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In the field of life testing, it is very important to study the reliability of any component under testing. One of the most important
subjects is the “stress-strength reliability” term which always refers to the quantity P (X>Y) in any statistical literature. It
resamples a system with random strength (X) that is subjected to a random strength (Y) such that a system fails in case the stress
exceeds the strength. In this study, we consider stress-strength reliability where the strength (X) follows Rayleigh-half-normal
distribution and stress (Y1, Y2, Y3, and Y4) follows Rayleigh-half-normal distribution, exponential distribution, Rayleigh dis-
tribution, and half-normal distribution, respectively.)is effort comprises determining the general formulations of the reliabilities
of a system. Also, the maximum likelihood estimation approach and method of moment (MOM) will be utilized to estimate the
parameters. Finally, reliability has been attained utilizing various values of stress and strength parameters.

1. Introduction

)e life of a component is described using the stress-strength
models, in reliability theory, that is including a random
strength (X) which is subjected to a random stress (Y). )e
failure of a component is occurred instantaneously when the
stress level applied to it exceeds the level of the strength.
)us, the component reliability is measured by
R � P(Y<X). )is measurement has a variety of applica-
tions, most notably in the engineering industry, such as the
degradation of rocket motors and structures, the fatigue
failure of aircraft structures, the ageing of concrete pressure
vessels, and static fatigue of ceramic components. )erefore,
the estimation of R � P(Y<X) has a great importance in the

practical applications. )e literature demonstrates that re-
liability estimation (R) has already been performed when the
distributions of (X) and (Y) are Weibull, exponential, or log
normal.

Church and Harris [1] firstly introduced the term stress-
strength. Many authors have adopted various distributions
types for stress and strength. )e works of Church and
Harris, Surles and Padgett [2], Raqab and Kundu [3],
Mokhlis [4], and Saraçoğlu et al. [5] contain the discussion of
the estimation problems of the stress-strength reliability
model for different distributions. Recently, a review of all
methods and results on the stress-strength reliability have
presented by Kotz et al. [6]. Bayes estimators and reliability
function and the parameters of the Consul, Geeta, and size-
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biased Geeta distributions are obtained by Khan Adil and
Jan [7]. Akman et al. [8] studied the estimation of reliability
using a finite mixture of inverse Gaussian distributions. )e
estimation of R � P(Y<X) is studied by AI-Hussaini [9]
based on a finite mixture of lognormal components. For
more reading, see [10–14].

2. Finite Mixture of Rayleigh and Half-
Normal Distribution

)e Rayleigh-half-normal distribution is denoted as
RHN(θ) by Abd El-Monsef and Abd El-Raouf [15]. A
mixture of Rayleigh and half-normal distribution with a
parameter (1/

��
2θ

√
) is used to represent this model:

f(x, θ) � KfR

x · 1
��
2θ

√􏼠 􏼡 +(1 − K)fHN
x · 1

��
2θ

√􏼠 􏼡

� K 2θxe
− θx2

􏼒 􏼓 +(1 − K) 2

��

θ
π

􏽳

e
− θx2

⎛⎝ ⎞⎠,

(1)

where K � (1/(1 +
���
πθ

√
)).

)us, the Rayleigh-half normal distribution probability
density function (pdf) is given by

f(x, θ) �
2θ(x + 1)e

− θx2

1 +
���
πθ

√ , x, θ> 0. (2)

)e corresponding cumulative distribution function is
given by

F(x, θ) �
1 − e

− θx2
+

���
πθ

√
erf(

�
θ

√
x)

1 +
���
πθ

√ , x, θ > 0, (3)

where erf(u) is the Gauss error function defined as

erf(u) �
2
��
π

√ 􏽚
u

0
e

− t2dt. (4)

2.1. =e Survival Function and the Hazard Function. )e
reliability function or the survival function S(x) tests the
chance of occurring of a breakdown of units beyond certain
given point in time. For monitoring, a unit lifetime across
the support of its lifetime distribution; generally, the
probability that an item will work properly for a specified
time period with no failure is the survival function. )e
definition of the survival function is represented as follows:

S(x) � 1 − F(x) �
e

− θx2
+

���
πθ

√
erfc(

�
θ

√
x)

1 +
���
πθ

√ , (5)

where erfc(u) is the complementary error function, and its
definition is

erfc(u) � 1 − erf(u) �
2
��
π

√ 􏽚
∞

u
e

− t2dt. (6)

)e definition of the hazard rate function is the ratio
between the density function and its survival function, which
measures the tendency to die or to fail depending on the
reached age, and therefore, it has a critical role in the
classification of the distributions of lifetime, so the hazard
rate function of the RHN distribution is given by

h(x) �
f(x)

S(x)
�

2θ(1 + x)

1 + e
θx2 ���

πθ
√

erf(
�
θ

√
x)

. (7)

3. Stress-Strength Reliability Computations

In this section, the reliability R � P(Y<X) was derived,
where the random variables (X) and (Y) are the independent
random variables, where the strength X follows Rayleigh-
half normal distribution and the stress (Y) takes different
cases (Rayleigh-half normal distribution, exponential dis-
tribution, Rayleigh distribution, and half-normal
distribution).

Let (X) and (Y) be two independent random variables,
where (X) represents “strength” and (Y) represents “stress”
and (X), and (Y) follows a joint pdf f(x, θ); thus, the
component reliability is

R � P(Y<X) � 􏽚
∞

− ∞
􏽚

x

− ∞
f(x, y)dydx. (8)

In case that the random variables are statistically in-
dependent, then f(x, y) � f(x)g(y) so that

R � 􏽚
∞

− ∞
􏽚

x

− ∞
f(x)g(x)dydx, (9)

where f(x) and g(y) are pdf’s of X and Y, respectively.

3.1.=e Stress and the Strength Follows Rayleigh-Half-Normal
Distribution. As the strength X ∼ RHN(θ) and
Y1 ∼ RHN(θ1), they are independent random variables with
pdf f (x) and g(y1), respectively:

f(x) �
2θ(x + 1)e

− θx2

1 +
���
πθ

√ , 0< θ · x,

g y1( 􏼁 �
2θ1 y1 + 1( 􏼁e

− θ1y2
1

1 +
���
πθ1

􏽰 , 0< θ1 · y1.

(10)

We derive the reliability R � P(Y<X) as follows:
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R1 � P(Y<X) � 􏽚
∞

0
􏽚

x

0
f(x)g y1( 􏼁dydx

� 􏽚
∞

0
􏽚

x

0
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1
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���
πθ
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(11)

And, we get after the simplification:

R1 �
1 +

���
πθ1

􏽰
+ 2

���
θθ1

􏽰
Tan− 1
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���
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+ π

���
θθ1

􏽰 . (12)

3.2. =e Strength Follows RHN Distribution and the Stress
Follows Exponential Distribution. In this case, the proba-
bility density function (pdf) for the stress Y2 that follows the
exponential distribution is given by

g y2( 􏼁 � θ2e
− y1θ2 , y2, θ2 > 0. (13)

)en, reliability function R2 for the independent random
variables X and Y2:

R2 � 􏽚
∞

0
􏽚

x

0
θ2e

− y2θ2 2θ(x + 1)e
− θx2

1 +
���
πθ

√⎛⎝ ⎞⎠dydx,
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2θ − 2θ − θ2( 􏼁e
θ22/4θ( )erfc

θ2
2

�
θ

√􏼠 􏼡􏼠 􏼡,

(14)

where the strength follows RHN distribution.

3.3. =e Strength Follows RHN Distribution and the Stress
Follows Rayleigh Distribution. In this case, the probability
density function (pdf) for the stress Y3 that follows the
Rayleigh distribution is given by

g y3( 􏼁 �
y3

θ22
e

− y2
3/2θ

2
3( ), y, θ3 > 0. (15)

)en, reliability function R3 for the independent random
variables X and Y3 is

R3 � 􏽚
∞

0
􏽚

x

0
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θ23
e
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2
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���������
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􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(16)

where the strength follows RHN distribution.

3.4. =e Strength Follows RHN Distribution and the Stress
Follows Half-Normal Distribution. In this case, the proba-
bility density function (pdf) for the stress Y4 that follows
half-normal distribution is given by

g y4( 􏼁 �

�
2

√

θ4
��
π

√􏼠 􏼡e
− y2

4/2θ
2
4( ), y, θ4 > 0. (17)

)en, reliability function R4 for the independent random
variables X and Y4

R4 � 􏽚
∞

0
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􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(18)
where the strength follows RHN distribution.
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4. Estimation of Stress-Strength Reliability

In the literature, a discussion of the estimation R� P(Y<X)
when random variables (X) and (Y) are following the specified
distributions have been presented including engineering
statistics, quality control, medicine, reliability, biostatistics,
and psychology. )is quantity for a limited number of cases
could be calculated in a closed form (Nadarajah [16] and
Barreto-Souza et al. [17]). Several authors including Milan
and Vesna [18] have considered the estimation of (R) for
independent variables and normally distributed (X) and (Y).
Later, a list of papers related to the estimation problem of (R)
were reported by Greco and Venture [19] when (X) and (Y)
are independent and follow a class of lifetime distributions
containing Gamma distributions, exponential, generalized
exponential, bivariate exponential, Weibull distribution, Burr
type t model, and others.

4.1. Method of Moment (MOM) Estimation of R. )e esti-
mation of reliability is very common in the statistical lit-
erature. Now, to compute 􏽢R, we need to estimate the
parameters θ and θi, i � 1, 2, 3, 4, in four cases of stress.

Since the strengths X follow RHN (θ),the stress have
four cases:

(i) Y1 follows Rayleigh-half normal distribution with
parameter θ1

(ii) Y2 follows exponential distribution with parameter
θ2

(iii) Y3 follows Rayleigh distribution with parameter θ3
(iv) Y4 follows half-normal distribution with parameter

θ4; then, their population means are given by

x �
2

�
θ

√
+

��
π

√

2
�
θ

√
(1 +

���
θπ

√
)
,

y1 �
2

��
θ1

􏽰
+

��
π

√

2
��
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􏽰
1 +
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θ1π

􏽰
( 􏼁

,

y2 �
1
θ2

,

y3 � θ3

��
π
2

􏽲

,

y4 � θ4

��
2
π

􏽲

.

(19)

)e ME’s of θ, θ1, θ2, θ3, and θ4, denoted by 􏽢θ, 􏽢θ1, 􏽢θ2, 􏽢θ3,
and 􏽢θ4, respectively, can be obtained by solving (x, y1, y2, y3,
and y4) numerically:

􏽢θ �
􏽐

m
i�1 xi − n( 􏼁

2
+ nπ 􏽐

m
i�1 xi

2π 􏽐
m
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m
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4
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m
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m
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2
􏽱
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m
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2 ,
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􏽐

m
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− m􏼒 􏼓
2
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m
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2π 􏽐
m
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􏼒 􏼓
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􏽐
m
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4

+ 2mπ 􏽐
m
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􏽐
m
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− m􏼒 􏼓
2

􏽲

2π 􏽐
m
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􏼒 􏼓
2 ,

􏽢θ2 �
m

􏽐
m
j�1 y2j

,

􏽢θ3 �

��
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π

􏽲
􏽐

m
j�1 y3j

m
􏼠 􏼡,

􏽢θ4 �

��
π
2

􏽲
􏽐

m
j�1 y4j

m
􏼠 􏼡.

(20)

)e ME of R, denoted by 􏽢R1 · 􏽢R2 · 􏽢R3 and 􏽢R4 is obtained
by substitute 􏽢θ with 􏽢θ1 · 􏽢θ2 · 􏽢θ3 and 􏽢θ4 in R1 · R2 · R3 and R4.

4.2. =e Maximum Likelihood Estimators of R. )e maxi-
mum likelihood estimator (MLE) is the most popular
method for reliability estimation R � p(Y<X) because
of its generality and flexibility. )is method can be used

if the joint distribution of the strength (X) and the
stress (Y) is a known function with some unknown
parameters.

Suppose x1 · x2 · · · · · xn is a random sample from RHN
distribution with θ and y11 · y12 · · · · · y1m is a random
sample from RHN distribution with θ1. )en, the likelihood
function is given by
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L θ · θ1; x · y1( 􏼁 � 2n+mθnθm
1 − (1 +

���
πθ

√
)
n

− 1 +

���

πθ1
􏽱

􏼒 􏼓
m

􏽙

n

i�1
xi + 1( 􏼁e

− θx2
i 􏽙

m

j�1
y1j + 1􏼐 􏼑e

− θ1y2
1j . (21)

And, the log-likelihood function of the observed samples
is

ln L θ · θ1( 􏼁 � (m + n)ln(2) + n ln(θ) + m ln θ1( 􏼁 − n ln(1 +
���
πθ

√
) − m ln 1 +

���

πθ1
􏽱

􏼒 􏼓

− θ􏽘
n

i�1
x
2
i − θ1 􏽘

m

j�1
y
2
1j + 􏽘

n

i�1
ln xi + 1( 􏼁 + 􏽘

m

j�1
ln y1j + 1􏼐 􏼑.

(22)

By solving the following equations, the MLE of θ and θ2
can be obtained:

z ln L θ · θ1( 􏼁( 􏼁

zθ
�

n

θ
−

(n
��
π

√
)

(2
�
θ

√
(1 +

���
πθ

√
))

− 􏽘
n

(i�1)

x
2
i � 0,

z ln L θ · θ1( 􏼁

zθ1
�

m

θ1
−

m
��
π

√

2
��
θ1

􏽰
1 +

���
πθ1

􏽰
( 􏼁

− 􏽘
m

j�1
y
2
1j � 0.

(23)

)e MLEs of θ and θ1 can be obtained, respectively, as

􏽢θ �
1

6πA
2 B + 2A(A + nπ) +

A
2

n
2π2

+ 4A(A − 4nπ)􏼐 􏼑

B
⎛⎝ ⎞⎠,

􏽢θ1 �
1

6πC
2 D + 2C(C + mπ) +

C
2

m
2π2

+ 4C(C − 4mπ)􏼐 􏼑

D
⎛⎝ ⎞⎠,

(24)

where A � 􏽐
n
i�0 x2

i · C � 􏽐
m
j�0 y2

1j,

B � 8A
6

− 48πnA
5

+ 51π2
n
2
A
4

− π3n3
A
3

+ 3
�
3

√
π3/2 ��������������������������

n3A7 − 16A2 + 71πnA − 2π2n2( )
􏽰

􏼐 􏼑
1/3

, (25)

D � (8C6 − 48πmC5 + 51π2m2C4 − π3m3C3 + 3
�
3

√

π3/2
���������������������������
m3C7(− 16C2 + 71πmC − 2π2m2)

􏽰
)1/3.

)en, the maximum likelihood estimator of R when the
strength X follows RHN(θ) distribution and stress Y follows
RHN(θ1) distribution is given as

􏽢R1 �
1 +

���

π􏽢θ1
􏽱

+ 2
���
􏽢θ􏽢θ1

􏽱

Tan− 1
������
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�����
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􏽱

􏼒 􏼓 − 􏽢θ1/ 􏽢θ + 􏽢θ1􏼐 􏼑􏼐 􏼑􏼒 􏼓

1 +
���
π􏽢θ

􏽰
+

���

π􏽢θ1
􏽱

+ π
���
􏽢θ􏽢θ1

􏽱 . (26)

Similarly, we perform the same steps to find (MLE) in
other cases; we can obtain

(i) When the stress Y2 that follows the exponential
distribution with parameter θ2, the MLE of R2 is
given as

􏽢R2 �

��
π

√

2
�
􏽢θ

􏽰
+

��
π

√ 􏽢θ2􏼒 􏼓

2􏽢θ − 2􏽢θ − 􏽢θ2􏼐 􏼑e
􏽢θ
2

2/4􏽢θ􏼐 􏼑Erfc
􏽢θ2

2
�
􏽢θ

􏽰􏼠 􏼡􏼠 􏼡,

(27)

where the strength X follows Rayleigh-half-normal
distribution with parameter θ.

(ii) When the stress Y3 that follows Rayleigh distri-
bution with parameter θ3 and the strength X follows
Rayleigh-half-normal distribution with parameter
θ, the MLE of R3 is given as

􏽢R3 �
􏽢θ

1 +
���
π􏽢θ

􏽰
1
􏽢θ

+

��
π

√

�
􏽢θ

􏽰 −
2

2􏽢θ + 1/􏽢θ
2
3􏼒 􏼓

−

���
2π

√

����������

2􏽢θ + 1/􏽢θ
2
3􏼒 􏼓

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(28)

(iii) When the stress Y4 that follows half-normal dis-
tribution with parameter θ4, the M. L. E of R2 is
given as
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􏽢R4 �
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􏽰
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􏽰
)

2􏽢θCot− 1 􏽢θ2

��
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π

√ +
1

􏽢θ4
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2
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􏽲
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,

(29)

where the strength X follows Rayleigh-half-normal distri-
bution with parameter θ.

5. Numerical Evaluation

In different cases, the system reliability R has evaluated for
some specific values of the parameters involved in the ex-
pression of R.

5.1. Case 1: Strength and Stress Follows RHN Distribution.
From Table 1 and Figures 1 and 2, it is noticed that, with the
increase in the strength parameter values, the reliability
value decreases. If the stress parameter increases, then the
value of reliability increases.

5.2. Case 2: Strength Follows RHN Distribution and Stress
Follows Exponential Distribution. From Table 2 and Fig-
ures 3 and 4, it is observed that if the strength parameter
increases then the value of reliability increases. If the stress
parameter increases, then the value of reliability increases.

5.3. Case 3: Strength Follows RHN Distribution and Stress
Follows Rayleigh Distribution. From Table 3 and Figures 5
and 6, it is noticed that, with increasing the value of
the strength and stress parameter, the reliability value
decreases.

5.4. Case 4: Strength Follows RHN Distribution and Stress
Follows Half-Normal Distribution. From Table 4 and Fig-
ures 7 and 8, it is noticed that, with increasing the value of
the strength and stress parameter, the reliability value
decreases.

5.5. Simulation Study. In this section, some results are
represented depending on Monte-Carlo simulation, for
comparing the estimates of (R) performance using MLE and
MOM estimators fundamentally for many sample sizes. )e
following sample sizes are considered; (n, m)� (5, 5), (10,
10), (20, 20), (30, 30), (40, 40), (50, 50), and (100, 100). From
each sample, the estimates are computed for the parameters
using MLE and method of moment estimation. Once the

Table 1: Variation in R1 when strength and stress has RHN distribution.

θ
θ1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.208 0.359 0.472 0.558 0.624 0.677 0.718 0.752 0.780 0.803
0.2 0.149 0.267 0.364 0.442 0.507 0.561 0.606 0.645 0.678 0.706
0.3 0.121 0.222 0.307 0.379 0.440 0.493 0.538 0.577 0.611 0.641
0.4 0.105 0.194 0.271 0.337 0.395 0.445 0.490 0.529 0.563 0.594
0.5 0.093 0.174 0.245 0.307 0.362 0.410 0.453 0.491 0.526 0.556
0.6 0.085 0.159 0.225 0.284 0.336 0.382 0.424 0.461 0.495 0.526
0.7 0.078 0.148 0.210 0.265 0.315 0.360 0.400 0.437 0.470 0.500
0.8 0.073 0.138 0.197 0.250 0.297 0.341 0.380 0.416 0.448 0.478
0.9 0.068 0.130 0.186 0.237 0.283 0.325 0.363 0.398 0.430 0.459
1 0.065 0.124 0.177 0.226 0.270 0.311 0.348 0.382 0.413 0.443
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Figure 1: Variation in R1 for constant stress.
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Figure 2: Variation in R1 for constant strength.
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Table 2: Variation in R2 when strength has RHN distribution and stress has Exponential distribution.

θ
θ2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.500 0.349 0.274 0.228 0.197 0.175 0.157 0.144 0.133 0.124
0.2 0.651 0.500 0.412 0.354 0.312 0.280 0.256 0.236 0.219 0.205
0.3 0.726 0.588 0.500 0.438 0.392 0.357 0.328 0.304 0.285 0.268
0.4 0.772 0.646 0.562 0.500 0.453 0.415 0.384 0.359 0.337 0.318
0.5 0.803 0.688 0.608 0.547 0.500 0.462 0.430 0.403 0.380 0.361
0.6 0.825 0.720 0.643 0.585 0.538 0.500 0.468 0.441 0.417 0.396
0.7 0.843 0.744 0.672 0.616 0.570 0.532 0.500 0.472 0.448 0.427
0.8 0.856 0.764 0.696 0.641 0.597 0.559 0.528 0.500 0.476 0.455
0.9 0.867 0.781 0.715 0.663 0.620 0.583 0.552 0.524 0.500 0.479
1 0.876 0.795 0.732 0.682 0.639 0.604 0.573 0.545 0.521 0.500
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θ2 = 0.5
θ2 = 1
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Figure 3: Variation in R2 for constant stress.
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Figure 4: Variation in R2 for constant strength.

Table 3: Variation in R3 when strength has RHN distribution and stress has Rayleigh distribution.

θ
θ3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.983 0.963 0.941 0.917 0.891 0.864 0.835 0.806 0.777 0.747
0.2 0.970 0.936 0.898 0.858 0.816 0.773 0.730 0.687 0.645 0.604
0.3 0.959 0.913 0.863 0.810 0.756 0.702 0.650 0.600 0.552 0.508
0.4 0.949 0.892 0.831 0.768 0.706 0.645 0.587 0.533 0.483 0.438
0.5 0.940 0.874 0.804 0.732 0.662 0.596 0.535 0.479 0.429 0.385
0.6 0.932 0.857 0.778 0.700 0.625 0.555 0.492 0.436 0.386 0.343
0.7 0.924 0.841 0.755 0.671 0.591 0.519 0.455 0.399 0.351 0.309
0.8 0.917 0.826 0.734 0.644 0.562 0.488 0.424 0.368 0.321 0.281
0.9 0.910 0.812 0.714 0.620 0.535 0.460 0.396 0.342 0.296 0.257
1 0.903 0.799 0.695 0.598 0.511 0.435 0.372 0.318 0.274 0.238
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Figure 5: Variation in R3 for constant stress.
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Figure 6: Variation in R3 for constant strength.

Table 4: Variation in R4 when strength has RHN distribution and stress has half-normal distribution.

θ
θ4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.989 0.977 0.964 0.950 0.934 0.918 0.901 0.884 0.866 0.848
0.2 0.981 0.960 0.937 0.913 0.888 0.862 0.835 0.808 0.781 0.755
0.3 0.974 0.946 0.915 0.883 0.850 0.816 0.783 0.750 0.718 0.687
0.4 0.968 0.933 0.896 0.857 0.817 0.778 0.740 0.703 0.668 0.634
0.5 0.963 0.921 0.878 0.834 0.789 0.745 0.704 0.664 0.627 0.592
0.6 0.957 0.911 0.862 0.812 0.764 0.717 0.672 0.630 0.592 0.557
0.7 0.952 0.901 0.847 0.793 0.741 0.691 0.644 0.602 0.562 0.527
0.8 0.948 0.891 0.833 0.775 0.720 0.668 0.620 0.576 0.537 0.501
0.9 0.943 0.883 0.820 0.759 0.701 0.647 0.598 0.554 0.514 0.479
1 0.939 0.874 0.808 0.744 0.683 0.628 0.578 0.533 0.494 0.459
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Figure 7: Variation in R4 for constant stress.
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Table 5: Average MSE of the simulated estimates of R1.

(θ · θ1)
(n, m)

(5, 5) (10, 10) (20, 20) (30, 30) (40, 40) (50, 50) (100, 100)

(1, 1) 0.0196 0.0180 − 0.0181 − 0.0073 − 0.0041 − 0.0034 0.0005
− 0.0720 − 0.0318 − 0.0193 0.0138 − 0.0084 0.0076 − 0.0029

(1, 0.5) − 0.0594 − 0.0476 − 0.0132 − 0.0120 − 0.0101 − 0.0043 0.0048
− 0.0790 − 0.0747 − 0.0643 − 0.0662 − 0.0617 − 0.0658 − 0.0555

(1, 1.5) − 0.0419 0.0262 0.0172 0.0146 − 0.0063 0.0024 0.0011
0.0678 0.0643 0.0557 0.0478 0.0423 0.0372 0.0370

(1, 2) − 0.0125 0.0115 0.0111 0.0113 − 0.0073 0.0044 − 0.0015
0.0800 − 0.0777 0.0687 0.0663 0.0656 0.0649 0.0638

(0.5, 1) 0.0252 0.0146 0.0122 − 0.0097 − 0.0030 − 0.0018 0.0011
0.0743 0.0737 0.0686 0.0656 0.0654 0.0639 0.0627

(1.5, 1) 0.0594 − 0.0090 0.0076 − 0.0064 0.0062 0.0019 0.0019
− 0.0807 − 0.0413 − 0.0402 − 0.0364 − 0.0352 − 0.0164 0.0125

(2, 1) 0.0153 0.0066 0.0066 0.0061 0.0048 0.0048 0.0045
− 0.0997 − 0.0726 − 0.0719 − 0.0647 − 0.0624 − 0.0618 − 0.0584
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Figure 8: Variation in R4 for constant strength.

Table 6: Average MSE of the simulated estimates of R1.

(θ · θ1)
(n, m)

(5, 5) (10, 10) (20, 20) (30, 30) (40, 40) (50, 50) (100, 100)

(1, 1) 0.0051 0.0020 0.0020 0.0013 0.0010 0.0005 0.0003
0.0159 0.0104 0.0090 0.0035 0.0024 0.0020 0.0013

(1, 0.5) 0.0123 0.0095 0.0037 0.0033 0.0025 0.0018 0.0009
0.0148 0.0112 0.0051 0.0049 0.0046 0.0044 0.0044

(1, 1.5) 0.0077 0.0072 0.0044 0.0030 0.0022 0.0020 − 0.0001
0.0135 0.0091 0.0054 0.0051 0.0034 0.0021 0.0020

(1, 2) 0.0055 0.0050 0.0048 0.0033 0.0022 0.0019 − 0.0003
0.0115 0.0086 0.0059 0.0059 0.0049 0.0049 0.0009

(0.5, 1) 0.0090 0.0038 0.0038 0.0036 0.0031 0.0024 0.0010
0.0092 0.0087 0.0070 0.0050 0.0050 0.0048 0.0046

(1.5, 1) 0.0147 0.0097 0.0024 0.0024 − 0.0018 0.0014 − 0.0008
0.0221 − 0.0124 − 0.0090 0.0062 0.0027 0.0022 0.0014

(2, 1) 0.0121 0.0064 0.0059 0.0030 0.0024 0.0018 − 0.0003
0.0478 − 0.0272 0.0256 − 0.0145 − 0.0076 0.0050 0.0010
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parameters are estimated, the estimates of R1 is obtained.
)e average biases of R1 is reported in Table 5 and mean
squared errors (MSEs) of R1 are in Table 6.

)e first row includes the average bias of R1 using the
MLE and second row includes the average bias of R1 using
the MOM, in each cell.

)e first row includes the average MSE of R1 using the
MLE and second row includes the average MSE of R1 using
the MOM, in each cell.

6. Conclusions

)e proposed model in this paper, the stress-strength re-
liability has been studied for Rayleigh-half normal when
the strength (X) follows Rayleigh-half normal distribution,
and the stress (Y) takes Rayleigh-half normal distribution,
exponential distribution, Rayleigh distribution, and half-
normal distribution. Based on the computations and
graphs, (i) it has been noticed that when the stress pa-
rameter is increased, the reliability value lowers, and when
the strength parameter is increased, the reliability value
increases. )e numerical assessment demonstrates that
increasing the stress parameter decreases the dependability
value in case (ii), whereas increasing the strength parameter
increases the reliability value. In cases (iii) and (vi), in-
creasing the stress parameter decreases the reliability value,
whereas increasing the strength parameter increases it. A
comparison is carried out between two methods of reli-
ability estimation R � P(X>Y) when (Y) and (X) both
follow Rayleigh-half normal distributions for various pa-
rameters scale. We provide MLE and MOM procedure for
estimating the unknown parameters that are used for re-
liability estimation (R). Based on the simulation findings,
we can conclude that MLE outperforms MOM in terms of
average bias and average MSE for a variety of parameter
choices.
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