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Episodic memory and emotions are considered essential functions in human cognition. Both allow us to acquire new knowledge
from the environment, ranging from the objects around us to how we feel towards them. *ese qualities make them crucial
functions for systems trying to create human-like behaviour. In the field of cognitive architectures (CAs), there are multiple
studies covering memory and emotions. However, most of them treat these subjects in an isolated manner, considering emotions
only as a reward signal unrelated to a retrieved experience. To address this lack of direct interaction, we propose a computational
model that covers the common processes that are related to memory and emotions. Specifically, this proposal focuses on affective
evaluations of episodic memories. Neurosciences and psychology are the bases of this model.*at is, the model’s components and
the processes that they carry out on the information they receive are designed based on evidence from these cognitive sciences.*e
proposed model is a part of Cuáyóllótl, a cognitive architecture for cybernetic entities such as virtual creatures and robots. Case
studies validate our proposal.*ey show the relevance of the integration of emotions andmemory in a virtual creature.*e virtual
creature endowed with our emotional episodic model improves its learning and modifies its behaviour according to planning and
decision-making processes.

1. Introduction

Knowledge is the most powerful tool that human beings
have for dealing with everyday life. Experience provides
much of our knowledge in multiple situations. *is expe-
rience prepares us for similar situations in the future, when
we can improve our responses to obtain better results.

In human beings, emotions play a unique role because
they influence the storage and retrieval of knowledge.
Specifically, emotion-oriented memory is a specialized
process for storing and retrieving emotional evaluations,
which allows emotions to be generated or consolidated from
the combination of previous knowledge and current per-
ceptions of the environment. Two specific cognitive pro-
cesses are involved in this process: emotions and memory.

Both the cognitive process of emotions and the memory
process are regularly studied in the literature independently,

due to the complexity of understanding them and the neural
distribution they have within the brain. We have relied on
neuroscientific and psychological evidence to identify and
define these cognitive processes in this research. Based on
this information collected from the literature, in this pro-
posal, we present the identified brain structures involved in
both cognitive processes.

We look for a way to store affective evaluations because
this is considered the first step of emotional processing [1].
We propose software cognitive memory architecture ori-
ented toward the affective process inspired by the behaviour
of the human brain structures involved. We call this pro-
posed model affective episodic memory. *at is, this pro-
posal is a system that allows learning and memorizing
including affective evaluation, considering the possibility of
including inputs and outputs to the different cognitive
functions that make up the human mind. In other words,
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our proposal can be included in a cognitive architecture
biologically inspired.

A virtual creature provided with the proposed cognitive
architecture was placed in a controlled environment to verify
the proposal’s results. Endowing virtual creatures with
mechanisms such as affective episodic memory allows
natural behaviours to be observed in these creatures. We
observed biases in decision-making in response to certain
perceived stimuli in the environment that were endowed
with affective values from the retrieval of information from
memory generated in previous highly affective experiences.
*is behaviour is similar to human behaviour.

We tested the proposal through three case studies. In
these case studies, we placed the virtual creature in a con-
trolled virtual environment, including multiple emotional
stimuli, which generated the agent’s emotional responses. In
the first case, the agent navigated the world and learned the
objects’ affective associations in the environment. *e main
goal was to show whether it could retrieve the affective
values correctly. In the second case, the agent learned the
environment and used the affective associations to reach a
goal. Here, we aimed to demonstrate how the affect could be
useful to generate observable biases in the virtual creature’s
decisions within the virtual environment. Finally, the third
case presented a set of images with different affective in-
tensities that the virtual creature had to learn. *e objective
of these case studies was to evaluate how the affect can
improve memory, so that the images are not forgotten.

*e document is structured as follows. We start with a
brief introduction to the cognitive systems involved. *en,
we analyse some cognitive architectures identified in the
literature that consider memory and emotion processes.
Next, we describe the brain structures identified in the af-
fective memory process. We then describe the proposed
architecture based on the neural information collected.
Finally, we report the implementation of the architecture
and show its functionality with some case studies, culmi-
nating with a brief discussion and some conclusions.

We start by describing a little more about the cognitive
processes of memory and emotions.

1.1. Memory. As a cerebral function, memory can be con-
sidered one of the most important cognitive functions in
human beings due to its capacity to keep lasting repre-
sentations acquired from the environment through a
learning process. *ese representations reflect our thoughts,
experiences, and adaptive behaviours. However, this ac-
quisition of representations depends on three main func-
tions: encoding, storing, and retrieval [2, 3]. *e encoding
creates patterns using data acquired from the environment.
*e data encoded in a pattern can later be stored and re-
trieved when required by other cognitive functions.

Regardless of the processes that it carries out, memory is
not considered a unitary faculty of the mind. On the con-
trary, it is composed of multiple systems with different
operating principles and different neuroanatomy [4, 5].
Here, we focus on the division based on the level of con-
sciousness: declarative memory (conscious), and

nondeclarative memory (unconscious), specifically on epi-
sodic memory. *is memory is a type of declarative memory
responsible for supporting the storage and recollection of
experienced events [6, 7].

1.2. Emotions. Among the cognitive processes that most
intrigue the scientific community is undoubtedly the process
of emotions. *e generation of emotions is typical of living
beings since, through emotional behaviours, we can express
our internal states and even engage in interspecies
communication.

*is process consists of three primary or essential
components for its generation [1]:

(1) An affective evaluation, aimed at determining the
emotional value (positive or negative) of the stimuli
perceived in the environment

(2) An internal emotional state, which is generated by
affective evaluations and biases in our responses in
the environment

(3) An emotional response behaviour, which expresses
the internal emotional state through a deterministic
behaviour

*ese components interact among themselves, in ad-
dition to interacting with other cognitive processes such as
memory. Specifically, the link between emotions and
memory has not been investigated extensively, i.e., we found
few studies related to the interaction between these two
fundamental cognitive processes in living beings.

Regarding emotions, we focus within this study spe-
cifically on the brain structures involved in affective eval-
uations since this process is considered the first stage of the
cognitive process of emotions.

Our objective is to look for a way to store the perceived
stimuli and the associated affective evaluations, using the
memory mechanisms identified in the neuroscientific evi-
dence: encoding, storage, retrieval, and forgetting.

2. Cognitive Architectures

Currently, several research groups are trying to endow
virtual agents with human-like capabilities through a par-
ticular piece of software called cognitive architecture (CA).
However, few projects have considered the integration of
episodic memories and emotions. In this section, we present
the most relevant cognitive architectures, considering epi-
sodic memory and emotions. *us, projects such as Soar
[8, 9], ACT-R [10], iCub [11], and LIDA [12] were included.

Soar is a cognitive architecture designed for the devel-
opment of intelligent agents [8, 9]. In the case of memory,
this project covers multiple types such as procedural
memory, semantic memory, episodic memory, and working
memory. In addition, Soar includes three kinds of emotional
components: emotion, mood, and feeling. However, Soar
has limited its exploration of emotions as they relate to other
functions. It only uses feeling as an internal reward value to
drive reinforcement learning. Regarding its interaction with
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memory, feeling does not have direct interaction with other
memory modules except for working memory [9].

In general, the emotional system of Soar has not been
implemented and is only part of its general model [9].
Furthermore, the fact that it is only related to working
memory limits the capacity of the architecture to influence
other cognitive functions such as planning, decision-mak-
ing, and long-term memory.

Adaptive control of thought-rational (ACT-R) is a
cognitive architecture and a theory about how human
cognition works [10, 13, 14]. It contains two types of
modules: the perceptual-motor and memory modules.
Specifically, the memory module is divided into declarative
memory for facts and procedural memory for rules. Even
though the original ACT-R does not include an affective or
emotional module, Dancy [15] extends it by adding the affect
module. *is extension provides a functional layer between
the physiological and cognitive systems that is based on
existing neuroscientific and psychological evidence; it also
allows one to simulate some effects of homeostasis on
cognition [15]. However, it only focuses on seeking be-
haviour, leaving memory interaction aside. And, like the
original ACT-R, it does not make a distinction between
episodic and semantic memory. *us, this cognitive ar-
chitecture is not able to integrate episodic memory with an
emotional value.

*e learning intelligent distribution agent (LIDA) model
is a conceptual and computational model attempting to cover
a large portion of human cognition [12, 16]. It is based on
Baars’s GlobalWorkspace*eory (GWT), a theory of the role
of consciousness in cognition [12, 17], and other psycho-
logical and neuropsychological theories. It consists of several
types of memories, including episodic and semantic memory.
In LIDA, emotions are used as drivers that motivate action
selection and as modulators that affect the learning rate.
Feelings are represented as nodes in perceptual associative
memory and occur and play a central role in the determi-
nation of activation values throughout the model [18].

However, although LIDA models include interaction
between the emotions and some aspects of the current
situation, emotion does not interact directly with declarative
or episodic memory. Furthermore, it is a model that has not
yet been implemented [18].

iCub is an open-system 53-degree-of-freedom human-
oid robot and an open-system research platform designed
for the embodied cognitive system community [19]. iCub is
grounded in psychology, neurophysiology, and neurosci-
ence. It is endowed with episodic and procedural memories
that allow for internal simulation to provide capabilities for
prediction and reconstruction. *e episodic memory
component is a simple memory of visual autobiographical
events. It is a form of one-shot learning and, in its present
guise, does not generalize multiple instances of an observed
event [20]. *e affective state module receives inputs from
the episodic memory and affects the iCub’s motivations.
*ese motivations (curiosity, experimentation, and social
engagement), together with the action selection component,
provide a homeostatic process that regulates the iCub’s
behaviour [19, 21].

Although it has the affective state module, it is not used
to bind objects and episodes with an affective value but to
decide a kind of behaviour.

In addition to the architectures presented above, there
are additional projects such as DUAL-PECCS [22, 23],
CLARION [24], EPIC [25], and CHREST [26, 27]. However,
these architectures are more focused on cognitive abilities
and knowledge representation. *erefore, they do not
consider the integration of emotions with episodic memory.
Also, there is a project called LEABRA [28, 29] that considers
the integration of emotions but using a connections
approach.

Overall, there are plenty of systems that try to embed the
processes of memory and emotions in virtual creatures.
However, most of these systems use predefined emotional
responses, which remain invariant over time. *ese char-
acteristics make virtual creatures’ behaviour predicvd and
unrealistic. Furthermore, they are still in the modelling
stages and do not consider a direct integration with memory
systems.

3. Neuroscientific Evidence

Memory and emotion processes are cognitive functions
regularly investigated in isolation in neuroscience. *ere is
plenty of evidence of these two cognitive functions. From
this evidence, we define the set of brain structures involved
in these functions and their processing. Figure 1 presents the
common areas between the cognitive processes of memory
and emotions and the brain areas involved in each of these
processes.

Next, we present the neuroscientific evidence about the
brain structures involved in affective episodic memory to
understand the processes associated with these areas.

3.1. Visual Areas for Object Identification (VS). *is repre-
sents a set of different brain structures related to the object
identification process. *ese areas generate one of the main
inputs of sensory information to the cerebral cortex. *e eye
captures visual data from the environment. *e lateral ge-
niculate nucleus relays and filters the data through different
paths in the brain. *e primary visual cortex makes seg-
mentation of objects in the scene. *e secondary visual
cortex encodes objects. *en, the information is conveyed to
the inferior temporal cortex and premotor cortex [30–35].

3.2. Inferior Temporal Cortex (ITC). *is area is responsible
for conveying encoded objects to the memory system; it
selects and reports the classes that identify the object in the
current scene [31, 32, 34, 35]. It plays a role in the recog-
nition and categorization of visual objects. Also, it helps to
form high-level object representations through the synthesis
of features. *e groups of neurons in the ITC encode faces
and categories of objects [36]. *e ITC can be subdivided
into the anterior, medial, and lateral areas. *e anterior part
helps in retrieving functional information about objects [37].
*e lateral part stores information about living objects [33].
*e medial part is related to inanimate objects [33].
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3.3. Posterior Parietal Cortex (PC). *e posterior parietal
cortex is part of the dorsal stream and processes objects’
spatial properties (position, size, and movements).
*erefore, all elements are required to perform spatially
guided gestures. *e inferior parietal lobe (IPL) covers the
ventral aspect of the PPC. It has a role in visuospatial
working memory by maintaining maps of the entire visual
field with essential information [38]. Its neurons can
provide the spatial information required for directing at-
tention to a salient stimulus in a complex scene [39] and
retaining a memory trace of the position of essential ele-
ments perceived in the visual scene by maintaining and
updating their representation on oculocentric maps
renewed after each new eye movement [38]. Together, the
dorsolateral prefrontal cortex (DLPFC) and PPC are in-
volved in keeping spatial information in memory over a
short time [40].

3.4. Parahippocampal Cortex (PHC). *is performs visuo-
spatial processing related to scene perception, spatial rep-
resentation (egocentric and allocentric), and navigation
[41, 42]. It is also involved in contextual association pro-
cesses such as binding a target item to the surrounding
context and supporting recollection by encoding and re-
trieving contextual information [41, 43, 44].

3.5. Perirhinal Cortex (PRC). *e perirhinal cortex is an
association area; it receives unimodal and polymodal sen-
sory inputs [45]. It works as an interface between the
neocortex and the hippocampus through the connections
with the entorhinal cortex [45]. It is related to object rec-
ognition and memory for items: encoding, storing, and
retrieving [43, 46]. Because it has high connectivity with the
amygdala [47–49], it could be a place for item-emotion

associations [47, 49, 50]. *e perirhinal cortex has a mostly
integrative role. It is a semantic hub and has object-specific
information. It encodes and retrieves abstract object-specific
information [33, 34, 37, 51–54].

3.6. Entorhinal Cortex (ENC). *is is a part of the medial
temporal lobe, an important area for declarative memory
[55, 56]. It is the major gateway to the perirhinal cortex and
the hippocampus [45, 48, 52, 56]. Like the perirhinal cortex,
it receives massive projections from the basolateral amygdala
[48]. *e amygdala and the entorhinal cortex show positive
correlations during the encoding of emotionally arousing
images, but not neutral ones [57–59].

3.7. Hippocampus (HIPP). *e hippocampus is the most
important area for declarative memory. It helps in the
object-recognition process and the encoding of new
memories [52, 54, 60]. It is involved in the acquisition of
both semantic [37] and episodic memories [6, 61–64]. It is
also critical for the retrieval of episodic memories, but not
semantic memories. *is structure is involved in the
processing of spatial or contextual information [63, 65, 66]
and the creation of item-in-context associations to form
episodic memories [49, 50]. It is associated with emotional
memory since damage to this structure can cause memory
loss, lack of expressiveness, and even inability to generate
emotions [67, 68]. It receives information from the peri-
rhinal cortex through the entorhinal cortex [49, 51, 64].*e
connections with the amygdala [69] highly influence
memory processes such as encoding and retrieval. It
consists of the subareas dentate gyrus, subiculum, and
cornu ammonis (subdivided into CA1, CA2, CA3, and
CA4).
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Figure 1: Structures involved in affective and declarative memory processes.
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3.7.1. Cornu Ammonis 3 (CA3). *is area is involved in the
integration of multimodal information coming from the
entorhinal cortex [65]. It integrates spatial and nonspatial
information in object-place or event-context representation
[70, 71]. Pattern completion grounds the retrieval in CA3
[72, 73]. *is process takes partial input and transforms it
into the entire stored event. *us, it plays a role in encoding
and retrieving episodic memories [65, 71, 72]. It performs
pattern separation with the dentate gyrus to provide a po-
tential neuronal substrate for disambiguation of overlapping
memories in the hippocampus [73].

3.7.2. Cornu Ammonis 1 (CA1). Together, CA1 and CA3
play an important and complementary role in memory
processes for episodic memory [72]. CA1 keeps the repre-
sentation of the episodes; it also helps in encoding and
retrieving the global context [74]. *us, it is a part of the
emotional memory process, particularly in the association of
affective impulses with certain stimuli [75]. It performs
pattern separation to differentiate between scenes and scene
completion [72, 73, 76].

3.7.3. Dentate Gyrus (DG). *is structure contributes to
pattern separation work, a process required to differentiate
between similar memories [77]. *e DG generates new
patterns that represent new memories; these patterns help in
the retrieving process. *e unknown stimuli that lead to the
generation of the patterns come from the entorhinal cortex,
and DG output is the principal input of the hippocampus
[64].

3.7.4. Subiculum (SB). *is area is involved in the genera-
tion of new episodic memories and represents the main
output from the hippocampal formation [64]. *ere is ev-
idence showing that it participates in the processes of re-
covery of emotions and emotional evaluations [78].

3.8. Amygdala (AMY). *e amygdala helps in all the aspects
of encoding and retrieving emotional items. Emotionally
aversive scenes specifically enhance recollection rather than
familiarity [79].*e amygdala has a role in the consolidation
of long-term memories due to its connections with the
hypothalamus-pituitary-adrenal axis (HPA) by influencing
the release of stress-related hormones and neurotransmitters
[57, 59, 80–82]. It is massively connected to the perirhinal
cortex, entorhinal cortex, and hippocampus [49, 69, 75, 83].
*ese connections may enhance the memory processes for
emotionally salient events [75, 79, 81, 83, 84]. *ese memory
enhancements change how a scene is perceived by making it
more vivid and providing a positive or negative emotional
stamp [65, 69, 75, 85].*e amygdala generates the emotional
effects on episodic memory and is more active during the
encoding and retrieval of emotional memories [49]. *ere is
evidence that collaboration between this structure and other
limbic structures enables the affective assessment of the
environment [75, 86]. It is involved in both the generation of
affective responses and the regulation of affective states

[87–89]. It modulates an item’s emotional properties, sup-
porting the binding of items from the perirhinal cortex to
emotional information [49, 50].

3.8.1. Basolateral Amygdala (BLA). *e BLA enhances the
memory of emotionally arousing experiences [79] through
the regulation of neural plasticity and information storage
processes in other brain regions [90]. Its activity enhances
the interaction between the perirhinal and entorhinal cor-
tices [91], i.e., it facilitates the association and storage of
high-arousal signals in the rhinal cortex (PRC and ENC).
*is modulation is probably related to the processing and
storage of emotional memories [48, 91]. Also, the activity
level in this area can modulate the strength and intensity of
emotional memories through the enhancement of the CA1
neurons’ excitability [92]. *is structure also modulates
memory consolidation in the hippocampus [83, 93] and is
related to the enhancement of memory processes for
emotionally salient events (episodic memory) [83, 90].

Moreover, this structure is very much involved in
Pavlovian or classical conditioning [94, 95], affective con-
ditioning [96], the associative reward process [96–98], and
fear conditioning [99, 100]. Maren [99], however, shows that
classical conditioning exists even without this structure
although it is more difficult to generate.

Anatomically, it is considered the nociceptive nucleus of
the AMY and is involved in pain processing. However, it
seems to be activated only in the combination of pain and
the current affective evaluation (guided by emotional states)
[101].

3.9. Prefrontal Cortex (PFC). *is area is related to several
executive control functions. It is involved in working
memory processes, control of semantic memory, episodic
memory, and selective attention [2, 33, 37, 102]. It consists of
multiple subregions, such as the DLPFC, ventrolateral
prefrontal cortex (VLPFC), medial prefrontal cortex
(MPFC), and orbitofrontal cortex (OFC), related to specific
cognitive control processes [103, 104]. Neuroimaging es-
tablishes that these regions are involved in retrieving
knowledge, maintaining behavioural goals, task-switching,
and adaptively manipulating information held in short-term
memory [105–108]. It also acts as the interface with long-
term memory [109]. *e PFC retrieves and inhibits memory
information within a given context. Some authors have
identified that the PFCmay encode the stimuli received in an
abstract representation that are useful to guide behaviour
[110, 111]. *is means that the PFC works with high-level
memory representations such as goals, task rules, or cate-
gories [112–114]. Similarly, it is involved in the processes of
cognitive reward [115], in affect (positive and negative) [116]
and in the generation and control of emotions [117–119].

3.10. Insula (INS). *is brain structure has a strong in-
volvement in pain processing [100, 116, 117, 119–121] since
it is a part of the pain matrix, which is a system made up of
several brain structures aimed at generating cognitive or
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internal pain [122]. It is also a part of the nociceptive system
responsible for the perception and identification of pain
[100, 116, 118, 120, 123, 124].

3.11. Ventral Striatum (VS). *is structure is involved in
motor responses directly related to stimuli perceived with
rewards [97, 98]. It is a part of the brain’s dopaminergic
system [125]. *e processing of the reward in terms of both
sending signals and the output activates this structure [126].

Anatomically, within this structure is the nucleus
accumbens, involved in the mediation of the motivational
effects of relevant emotional stimuli [68], in late or expected
reward (“wanting”) [94, 115, 127–130], in the modulation of
unconditioned behaviours such as hunger and locomotion
and learned behaviours [94, 127], in procedural learning
oriented to reward [68, 96, 131] and in the placebo effect
[127, 128].

3.12. Ventral Pallidum (VP). *is structure is involved in
reward processing and in emotional processing
[130, 132–135]. It is a part of the dopaminergic system of the
brain [125, 134].

Some studies place this structure, together with the
nucleus accumbens, in hedonic processing, which when
stimulated generates an increase in the “liking” and
“wanting” of the reward process in various physiological
needs, such as hunger and thirst [130, 132–135]. Also, a
strong involvement of this structure is observed in the in-
hibition of the ventral tegmental area (VTA) [96].

3.13. ;alamus (THA). *is brain structure is activated in
affect-oriented studies [30, 88, 136], both in painful stimuli
[117, 121] and in pleasure stimuli [94, 96, 133, 137].

*e main hypotheses place this structure as a relay re-
sponsible for distributing incoming stimuli to the various
upper areas of the brain. Some evidence shows that it
participates in the filtering of stimuli, determining their
relevance, based on the intensities of inputs received from
the perceptual regions of the brain [86, 118]. In reward
studies, its operation is oriented toward retransmitting in-
formation between structures, forming information loops
[94, 95, 133, 137]. In addition, atrophies in this structure
have been shown to increase chronic pain [118].

4. Bioinspired Model of Emotional
Episodic Memory

In this section, we present a computational-oriented bio-
inspired model built from the functions performed by each
brain structure identified previously. We then make a de-
tailed description of its components and their processing.
We conclude by showing the types of information flow
inside the model. Overall, the proposed model is developed
following the methodology for cognitive architecture con-
struction proposed by Jiménez et al. [138].

4.1. Computational Model and Components. *e proposed
system is built from a subset of the brain structures and
connections identified from the neuroscientific evidence of
Section 4 (see Figure 1). *e components (structures) that
make up the proposal are those directly associated with affect
and episodic memory. Each one is associated with its biological
counterpart, preserving its operations and relations with other
areas. When we say preserving its operations, we mean that
each component performs multiple computational operations
according to what they do in nature. Likewise, the interaction
among them is preserved from the literature (see Figure 1).
Figure 2 shows the resulting proposal. *e following is a de-
tailed description of each component.

4.1.1. Environment. *e environment represents everything
that surrounds the virtual agent. It can be the real world
captured from a camera or a 3D world created to immerse
the agent. It sends the body a set of IDs representing the
objects that surround the agent.

4.1.2. Body. *is receives and transfers to the affective
evaluation components the class ID of all the objects that
surround the virtual agent.

4.1.3. Visual System (VS). *is component starts the
encoding process. It grabs an image from the environment
and sends it to themodules linked to visuospatial processing.
*is operation is too general and does not reflect the pro-
cesses of the visual cortex in full detail. We do this for
simplicity because those processes are beyond the scope of
this article. However, Gonzalez-Casillas et al. [139] describe
these processes in our cognitive architecture.

4.1.4. Parietal Cortex (PC). *is is part of the dorsal visual
processing. It performs operations related to the extraction
of the spatial properties of the stimuli. *e PC carries out
segmentation processing to identify the objects in the image
and the centre points of each one. *is module assigns a
temporary ID number to the objects for future processing.

4.1.5. Inferior Temporal Cortex (ITC). *is is part of the
ventral visual processing. However, unlike the PC, it is not
focused on spatial properties but on recognition. *is
module performs segmentation to extract objects and to
execute a recognition process for each extracted object. Like
the PC, it assigns a temporary ID to the objects. In general,
this area knows what we are watching, while the PC knows
where it is located.

4.1.6. Parahippocampal Cortex (PHC). *is module is also
involved in spatial encoding, specifically in creating maps
that represent the spatial context. It transforms the set of
objects and locations received from the PC into an occu-
pancy grid. *e grid is used to create a symbolic pattern that
keeps the spatial relation (context) among the objects. Chang
and Jungert [140] proposed this representation pattern.
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4.1.7. Perirhinal Cortex (PRC). *is is related to multiple
associative processes. First, it creates binary relations be-
tween the recognized objects in the scene. *e PRC has
connections with the affective module (AMY-BLA), which
allows it to assign a positive and negative value to each
object. Moreover, the intensity of these values directly affects
the weight of the relation among the objects. We use a graph
to store both types of relations. *e information contained
here is useful in future cognitive processes.

4.1.8. Entorhinal Cortex (ENC). *is component works as a
bridge, i.e., it retransmits the data received to their next
destination.

4.1.9. Dentate Gyrus Hippocampus (HIPP-DG). *is as-
sembles the final pattern that represents the memory of a
scene. It combines the data coming from the PHC with the
object-recognized classes from the ITC. *ese data form a
2DString pattern that keeps the spatial context but does not
contain data about the type of objects. Also, the DG assigns
the affective values coming from the BLA to the created
scene, and like in the PRC, the intensity of this value affects
the strength of the memory. Each created memory gets a
unique ID and is stored.

4.1.10. Cornu Ammonis 3 Hippocampus (HIPP-CA3).
*is stores thememory created in the DG, acting as a backup
of knowledge. Like the DG, it performs the same integration
of data coming from the PHC, ITC, and BLA, but the pattern
is used only to search for data in the backup. *is means it

searches in parallel while the DG is storing. Due to its
connections to the BLA, this module can improve the search
for emotional memories by grouping the scenes that have an
affective value in a specific range. *en, those memories that
belong to the group of the current BLA state are prioritized
in the search.

4.1.11. Cornu Ammonis 1 Hippocampus (HIPP-CA1).
*is component is responsible for the creation of the in-
ternal representation of the environment. It links each scene
pattern coming from the DG to create multiple sequences of
scenes; these sequences represent episodes. *us, it stores a
graph representation of the world. Like in the PRC, every
pair of associated memories is affected by the intensity of the
affective value coming from the AMY.

4.1.12. Subiculum Hippocampus (HIPP-SB). Like the ENC,
this area works as a data bridge. It retransmits all the data
received to the desired destination.

4.1.13. Prefrontal Cortex (PFC). As we state in the biological
evidence, the PFC is related to several cognitive processes
such as working memory and cognitive control. *us, this
module includes all the planning and decision-making logic
and temporarily stores the knowledge retrieved from the
PRC, CA3, and CA1.

4.1.14. Insula (INS). *is is responsible for providing neg-
ative affective evaluations, aimed at generating pain from
estimates perceived in the environment.
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Figure 2: Affective episodic memory model.
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4.1.15. Ventral Striatum and Ventral Pallidum (VS/VP).
*is is responsible for determining the reward given to a
perceived stimulus from the affective and motivational
evaluations, in addition to current physiological needs that
would increase or decrease the reward of a perceived
stimulus.

4.1.16. Basolateral Amygdala (AMY-BLA). *is nucleus of
the AMY is responsible for generating an affective evaluation
associated with the stimuli perceived in the environment
through the emotional values recovered and current affective
perceptions.

4.2. Processing Stages and Interaction Flows. Now that we
have defined the general functions carried out by each
component of our model, we proceed to show their inter-
action and how they process the exchanged data.*emultiple
pathways of communication we propose enable the execution
of specific emotional memory stages: encoding, storage, and
retrieval. Although we present these pathways individually, it
is worth mentioning that, to reach the whole memory
functioning, these pathways must all run simultaneously in a
distributed and concurrent manner; moreover, we need to be
aware that they are also dependent on each other.

4.2.1. Encoding. *is stage involves the interaction between
the components related to the transformation of the data
from the environment into a format that can be stored by the
other components. In Figure 3, we show that the modules
VS, ITC, PC, and PHC extract the visuospatial properties of
the image acquired from the environment. At the same time,
body, INS, VS/VP, and BLA calculate the affective values
using the sensed environment. Finally, PRC, ENC, DG, CA3,
CA1, and SB integrate these data into a single representation
that can be stored and subsequently retrieved. On the other
hand, PFC stores the pattern created recently.

4.2.2. Retrieval. *is stage comprises two types of retrieval.
*e first one is triggered by the data coming from the en-
vironment. Like encoding, retrieval implies the interaction
of the components VS, ITC, PC, and PHC to extract the
visuospatial features. *en, PRC, ENC, CA3, CA1, and SB
integrate the data into a pattern that is used only for
searching, not for storing. In this case, body, INS, VS/VP,
and BLA are used by the storage modules to refine the
searching of memories with a similar level of affective values,
and PFC stores the retrieved knowledge. Also, the storage
components update the stored affective values with the
values perceived. Finally, the second type depends on a query
generated by PFC, which triggers the retrieval into ENC,
PRC, CA3, CA1, SB, and returns to PFC. Figure 4 shows the
participating components.

4.3. Process Formalization. As we described earlier, each
component is responsible for performing a specific task in
the system. In this section, the functions performed by each

module are formalized. However, it is worth clarifying some
concepts beforehand.We will consider a scene as the current
event (image) that the agent sees an object as one of the
elements that compose the scene and a class as an object
category (e.g., chair, dog, pizza, etc.).

4.3.1. Image Input. *is grabs an image from the virtual
environment, and the image is used as the main input into
the system. We denote the input image I as

I � [byte array of a JPEG encoded image]. (1)

4.3.2. Object Position Calculation. *is receives the image
and identifies the location of the existing objects. First, the
Yolo [141] object detection algorithm detects the objects and
their origin points. *en, the centre points (x, y) of each
object are calculated using the origin, and a detection ID is
assigned to it. Finally, it sends the list of centre points (x, y)

and ID as output.
Let p be the number of detected objects, then C is a set of

tuples that relates an object to its centre location.

C � \ 1, x1, y1( , . . . , p, xp, yp \ , (2)

where x, y ∈ R, p ∈ N.

4.3.3. Spatial Context Encoding. *is simplifies the scene
representation using an occupancy grid G created from the
set of tuples C.

*en, let P be the set of IDs assigned to the points:

P � \ 1, . . . , p|p ∈ N\ , (3)

and G be an m × n matrix:

G �

z11 z12 z13 · · · z1n

z21 z22 z23 · · · z2n

⋮ ⋮ ⋮ ⋱ ⋮

zm1 zm2 zm3 · · · zmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where z_ ij  � 0(empty) or z_ ij  ∈ P (occupied).
Finally, this matrix is converted into a symbolic repre-

sentation of the scene using the pattern proposed by Chang
and Jungert [140] and the method of episodic memory
encoding proposed in Martin [142]. As we mentioned
earlier, this pattern considers the spatial location but not the
classes of objects. *us, we call this a scene over P.

SceneP � 2DStringP. (5)

4.3.4. Object Recognition. *is receives the image I and
performs a recognition process to extract the objects in the
scene and their respective classes. Similar to the object
position calculation, this process is performed by the Yolo
algorithm, but in this case, considering the classes of the
detected objects instead of the locations.
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that is sent between them (see Table 1).
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*e output is a set of object IDs, given by the detection
order and their associated class.

Again, let p be the number of detected objects and T be
the set of possible belonging classes taken from a dataset.
*en, let O be the set of tuples that relate an object to a class.

O � \ 1, tα( , . . . , p, tι( \ , (6)

where tn ∈ and ‖O‖ � p.

4.3.5. Negative Evaluation. *is is responsible for assigning
the affective values of pain to the scene objects. *is value is
independent for each stimulus identified in the scene and is
defined as an affective parameter excitement of pain espain;
its value is among the parameters found between
0.0< espain < 1.0. Given the set of stimuli perceived in the
scene, we can build a set of excitations of affective param-
eters of pain ESpain, where ∀espain ∈ ESpain.

4.3.6. Positive Evaluation. *is is responsible for assigning
the affective values of pleasure to the scene objects. *is
value is independent for each stimulus identified in the scene
and is defined as an affective parameter excitement of
pleasure espleasure; its value is among the parameters found
between 0.0< espleasure < 1.0. Given the set of stimuli per-
ceived in the scene, we can build a set of excitations of
affective parameters of pleasure ESpleasure, where
∀espleasure ∈ ESpleasure.

4.3.7. Affective Evaluation Calculation. *is is responsible
for providing an affective assessment from the environment.
Given the set of excitations of the affective parameters of
pleasure ESpleasure and pain ESpain, we can construct the
general set of affective excitations ESρ, where
ρ � pleasure, pain  and ESpain ∪ESpleasure � ESρ. To con-
tinue to represent the functionality of a brain structure, for
all excitatory inputs, there is a relevance within the structure,
so an affective value asρ will be given by the sum of the
affective parameter excitement ESρ multiplied by the set of
relevance RSρ, so the affective value asρ in a certain period t

will be given by

asρ(t) �
1
nρ



nρ

k�1
rsρk ∗ esρk, (7)

where nρ is the total number of elements of ESρ, rsρ ∈ RSρ,
esρ ∈ ESρ, and 0.0< rsρ, esρ < 1.0. Finally, we will define the
set of affective evaluations parameters Pa given by all af-
fective evaluations asρ such that ∀asρ ∈ Pa.

4.3.8. Scene Encoding. *is creates the final pattern that
represents a scene by combining a scene over P(SceneP) and
the set of recognized objects O. It replaces the temporary ID
p ∈ P with the object class t ∈ T associated with p. *en, a
scene is defined as

Scene � 2DStringT. (8)

Taking the affective values asρ coming from BLA, we can
define an affective scene as the association of a scene pattern
with these affective values:

Scenea � 2DStringT, asρ . (9)

4.3.9. Object-Affect Association. *is uses the received set O

of object classes to create a graph of relations among the
objects. *e sensory affective values mentioned earlier, asρ,
are also linked, and the connection among them is weighed.
Let O′ be the set of object classes without repetition built
from O and O″ be the set of classes associated with affective
values.*us, an affective object is the association between an
object class with the affective values. *en, we define the
affective objects as

O″ � \ o1′, asρ1 , . . . , on
′, asρn

 |ox
′ ∈ O′\ . (10)

*us, we define the weighted graph Go as Go � (Vo, Eo),
where Vo � O″ and Eo � Vo × Vo.

Also, the relation between these objects is weighted given
a function af that we will explain as follows. *en, the
activation function af assigns a weight to each edge eo ∈ Eo.

af: Eo⟶ R. (11)

4.3.10. Scene Association. Like object association, this cre-
ates relations but at the scene level. *ese relationships
create a graph of the environment.

Let S be a set of emotional scenes.*en, the environment
graph Gs is defined as

Gs � Vs, Es( , (12)

where Vs � S and Es � Vs × Vs.
Like object relations, the function af assigns a weight to

the relations between scenes:

af: Es⟶ R. (13)

4.3.11. Storage Components. *e components involved in
memory storage, such as PRC, DG, CA3, and CA1, preserve
the previously described data types for future retrieval of
object relations, similar scenes, and scene relations. By
default, they have a base level emotional value that influences
the reinforcement of memory traces. *is level can be
modified during a time interval by the intensity of the af-
fective values. Once the time has passed, the emotional value
returns to the base level.*e activation function is defined as
follows.

A weight w1 that controls howmuch the affect is going to
influence the memory trace. *is value is chosen from the
maximum value of the affective parameters asρ ∈ Pa, where
ρ � pain, pleasure .

w1(t) � max asρ . (14)
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Weight w2 controls how much the memory activation
grows based on the number of times it has been experienced.
*e value is calculated from the current number of repe-
titions rep multiplied by a scale number sc that controls the
speed of growth.

w 2{ }(t) � rep∗ sc, (15)

where rep ∈ N and 0.0< sc< 1.0.
*e general weight w(t) is the addition of the affective

w1 and memory w2 weights multiplied by two parameters
α, β that control which value is more relevant. It means that
values of alpha greater than zero lead to an improvement of
memory retention (w(t)), and when α is zero, there is not
such improvement. *is parameter seeks to simulate the
fact that affective values produce a memory improvement
in humans. On the other hand, β controls how fast the
repetition can improve memory (default human
behaviour).

Together, these values can be used to regulate how the
affect and the experience can help memory traces to be
remembered. High values of w1 and w2 lead to a higher
activation, thus improving memory by slowing the forget-
ting. However, because we consider that these values can
change continuously in different agent execution contexts
and are controlled by other cognitive functions such as a top-
down affect regulation system and an attentional system;
establishing the values of alpha and beta is beyond the scope
of this article.

w(t) � α · w1 + β · w2, (16)

where 0.0< α, β< 1.0.
Finally, the general activation af(t) represents the av-

erage between the previous general activation af(t − 1) and
the current activation ap(t), which is calculated using the
sigmoid function, due to its resemblance to neuron spikes,
over w(t).

a p{ }(t) �
1

1 + e
− w(t){ }

,

af(t) �
ap(t) + af(t − 1)

2
.

(17)

*e decaying function da modifies the base level of the
storage components and decays over time. It is given by a
Gaussian function that depends on the current activation
of ap, and the parameter c that controls the decaying
speed.

da(t) � ap · e
− t2/c( ), (18)

where c ∈ N0.

Additionally, the stored affective values for each object
or scene can be updated. *us, the new values for each
affective parameter asρ ∈ Pa are the average affective values
between the stored ones and those currently perceived.

asρ(t) �
asρ(t − 1) + asρ(t)

2
. (19)

5. General Implementation of Each Module

*e proposed architecture was developed using technologies
such as Unity 3D, Image AI in Python, and a Java
Framework for the development of cognitive architectures
[143, 144]. Jaime et al. [144] and Cervantes [143] framework
allowed us a straightforward, distributed, and concurrent
implementation and was compatible with our approach of
using an abstraction of the bran. *is framework also
performs the encoding and decoding of the spikes, which are
data structures used to resemble the brain’s action potential
and are transferred among the components (see Table 1).
Unity was used for the construction of the virtual envi-
ronment, and Image AI for supporting object-recognition
processes. *e pain and pleasure values used to calculate the
affective value depended on the labels of the dataset used by
the Image AI object recognition method. *us, the values
corresponding to pain and pleasure were generated ran-
domly, and both were assigned to each label.

*e system considered a virtual agent placed inside the
virtual world created in Unity 3D. *e data captured from
the agent’s vision system were sent to the Python subsystem
and processed with OpenCV [145] and ImageAI [141, 146]
to help in visual processing. *e extracted visual features
(object class, location, and image) were sent to the subsystem
built with the Java Framework. *e sensed values from the
body component were transferred directly to the Java
framework.

To keep the distributed andmodular approach, the Unity
and Python subsystems were built following the same design
proposed by Jaime et al. [144]. Figure 5 shows the interaction
of these subsystems in our proposal.

5.1. Case Study. *e case study presented in this paper
consisted of three experiments designed to evaluate the
proposed emotional memory system’s capabilities. *e first
experiment focused on demonstrating the acquisition and
retrieval of emotional associations. *e second case showed
the use of the acquired knowledge to solve a planning task.
Finally, the third case showed how emotional data can
improve learning in declarative knowledge. In all three
experiments, the default values for alpha and beta were
assigned to 0.25 and 0.75, respectively. It means that affect
will improve memory, but retention will still depend mostly
on experience by repetition.

5.1.1. Experiment 1: Capabilities Test. *e first case study
showed the capabilities of the emotional memory system. It
included two stages. During the first stage, a virtual agent
had to wander around a scenario to acquire knowledge about
the environment. *e second stage consisted of evaluating
these data and showing whether the agent was capable of
learning and making affective associations.

5.1.2. Learning. In this stage, the virtual agent was immersed
in an unknown 3D world. *e virtual world consisted of
multiple rooms with different objects that the agent needed
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to learn. Each object had a pain and pleasure value generated
randomly before the execution. *e agent was positioned in
a random place and started to wander freely during a specific
time. By the end, the agent learnt the rooms, objects, and the
affective value associated with each one. Figure 6(a) shows
the virtual world.

5.1.3. Retrieval. Once the agent had learned the scenario, a
series of questions regarding the environment helped
evaluate its knowledge. *e questions were presented as a
pictorial query (see Figure 6(b)) that would retrieve the
affective value associated with the given scene.

5.1.4. Experiment 2: Planning Task. *e second experiment
showed one of the possible applications of the proposed
system. *e main goal was to explicate how the agent used
the acquired knowledge to perform a planning task. Like the
previous case, it consisted of two stages. During the first one,
the agent wandered and learnt about the environment, while
in the second, the system asked it to go to a particular lo-
cation. *us, it had to plan how to get to the specified place.

5.1.5. Learning. *is stage was like the one in the first ex-
periment. *erefore, the agent had to wander in the virtual
world to learn its content and make affective associations. In

Table 1: *e spike structures built from the data described in the process formalization of Section 4.

Spike name Data structures Description
S1 (I, t) Image captured from the environment
S2 (C, t) List of objects’ positions
S3 (O, t) List of objects’ classes
S4 (Scenep, t) Context pattern
S5 (O, t) List of objects’ classes
S6 (Scenea, t) Scene pattern
S7 (Gs, t) Scene relations
S8 (O, t) List of objects’ classes
S9 (ESpain, t) Negative evaluation
S10 (ESpleasure, t) Positive evaluation
S11 (aspain, aspleasure, t) Affective values
S12 (Go, t) Objects’ relations
S13 (2DStringT, t) Scene pattern
S14 (Id, t) Scene ID, where Id ∈ N
S15 (Id, t) Object ID, where Id ∈ N
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Figure 5: *e implementation included three subsystems: a virtual environment (Unity 3D), an image processing subsystem (Python), and
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this case, the world consisted of 9 rooms with different
objects. Each object had a pain and pleasure value generated
randomly before the execution. *e agent was positioned in
a random room and started to wander freely for a specific
time (see Figure 7(a)).

5.1.6. Planning. In this planning stage, the agent was po-
sitioned in a room and instructed to go to a specific scene in
the world. *erefore, it had to plan the route it was going to
take to reach its goal. *e planned route could consider or
ignore the affective value of each room (see Figure 7(b)).

5.1.7. Experiment 3: Reinforcement Task. Finally, the third
experiment demonstrated the improvements in memory
behaviour caused by affection. *e experiment included two
stages. In the first stage, a series of neutral images was shown
to the virtual agent; then, it had to remember some of the
pictures. *e second stage was identical to the first one,
except that the images had been assigned affective values that
could influence the retrieval (see Figure 8).

5.1.8. Learning and Evaluation without Emotions. In this
stage, a sequence of images was presented to the agent. After
a specific amount of time, some queries were presented to
the agent to evaluate whether it could remember the
pictures.

5.1.9. Learning and Evaluation with Emotions. *is stage
was identical to the previous case; a sequence of images was
presented to the agent. However, this case differed in that
each image was associated with an affective value that could
influence memory consolidation. After a specific amount of
time had passed, some queries were sent to the agent to
evaluate whether it could remember the pictures.

6. Results

*e results presented below focus on showing the feasibility
of our system to perform memory and affective functions
and to perform a simple cognitive task using affective
knowledge.

6.1. Experiment 1. During the first stage, the agent was
wandering in the virtual world for 30minutes. *e pleasure
and pain values for each class (80 taken from the coco dataset
[147]) were assigned randomly before the execution. *ese
values were established in the range of (0.0–0.5). However,
the pleasure values for the classes in the interval 15–24
(animals) were given values between 0.6 and 1.0. And, the
pain values for the classes between 46 and 56 (food) were set
with values between 0.6 and 1.0. *is difference between
values was carried out to show more clearly how the
emotional system works.

Figure 9 presents the results obtained from the queries
performed after the execution of the first stage. Part (a)
shows an example of how the queries were performed to
trigger the retrieval of a scene and its affective values. In this
case, the scene had (0.90, 0.27) of affection. Part (b) presents
a set of scenes that were stored consecutively. *e positive
affective values assigned were 0.11, 0.85, 0.89, 0.66, and 0.07,
respectively. Here, we can observe that the values started
lower before the appearance of the dog, then there was a
significant increase, and when it disappeared, the values
decayed again. *is increment means that the presence of a
highly emotional object can influence subsequent memories.
In part (c), the retrieved scenes had the pairs of values (0.94,
0.27), (0.46, 0.23), (0.90, 0.27), (0.90, 0.27), (0.11, 0.53), (0.07,
0.50), (0.16, 0.52), and (0.08, 0.49), respectively.

Based on these values and the scene content, we can see
that the system correctly assigned the affective values. It
means it followed the bias established for food and animals.
*e scenes that contained animals (dog and bird) or food

(a) (b)

Figure 6: (a) *e virtual world developed in Unity 3D. In this world, the agent wandered freely. *e environment consisted of indoor and
outdoor locations with different classes of objects. All the scenes seen by the agent are captured and encoded by the memory system. (b)
Visual representation of the memory encoding of scenes in an m×n matrix. *is matrix is used to generate pictorial queries to search for
similar scenes and their affective values based on the positions of the objects.
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Figure 7: (a) Top-view of the virtual environment that the agent learned while wandering around the rooms. (b) *e agent had to create a
plan to move through the rooms to reach the goal.
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Figure 8: Representation of experiment. (a) Fifty images were presented to the system, and each one was considered as a single class. *e
pain and pleasure values for the classes were generated randomly before the presentation. (b)*e images’ affective value was calculated, and
they were stored for future retrieval.
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(pizza and a bowl) had higher affective values than those that
only had neutral objects.

6.2. Experiment 2. During the first stage, the agent learned
the room for 30minutes. Each class’s pleasure and pain
values (80 taken from the coco dataset) were assigned
randomly before the execution in the range (0.0–0.5).
However, the object classes’ pain values inside the rooms 4,
6, and 9 were between 0.8 and 1.0, and the pleasure values
were in the interval 0.0–0.3. *e first learning column in
Table 2 shows the average affective values for each room after

the execution of the first stage. *e planning stage started
with the agent instructed to go to room seven, starting from
rooms 1, 2, and 3 in three different executions and ignoring
all the rooms’ affective values. *ese executions were then
repeated but considering the negative values below a
threshold of 0.75. Figure 10 presents the results of the
planning stage. In part (a), we appreciate that the paths
indiscriminately passed through the negative rooms, while
in part (b), the paths avoided passing through those rooms.

*e complete experiment was repeated, starting from a
second learning stage. In this stage, the pleasure and pain
values remained in the range (0.0–0.5). However, the object

(a)

(b)

(c)

Figure 9: Results obtained after the execution of experiment 1. (a) *e pictorial query (left) triggers the retrieval of the most similar scene
that the agent saw and its affective values. (b) Influence of a highly affective object over subsequent memories. *e presence of the dog
increases positive affect (green bar) and decreases when the dog disappears. (c) Multiple memory traces and their affective associations.
Some objects increase the positive affective value, while others, the negative one.
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classes’ pleasure values inside the rooms 4, 5, and 8 were
between 0.8 and 1.0, and the pain values were in the interval
(0.0–0.3). *e second learning column in Table 2 shows the
average affective values for each room after the execution of
the first stage’s repetition. *e planning stage started again
with the agent instructed to go to room 9, starting from
rooms 1, 2, and 3 in three different executions and ignoring
all the rooms’ affective values. *en, these executions were
repeated, but considering the positive values above a
threshold of 0.75. Figure 11 presents the results of the
planning stage. In part (a), we observe that the paths
indiscriminately passed through the rooms. In contrast, in
part (b), the paths avoided passing through those rooms.
Nevertheless, when the agent started in room number three,
he could not find a way because the connected rooms had a
positive value below the threshold.

6.3. Experiment 3. *e first stage took 50 images from the
coco dataset [147]. We divided this stage into two execu-
tions. For the first execution, the images had a pain and
pleasure value of zero, and for the second one, values were
between 0.0 and 1.0. In both runs, 50 images were presented
to the system one by one every 10 seconds. After the
completion of each execution, the system stopped for 5
hours before the evaluation.

During the evaluation stage, the system tried to retrieve
the 50 images stored with neutral values during the first
execution and the 50 images with affective values from the
second execution. Figure 12 shows the results obtained after
the evaluation of 10 pairs of executions. It can be observed
that the average of successful retrievals (24) against forgotten
images (26) is lower when the image has a neutral value of
affection. However, when the image has an affective value

Table 2:*e average affective values calculated for each room.*e first learning column shows the values calculated with the data skewed to
pain, and the second learning column shows the values skewed to pleasure. Numbers in bold represent the highest values.

First learning Second learning
Room Positive Negative Positive Negative
1 0.35 0.71 0.59 0.17
2 0.44 0.44 0.35 0.21
3 0.33 0.60 0.14 0.14
4 0.32 0.87∗ 0.76∗ 0.15
5 0.37 0.35 0.76∗ 0.16
6 0.43 0.79∗ 0.32 0.19
7 0.39 0.53 0.52 0.16
8 0.44 0.51 0.80∗ 0.15
9 0.33 0.83∗ 0.47 0.14

1

Plan 1: [1, 4, 7, 8, 9, 6, 3, 2, 5, 4, 7]
Plan 2: [2, 1, 4, 7, 8, 9, 6, 5, 4, 7]
Plan 3: [3, 6, 9, 8, 7, 4, 1, 2, 5, 4, 7]

2 3

4 5 6

7 8 9

(a)

Plan 1: [1, 2, 5, 8, 7]
Plan 2: [2, 5, 8, 7]
Plan 3: [3, 2, 5, 8, 7]

1 2 3

4 5 6

7 8 9

(b)

Figure 10: Results obtained after the execution of experiment 2. (a) Planned routes ignoring negative affective values. (b) Planned routes
considering negative affective values.
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associated with it, either positive or negative, it has a higher
score of successful retrievals (32) than failures (18). *ese
results mean that our system can, in a simple way, simulate
the retrieval improvements caused by emotions.

7. Discussion

Let us start by discussing the results obtained by the
implementation of the proposed model. With experiment 1,
we demonstrate the emotional memory system’s capabilities
for storing and retrieving information during the virtual
agent’s interaction with the stimuli perceived in the

environment. In this experiment, we observed how the
system correctly assigned affective evaluations to the scenes
that it was learning based on the biases suggested. Also,
when a scene had a very high rating, it affected subsequent
scenes just as it does. However, the decay values that pro-
duced this behaviour were arbitrarily selected, so it is
necessary to carry out more experiments that will allow us to
adjust them and have results that are comparable with those
of humans. Also, from neuroscientific evidence, we believe
that the definition of these values requires interaction with
other cognitive systems such as attention, top-down emo-
tions, planning, and decision-making. Moreover, the in-
teraction with each of those systems is an ongoing work that
is beyond of the presented work. Experiment 2 sought to
demonstrate the relevance of considering the integration of
emotions with memory in a planning and decision-making
process. In this case, we were able to show how affection can
bias the virtual creature to avoid or give preference to
specific situations. In most situations, this bias caused an
improvement in both processes and made it impossible in
one (because the connected rooms were not positive enough
to be chosen). As in the previous case, an adjustment is
required in the decay parameters. Given the time and size of
the environment, it is likely that more realistic values would
cause all memory traces to be affected by a room’s affective
value, and there would be no clear difference between them.
Finally, experiment 3 aimed to validate that affective eval-
uations’ intensity improves the learning process by rein-
forcing knowledge in memory. *e results obtained show
that those memory traces with higher valuations are more
difficult to forget than those with a neutral value. Although

1 2 3

4 5 6

7 8 9

Plan 1: [1, 2, 5, 4, 7, 8, 9]
Plan 2: [2, 5, 4, 1, 4, 7, 8, 9]
Plan 3: [3, 2, 5, 2, 1, 4, 7, 8, 9]

(a)

1 2 3

4 5 6

7 8 9

Plan 1: [1, 4, 5, 8, 9]
Plan 2: [2, 5, 8, 9]
Plan 3: Can’t travel to any relation

(b)

Figure 11: Results obtained after the execution of experiment 2. (a) Planned routes ignoring positive affective values. (b) Planned routes
considering positive affective values.
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Figure 12: Results obtained after the execution of experiment 3.
(a) Mean values obtained for neutral images. (b) Mean values
obtained for affective images.
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these results keep correlation to a certain level with ex-
periments in humans, more experiments are also necessary
to allow us to adjust certain parameters such as the influence
weight of emotions concerning memory, the forgetting scale
of the memory system, and the threshold of the recover-
ability level. We believe that adjusting the parameters of the
cases will allow the system to generate behaviours directly
comparable with those of a human.

Overall, the results obtained from the three experiments
helped us to demonstrate our system’s capabilities and
feasibility and to conclude that the proposed model is
functional for encoding memory traces and their affective
values from the stimuli perceived in a virtual environment or
simulations. *ese values help the virtual creature to gen-
erate autonomous behaviour, improve its decision-making
process, and reinforce its learning. Also, from the results of
experiment 3, we can observe that if we adjust the correct
parameters in the system, we can reach realistic results such
as those presented by Marchewka et al. [148].

Nevertheless, it should be noted that some functional-
ities could be added or improved to make the system more
complete and closer to biological evidence. Even though the
general model presented in Section 4 shows all the relations
of the affect, the developed model still lacks the top-down
regulation of emotions that would allow for conscious
control and modification of affective values. Currently, our
model uses bottom-up information coming from the en-
vironment to create affective associations, which means that
similar situations can have similar affective values. However,
if we include emotional regulation, our model can use other
cognitive functions such as planning, decision-making, at-
tentional control, and a reward system to bias the emotions
according to additional criteria. Also, additional work is
required to cover the fast retrieval of memories with high
affective values. Furthermore, this work focused on the
association of episodic memories with emotions. Because
episodic memories are a type of declarative or conscious
memory, the behaviours generated by our system are also
conscious. *erefore, extensive research is required to cover
automatic behaviours such as the alarms proposed in [149].

Moreover, we indiscriminately use positive and negative
values for memory improvement. *us, the model can be
extended to consider a different level of reinforcement
depending on the type. Furthermore, the addition of brain
structures to the model, such as stress-related areas and the
hypothalamic-pituitary-adrenal axis (HPA), can endow the
system with real properties like amnesia caused under
stressful situations.

For its part, the proposed model based on biological
evidence for the cognitive function of emotional memory
proves to be consistent in storing and retrieving affective
evaluations. In the same way, it is functional in generating
plans based on affective information. Although affective
evaluations are the first step for the storage of emotions,
there are still other functionalities for the general storage of
emotional states. In particular, the storage of emotional
states such as joy, sadness, anger, and displeasure, among
others, seems to follow the same storage circuit, leading to an
overlap between brain structures. However, it seems that

they differ in the point of generation of these emotions
within the human brain. Such investigation and identifi-
cation of brain structures involved in a specific emotional
state are part of our team’s current work. From the per-
spective of memory, we have observed that the proposed
model of episodic memory with emotions is a good starting
point for gradually generating a general architecture of
declarative emotional memory. Many of the included areas
can be extended in functionality to consider other types of
memory, such as semantic and spatial memory. *is last
point is very important since it allows for the generation of a
map of the environment that could lead to more complex
behaviours when combined with the knowledge acquired in
our proposal. As with the case of emotions, these extensions
will be part of future research.

*e proposed system makes evident the need to im-
plement the emotional memory process in cognitive ar-
chitectures.*is process helps to skew decisions and support
the survival of cyber entities. Even though this process was
not observed in the identified cognitive architectures (see
Section 2), the interaction between memory systems and the
emotional system is observed in some of them [8, 9, 11, 12].
Reinforcing this cognitive process of emotional memory in
other architectures could improve the behavioural responses
exhibited by cybernetic entities, getting a little closer to the
behaviour of their biological counterparts, human beings.

Finally, we have verified that the combination of
memory and emotion functions will have an extensive re-
search line, as we have demonstrated the great importance of
these mixed processes by implementing a system aimed at
storing affective evaluations of perceived stimuli. *e future
research panorama is much broader, ranging from how
specific emotional states are stored (such as sadness, joy, and
anger) to how cybernetic entities behave through emotional
regulation, i.e., when they face known situations, how they
control their behaviours and their emotional responses to
the environment. Given the evidence collected in this work,
we can say that emotional memory is a complex matrix
process that involves different types of emotional evaluations
with different levels of cognition requiring further research.

8. Conclusions

Episodic memory and emotions are essential functions for
human beings because they allow us to acquire knowledge
from the environment related to our daily events or situa-
tions. *is knowledge is essential for computing our be-
haviour. Furthermore, these systems help us identify dangers
and rewards in the environment, thereby biasing decisions.
For these reasons, both are highly desired functions for
virtual agents if they need to show human-like behaviour.
Researchers have been working to design cognitive archi-
tectures that include both processes and endow agents with
human-like capabilities.

*is study presents a cognitive architecture proposal that
considers and integrates episodic memory with the affective
part of the emotions. *e architecture design is grounded in
psychological and neuroscientific evidence, which provides
information on the components and the processes carried
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out by memory and affection. Unlike other proposals, this
study uses a modular and distributed approach providing it
scalability, resilience, and modularity characteristics. *is
last characteristic allows the proposed components to be
replaced or extended in order to include new evidence.
Although this proposal was designed to be part of a broader
cognitive architecture, it can also work independently or be
used in other projects. Finally, we are aware that our system
is in the early stages of development and requires more
experiments. We consider that future versions can work as a
testbed for multiple investigations in cognitive architectures
and intelligent agents.
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