �
􏽐

M
i�1 u

m
ij xi

􏽐
n
i�l u

m
ij

, j � 1, 2, . . . , C,

(14)

where m is the weighting exponent.

4. Experimental Results

To validate the proposed method, we conducted an exper-
iment to compare it with a baseline based on the LMS al-
gorithm. Visualizations of sound field distributions are also
presented to help to understand sound propagation. In
addition, the FCM clustering algorithm is adopted to op-
timize the quiet points after indoor noise suppression.

4.1. Noise Inhibition. .e two-way speaker noise control
based on the FxLMS algorithm includes one noise source,
one reference microphone, two antinoise loudspeakers, and
one error microphone.

.e ANC transfer function P (z) is

P(z) � 0.01 + 0.25z
− 1

+ 0.5z
− 2

+ z
− 3

+ 0.5z
− 4

+ 0.25z
− 5

+ 0.01z
− 6

.
(15)

.e secondary-path transfer function is defined as

S1(z) � 0.05 − 0.01z
− 1

+ 0.95z
− 2

+ z
− 3

+ 0.9z
− 4

,

S2(z) � 1 + 0.44z
− 1

− 0.95z
− 2

+ 0.01z
− 3

+ 0.9z
− 4

.
(16)

.e 5× 7× 3m3 room is the border of the indoor sound
field. Its walls are not rigid in which absorption coefficient is
0.4. Figures 5(b)−5(c) show the noise inhibition results with
LMS and FxLMS algorithms in the time domain, respec-
tively. As we can see, both methods can reduce noise. In the
beginning, the noise inhibition effect based on the FxLMS
algorithm does not meet expectations. It is more significant
with time increasing. .e noise suppression based on the
FxLMS algorithm is better than the system based on the LMS
algorithm in the time domain. Figure 5(d) shows the
spectrum of original noise in the frequency domain.
Figure 5(e) describes the residual noise spectrum of the
system based on the LMS algorithm. Figure 5(f) describes
the residual noise spectrum based on the FxLMS algorithm.
.e vertical axis denotes the noise amplitude after sup-
pression in dB. Figure 5 shows that the noise in the whole
frequency band has been well suppressed. .e system based
on the FxLMS algorithm has a perfect suppression effect
than based on the LMS algorithm.

Figure 6 depicts the experiment result of an 8×10× 4m3

medium-sized room, of which the impact factor K� 10 and
the source position is [7.9, 9.9, 3.9]. .e experiment result
shows that the acoustic inhibition of themedium-sized room
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Figure 4: .e noise reduction waveform of ANC at different received positions with K� 0, 5, and 15 in different rows, respectively. (a, d, g)
.e received position R1. (b, e, h) .e received position R2. (c, f, i) .e received position R3.
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can reach 30 dB. Besides, the correlation between signal and
interference is weak, and the reflection signal and refraction
signal are not obvious for the large-sized room. .e noise
inhibition for the small-sized room is much more chal-
lenging, so the 5× 7× 3m3 room is adopted in this paper.

4.2. Distribution of Sound Field. According to the sound
field of the room, the acoustic vibration of each position
at different times and spaces can be obtained. However, in

the visualization stage, a large room will lead to diffi-
culties for sound field simulation. .erefore, the room is
divided into small units with 10 cm. Image sounds are
used to simulate sound information at all the received
positions.

In the experiment, the positions of the noise source rsrc
and the reference microphone rrmic are identical; both are
[2.5 0.5 2]m. It is considered that the measuring height of
the building is between 1.2m and 1.5m from the ground in
the acoustic environment quality standard. .erefore 1.3m
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is selected as the height in this paper, and the received
position rrmic is [2.5 5 1.3]m.

Considering the areas of human movement, we detect
the areas between 1.0m and 2.1m in a vertical orientation.
.e amplitude ranges of [−0.001, 0.001] are defined as the

quiet points. .e acoustic distributions at times t� 0.03 s,
0.07 s, 0.4 s, and 0.6 s were examined to observe the sound
propagation more intuitively. Figure 7 shows the experiment
results. Figures 7(b), 7(d), 7(f), and 7(h) show sound
propagation at different times when the height h is 1.3m.
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Figure 7: Indoor acoustic distributions in 3D space with different times: (a) t� 0.03 s, (c) t� 0.07 s, (e) t� 0.4 s, and (g) t� 0.6 s. Acoustic
distributions at the height h� 1.3m with different times of (b) 0.03 s, (d) 0.07 s, (f ) 0.4 s, and (h) 0.6 s.
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Figure 8: .e distributions of quiet points at (a) t� 0.03 s, (c) t� 0.07 s, (e) t� 0.4 s, and (g) t� 0.6 s and their corresponding results after
subseparation are shown in (b), (d), (f ), and (h).
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Figure 9: .e quiet area distribution for the indoor environment after FCM algorithm with different times of (a) 0.03 s, (c) 0.07 s, (e) 0.4 s,
and (g) 0.6 s at different rows, respectively, and their visualization results of using the FCM algorithm are shown in (b), (d), (f ), and (h).
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Figure 7 depicts the direct sound signal that has not
reached the received position at t� 0.03 s, which means there
are many quiet regions in the room. At t� 0.07 s, the direct
signal has nearly reached the received position. Some image
signals have reached the received end at t� 0.4 s while the
reverberation becomes more severe at t� 0.6 s.

4.3. Quiet Area Integration. .e distribution density of quiet
indoor points represents the comfort of certain areas in
space. Because of the line of sight occlusion in three-di-
mensional space, it is difficult to distinguish the quiet local
area with a concentration of points. .e quiet local area can
be represented intuitively through the quiet points’ subdi-
vision and the integration of the quiet areas.

After obtaining the quiet points, we adopt the Delaunay
triangulation to subseparate the quiet points set. Firstly, it is
integrated into two-dimensional space. During integration,
specific spatial points can be integrated into the same point
on the plane. As a result, not all the quiet points can be
vertices of the Delaunay triangle. Figure 8 shows the out-
comes adopted by the Delaunay triangle and the quiet points
at t� 0.03 s, 0.07 s, 0.4 s, and 0.6 s separately. It can be seen
from the figures that there are a few quiet points in the space,
but they still show a particular regional distribution.
However, the quiet areas are larger than the others in
Figure 8(a). .erefore, it would be convenient to integrate
the quiet points set in the space directly. It is necessary to
optimize the quiet point set to facilitate the description of the
mute area.

4.4. Optimization of the Quiet Areas. .e quiet points ob-
tained in the discrete acquisitions can either be distributed
sparsely throughout the space or be grouped into distinct
distribution groups. If we use the data to integrate the area
directly, we can obtain nearly the whole area. However, as
shown in Figure 8(g), there are only small quiet points. To
tackle this issue, we use a FCM clustering algorithm to
optimize all the quiet points before we integrate the
Delaunay triangulation into the quiet area.

After the data are divided into C different subsets, the
data are divided into different subsets to obtain an accurate
quiet area. Quiet points are clustered with the FCM
algorithm.

.e quiet area in Figure 8 is not perfect when specific
points are far away from the others. Furthermore, certain
small areas containmany quiet points, whereas other regions
have few quiet points. For this case, data with precise
subcluster characteristics and continuity of volatility, the
triangulation is obtained after separating the quiet points,
and we segment the quiet points by the FCM clustering
algorithm.

Figure 9 depicts the optimization results of the quiet area
at different visual time points after the noise suppression
through the combination of clustering algorithm and
Delaunay triangulation. In Figure 9, the quiet area will be
less as time increases, and it achieved good noise inhibition
and has better than that without subset optimization.

5. Conclusions

In this paper, a multichannel ANC noise reduction method
based on the FxLMS algorithm is realized in small-sized and
medium-sized rooms. In addition, to illustrate and optimize
the quiet areas in 3D indoor spaces, the combination of the
FCM algorithm and Delaunay triangulation is also
employed. .e experimental results show that the proposed
method of signal enhancement performs better than the
system based on the LMS algorithm in noise inhibition. .is
is more conducive to examining the indoor effect and
specific distribution of indoor noise reduction through vi-
sualization demonstration.
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