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In this paper, we give a modified gradient EM algorithm; it can protect the privacy of sensitive data by adding discrete Gaussian
mechanism noise. Specifically, it makes the high-dimensional data easier to process mainly by scaling, truncating, noise
multiplication, and smoothing steps on the data. Since the variance of discrete Gaussian is smaller than that of the continuous
Gaussian, the difference privacy of data can be guaranteed more effectively by adding the noise of the discrete Gaussian
mechanism. Finally, the standard gradient EM algorithm, clipped algorithm, and our algorithm (DG-EM) are compared with the
GMM model. +e experiments show that our algorithm can effectively protect high-dimensional sensitive data.

1. Introduction

Now, big data have spread to every field and organization
in our society, generating large amounts of personal data
every day, which people use and analyse to enable the
rapid development of society and technology. However, it
is expected that some personal private data will be pro-
tected from being hacked or made public when it is
collected. +erefore, how to effectively protect the privacy
of data, not to be attacked, and can be effectively used, has
gradually been paid attention to. Dwork et al. [1] intro-
duced the concept and basic theoretical framework of
differential privacy, which can effectively protect users’
data privacy and has a strict and elegant mathematical
theoretical framework and guarantees.

Gradient EM algorithm is one of the most important
statistical models, and Wang et al. [2] recently applied
sensitive data for privacy protection. Before this, people used
the original EM algorithm and gradient EM algorithm, and
there is no statistical guarantee. Until Balakrishnan et al. [4]
gave the statistical guarantee of EM algorithm, Wang et al.
[3] gave the guarantee of gradient EM algorithm based on it
and extended it to the data privacy protection theory.
However, just like most scholars, Gaussian noise with

continuous distribution is added to the data, while in
practice, the data output queries are often discrete, such as
the number of records in the database that meets certain
conditions. For this reason, Canonne et al. [5] proposed to
use a discrete Gaussian mechanism to add discrete Gaussian
noise to the data and to ensure that it has the same excellent
accuracy as adding continuous Gaussian noise.

In this paper, we design a discretized Gaussian al-
gorithm based on the gradient EM algorithm for differ-
ential privacy calculation based on [2]. Our algorithm has
a good practical effect and can be extended to the general
standard model. Meanwhile, the corresponding statistical
guarantee of the algorithm is given in this paper. +e
structure of this paper is as follows: in the second part, we
first introduce some theories of gradient EM algorithm,
discrete Gaussian, and differential privacy, as well as some
works related to this paper. In the third part, we introduce
our model, namely, differential privacy discrete Gaussian
EM (Gradient) algorithm (DG-EM), and the relevant
statistical guarantee theorem. In the fourth part, we give
the data simulation of the sensitivity, sample size, and
dimension of the aggregated data, and the discussion of
the model and future work are shown in the fifth part.
Finally, we add the proof of some lemmas in the appendix.
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2. Preliminaries

2.1.GradientEMAlgorithm. Assume that (X, Z) is complete
data, where X is an observing sample and called Z as a latent
variable. +ey are generally unobservable because they are
missing or have underlying data structures. We denote X

and Z as the sample space for variables X, Z, respectively.
Suppose that (X, Z) has a joint density function pθ0(x, z); it
belongs to some parameterized distribution family
pθ0|θ0 ∈ Ω􏽮 􏽯. For convenience, the variable X has a margin

density function πθ(x) � 􏽒
Z

pθ(x, z)dz, and
πθ(z|x) � pθ(x, z)/πθ(x) is a Z′ s conditional density
function which is under X � x. Suppose that the given
observer samples are x1, . . . , xn from population X. +e EM
algorithm needs to maximize the log-likelihood function
ℓn(θ) � log pθ(x, z). +rough Jensen’s inequality, the lower
bound of the log-likelihood function can be writen as
follows:

1
n

ℓn(θ) − ℓn θ′( 􏼁􏼈 􏼉

≥
1
n

􏽘

n

i�1
􏽚
Z
πθ′ z | xi( 􏼁log pθ xi, z( 􏼁dz −

1
n

􏽘

n

i�1
􏽚
Z
πθ′ z|xi( 􏼁log pθ′ xi, z( 􏼁dz,

(1)

where

qi θ, θ′( 􏼁 � 􏽘
n

i�1
􏽚
Z
πθ′ z|xi( 􏼁log pθ xi, z( 􏼁dz, (2)

Qn θ, θ′( 􏼁 �
1
n

􏽘

n

i�1
qi θ, θ′( 􏼁. (3)

+e expectation of Qn(θ, θ′) is denoted as

Q θ, θ′( 􏼁 � Ex∼π
θ′(x)􏽚

Z
πθ′(z|x)log pθ(x, z)dz. (4)

To maximize equation (3), the left term of the inequality
can be sufficiently large by iteratively increasing the lower
bound on the right term. +e standard EM algorithm [6–9]
estimates the function Qn(θ, θ(t)) by E-step at each iteration,
then the parameters are estimated in M-step to make the
parameter values of this iteration maximize the function
Qn(θ, θ(t)) and denote the parameter as
θ(t+1) � maxθ∈ΩQn(θ, θ(t)). +e gradient EM algorithm is
usually used to achieve higher accuracy and faster global
maximum if the function is differentiable at each iteration
step. +e gradient EM algorithm is usually stated as follows:
when the function Qn(θ, θ(t)) is differentiable at the t-th
iteration, we can update the current parameter θ(t) to θ(t+1)

by the following steps:

E-step: compute Qn(θ, θ(t)),
M-step: update θ(t+1) � θ(t) + η∇Qn(θ(t), θ(t)),

where η is a parameter which calls step size.

2.2. Discrete Gaussian. +e study of discrete distributed
forms of noise has received more attention this year. In the
literature, people studied discrete Laplace distribution,
discrete binomial distribution, and discrete Gaussian dis-
tribution and applied them to the field of cryptography.

In this paper, the differential privacy model is studied
based on Gaussian mechanism. +e noise with normal

distribution makes the model have many elegant mathe-
matical properties. Although the discrete Laplace noise
mechanism and the discrete Gaussian noise mechanism
cannot be compared in the same model, since they are used
in different privacy mechanisms, we are still willing to use
the discrete Gaussian noise in order to obtain aesthetic
mathematical conclusions [10–13].

In this paper, we need to add noise to have discrete
Gaussian distribution to specially treated sample. Firstly, we
will give the definition of the discrete Gaussian distribution
and some useful related theories.

Definition 1. Let μ, σ2 ∈ R, σ > 0, if random variable X has
probability mass function as follows:

Pr(X � x) �
exp − (x − μ)

2/ 2σ2􏼐 􏼑􏽮 􏽯

􏽐y∈Zexp − (y − μ)
2/ 2σ2􏼐 􏼑􏽮 􏽯

,∀x ∈ Z. (5)

On the integers support set, then we call it is a discrete
Gaussian distribution with location parameter μ and scale
parameter σ2 and denoted NZ(μ, σ2).

2.3. Some Basic*eories on Differential Privacy. In this part,
we will give some basic theories on differential privacy
[14, 15].

Definition 2. A randomized algorithm M: X⟶Y sat-
isfies (ϵ, δ)-differential privacy (DP) if for all neighboring
datasets ,D, D′ ⊂ X, differing on a single entry. For all events
S in the space Y, we have
Pr(M(D) ∈ S)≤ eϵPr(M(D′) ∈ S) + δ. Moreover, we called
its approximate differential privacy, if δ > 0, and we called its
pure or point-wise ϵ-differential privacy in the case of
(ϵ, 0)-differential privacy.

+e concept of concentrated differential privacy given by
Bun et al. [14] as follows:

Definition 3. A randomized algorithm M: X⟶Y sat-
isfies ρ-concentrated differential privacy if for neighboring
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datasets D, D′ ⊂ X, and for any α ∈ (1,∞), we have
Dα(M(D)‖M(D′))≤ ρ, where
Dα(P Q‖ ) � (1/α − 1)log􏽐y(P(y)/Q(y))αQ(y) is the Renyi
divergence of order α of the distribution form the
distribution.

From these definitions, we have the conclusion that
pure-DP can imply ρ-CDP, and ρ-CDP can imply
(ρ + 2

��������

ρ log δ− 1
􏽱

, δ)-DP, where δ is a positive constant.
In order to ensure the consistency of the parameters of

our model, we need some basic definitions and assumptions
based on [4].

Definition 4 (self-consistent). We called the function
Q(·; θ∗) is self-consistent if θ∗ � argmaxθ∈ΩQ(θ; θ∗).

Definition 5 (Lipschitz-gradient-2 (L,B)). We called the
function Q(·; ·) is Lipschitz-gradient-2 (L,B), if we have the
following inequality for parameter θ∗ and θ ∈B:

∇Qn θ; θ∗( 􏼁 − ∇Qn(θ; θ)
����

����2≤ L θ − θ∗
����

����2. (6)

Definition 6 (μ-smooth). We call the function Q(·; ·) is
μ-smooth, if for any parameters θ, θ′ ∈B, we have the
inequality

Q θ; θ′( 􏼁≥Q θ′; θ∗( 􏼁 + θ − θ′( 􏼁
T∇Q θ′; θ∗( 􏼁 −

μ
2
θ − θ′

����
����
2
2.

(7)

Definition 7. (λ-strongly concave). We call the function
Q(·; θ∗) is λ-strongly concave, if for any parameters
θ, θ′ ∈B, we have the inequality

Q θ; θ′( 􏼁≤Q θ′; θ∗( 􏼁 + θ − θ′( 􏼁
T∇Q θ′; θ∗( 􏼁 −

λ
2
θ − θ′

����
����
2
2.

(8)

Assumption 1. We assume that the function Q(·; ·) is self-
consistent, Lipschitz-gradient-2 (L,B), μ-smooth, and
λ-strongly concave on some parameter sets B.

3. Differential Privacy Discrete Gaussian EM
(Gradient) Model

Wewill mention that the EM algorithm based on [2] and use
the discrete Gaussian noise mechanism of high-dimensional
truncation algorithm, which satisfies the centralized dif-
ferential privacy (CDP). Like Wang et al. [2], we have first
considered one coordinate case that is 1-dimensional ran-
dom variable x. Let x1, . . . , xn be i.i.d. sampled from x. We
get the clipped estimator as follows:

Step 1. For the sample xi, we take a soft truncation
function h(x) which is defined by Catoni and Giulini
[16],

h(x) �

−
2

�
2

√

3
, x< −

�
2

√

x −
x
3

6
, −

�
2

√
≤x≤

�
2

√

2
�
2

√

3
, x>

�
2

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

+en, we take some mild constant ω and rescaled
sample xi by dividing ω to get h(xi/ω); through this
approach, we can get the truncated mean as follows:

ω
n

􏽘

n

i�1
h

xi

ω
􏼒 􏼓 ≈ E(X). (10)

From the expression of the function h(x), we know
h(x) is bounded by (2

�
2

√
/3), so the sensitivity is

(4
�
2

√
/3).

Step 2. Generate random noises o1, . . . , on from a
common distribution o ∼ χ with E(o) � 0. For data xi,
we get a new data xi(1 + oi) though multiply the noise
factor 1 + oi, and we get term h(xi(1 + oi)/ω) by scaling
and truncation step. Finally, we get

􏽥x(o) �
ω
n

􏽘

n

i�1
h

xi 1 + oi( 􏼁

ω
􏼠 􏼡. (11)

Multiplicative noise is an effective method to ensure the
estimation effect of typical points and increase the
estimation effect of outliers as much as possible. It was
first proposed by Srivastava et al. [17], and the moti-
vation of using Gaussian multiplicative noise comes
from [18].
Step 3. Finally, we take the expectation for the distri-
butions with arrive multiplicative noise as follows:

􏽢x � E(􏽥x(o)) �
ω
n

􏽘

n

i�1
􏽚 h

xi 1 + oi( 􏼁

ω
􏼠 􏼡dχ oi( 􏼁. (12)

Like Catoni and Giulini [16], taking χ ∼ N(0, (1/β)), we
take the distribution χ following the discrete Gaussian
distribution as χ ∼ NZ(0, (1/β)). Easily, for any given
constant a, b> 0, we also have

Eχ(h(a + b

��

β
􏽱

o)) � a 1 −
b
2

2
􏼠 􏼡 −

a
3

6
+ R(a, b), (13)
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where R(a, b) is a correction term R(a, b) � T1+

T2 + T3 + T4 + T5. Signs T1 − T5 are respectively denoted as

T1 �
2

�
2

√

3
F− − F+( 􏼁,

T2 � − a −
a
3

6
􏼠 􏼡 F− + F+( 􏼁,

T3 �
b
���
2π
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a
2

2
􏼠 􏼡 E− − E+( 􏼁,

T4 �
ab

2

2
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���
2π
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T5 �
b
3

6
���
2π

√ 2 + V
2
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2
+􏼐 􏼑E+􏼐 􏼑.

(14)

Also, the notation is defined by

V− �

�
2

√
− a

b
,

V+ �
a +

�
2

√

b
,

E− � exp −
V

2
−

2
􏼠 􏼡,

E+ � exp −
V

2
+

2
􏼠 􏼡,

F− � Φ − V−( 􏼁,

F+ � Φ − V+( 􏼁.

(15)

Unproved, we have the following estimation error
Lemma 1 which is like Lemma 5 in Holland [19], and we
gave the proof of it in Appendix A.

Lemma 1. Let x1, . . . , xn be i.i.d. sampled form x ∼ μ. As-
sume Eμx2 ≤ τ, and the upper bound has known. Given a
number 0< c< 1, for β � 2 log(c− 1) and
ω �

�������������
(nτ/2 log(c− 1))

􏽰
, we have

􏽢x − Eμ(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤O

���������

τ log c
− 1

􏼐 􏼑

n

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠, (16)

with probability at least 1 − c.
From the soft truncation function and the multiplicative

noise algorithm, we know that the sensitivity of the pro-
cessed observation samples is (4

�
2

√
s/3n). Next, we need to

add discrete Gaussian noise to the observations and obtain
that the query

M(D) � 􏽢x + Y, Y ∼ NZ 0, σ2􏼐 􏼑, σ2 � O
ω2log δ− 1

􏼐 􏼑

ϵ2n2
⎛⎝ ⎞⎠,

(17)

will be (ϵ, δ)-DP, which leads the following Lemma 3; we give
the proof in Appendix B.

Lemma 2. Let ϵ> 0; let the function q: Xn⟶ Z be an
operator algorithm which is defined by Steps 1–3, satisfying
|q(x) − q(x′)|≤Δ for any x, x′ ∈ Xn; the query can be writen
as randomized algorithm M: Xn⟶ Z by M(D) � q(x)+

Y, where Y ∼ NZ(0, σ2), then M satisfies (ϵ, δ)-DP.
Furthermore, these results imply the following lemma.

Lemma 3. Under the assumptions in Assumption 1, with
probability at least 1 − c, the following holds:

|M(D) − E(x)|≤O
Δ log δ− 1

􏼐 􏼑

ϵ2
⎛⎝ ⎞⎠. (18)

After the estimation of the univariate private data, in the
t-th iteration of Algorithm 1, we use the univariate estimation
method for each coordinate of the gradient ∇Qn(θ(t); θ(t))

and then get the estimation of the gradient ∇Qn(θ(t); θ(t)).
Finally, step M is performed.

Lemma 4. For any 0< ϵ< 1, let Dα(M(x)‖M(x′))≤ϖ; for
any α ∈ (1,∞), ϵ≥ 0, and x, x′ ∈ Xn, Algorithm 1 satisfies
(ϵ, δ)-DP for

δ �
exp((α − 1)(ϖ − ϵ))

α − 1
1 −

1
α

􏼒 􏼓
α
, (19)

where Y ∼ NZ(0, σ2).
For Algorithm 1, the next theorem shows that the pa-

rameter estimation is consistent if the initial parameter θInit is
close to the true parameter θ∗ enough. After some simple
calculations, we conclude that in Lemma 2, the upper bound is
Δ � (nτ + ω2

op/nωop)

1 + [(1/4)log(3nτ/2ω2
op) + log(c− 1)]− 1􏽮 􏽯, where ωop is the

optimal numerical solution to the equation

2ω2
+ nEμ x

2
􏼐 􏼑 � ω2log

3nEμ x
2

􏼐 􏼑

2ω2 c
− 2⎛⎝ ⎞⎠. (20)

Lemma 5. Let B � θ: ‖θ − θ∗‖2 ≤R􏼈 􏼉 denote a parameter
set with R � κ‖θ∗‖22, κ ∈ (0, 1) which is a positive constant.
Assume parameters L,B, μ, λ, τ satisfying condition of
1 − 2(λ − L/λ + μ) ∈ (0, 1). If ‖θInit − θ∗‖2 ≤R/2 and n is a
large number such that

􏽥Ω
1

λ − L
􏼒 􏼓

2d
2
Tτ log c

− 1
􏼐 􏼑

ϵ2R2
⎛⎝ ⎞⎠≤ n. (21)
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We have Pr(θ(t) ∈B)≥ 1 − 2Tc for all t ∈ [T]. Fur-
thermore, if we take T � O((λ + μ/λ − L)log(n)) and
η � (2/λ + μ), we have

θ(T)
− θ∗

�����

�����2
≤ 􏽥O R

�������
λ + μ

(λ − L)
3

􏽳
d log δ− 1

􏼐 􏼑log c
− 1 �

τ
√

􏼐 􏼑
���
nϵ2

􏽰⎛⎝ ⎞⎠.

(22)

Lemma 6. Let (‖θ∗‖/σ)≥ r, then there exists a constant C

such that the properties of self-consistent Lipschitz-gradient-
2(L,B), μ-smoothness, and λ-strongly concave hold for the
function Q(·; ·) with L � exp(− Cr), μ � λ � 1,

R � κ‖θ∗‖2, κ � 1/4,B � θ: ‖θ − θ∗‖≤R{ }, where r is a
enough large constant means that the minimum signal-to-
noise ratio (SNR).

Furthermore, we can get +eorems 1 and 2. +e proof of
these theorems is very simple; we do not list the detailed
proof procedure here. In fact, we only need to replace the
upper bound on the variance of the discrete noise in [2] with
a single coordinate with 3 exp(− 1/2σ2).

Theorem 1. With the same condition as in Lemma 4, for any
θ ∈B, the j-th coordinate of ∇q(θ; θ) satisfies the following
results:

Ey ∇jq(θ; θ)􏼐 􏼑
2
≤O θ∗

����
����
2
∞ + 3 exp −

1
2σ2

􏼠 􏼡􏼠 􏼡. (23)

Theorem 2. With the same conditions in Lemma 3, we
assume that ‖θInit − θ∗‖2 ≤ (‖θ∗‖22/8) in Algorithm 1, and n is
a large enough number such that

􏽥Ω
n θ∗

����
����
2
∞ + 3 exp − 1/2σ2􏼐 􏼑􏼐 􏼑􏼒 􏼓 + ω2

op

ωopϵ
2 θ∗
����

����
2
2

d
2 1 +

1
4
log

3nτ
2ω2

op

⎛⎝ ⎞⎠ + log c
− 1

􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠≤ n. (24)

If we take T � O(log(n)) and the ratio as η � O(1), then
for a failure probability c, we have with probability at least
1 − 2Tc

θ(T)
− θ∗

�����

�����2
≤ 􏽥O θ∗

����
����2

n

���������������������

θ∗
����

����
2
∞ + 3 exp − 1/2σ2􏼐 􏼑􏼐 􏼑

􏽱

+ ω2
op

���
nϵ2

􏽰
ωop

d 1{ +
1
4
log

3nτ
2ω2

op

⎛⎝ ⎞⎠ + log c
− 1

􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1⎫⎪⎬

⎪⎭
⎞⎟⎠.⎛⎜⎜⎝ (25)

We note that Lemmas 3–6 and*eorems 1 and 2 are easy
to get through Lemmas 1 and 2. Due to limited space, we
delete these proofs here, and readers can prove them by
themselves. It is only necessary to pay attention to the upper
bound of the ℓ2-norm between the iterative values of pa-
rameters and the truth values in the process of proof.

4. Experiments and Results

In this section, we will evaluate the performance of Algo-
rithm 1 on the GMMmodel based on thesemethods.We will
study the statistical setting and theoretical behavior of this
algorithm on synthetic data.

Input: D � xi􏼈 􏼉 ⊂ R d, i � 1, . . . , n, privacy parameter ϵ, δ, Q(·; ·) and qi(·; ·), initial parameter θInit ∈B and τ satisfy Assumption
1, the number of iterations T, step size η, and failure probability c> 0.

(1) Let ϵ �
�������������

2(log(δ− 1) + ϵ)
􏽱

−

���������

2 log(δ− 1)

􏽱

,ω �
�������������
(nτ/2 log(d/c))

􏽰
, β � log(d/c),

(2) for t � 1, . . . , T do
(3) For each j ∈ [d], calculate the robust gradient and add a discrete Gaussian noise, that is,

g
(t− 1)
j (θ(t− 1)

) � (ω/n) 􏽘
n

i�1
[∇jqi(θ

(t− 1)
; θ(t− 1)

)(1 − (∇2jqi(θ
(t− 1)

; θ(t− 1)
)/2ω2β)) − (∇3jqi(θ

(t− 1)
; θ(t− 1)

)/6ω2
)]

+(ω/n) 􏽘
n

i�1
􏽘

n
R((∇jqi(θ

(t− 1)
; θ(t− 1)

)/ω), (|∇jqi(θ
(t− 1)

; θ(t− 1)
)|/ω

��

β
􏽱

)) + Y
(t− 1)
j

where Y
(t− 1)
j ∼ NZ(0, σ2), σ2 � (8τ dT/9βnϵ2).

(4) Let vector �∇Qn(θ(t− 1)) ∈ R d denote �∇Qn(θ(t− 1)) � (g
(t− 1)
1 (θ(t− 1)), g

(t− 1)
2 (θ(t− 1)), . . . , g

(t− 1)
d (θ(t− 1))).

(5) Update θ(t) � θ(t− 1) + η�∇Qn(θ(t− 1)).
(6) end for

ALGORITHM 1: Differentially private DG-EM (gradient) algorithm.
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Figure 1: Continued.
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Figure 1: Estimation error of GMM clipped vs. iteration t under different clipping threshold C and budgets ϵ. (a) n� 1000; d� 20; ϵ � 0.2,
(b) n� 1000; d� 20; ϵ� 0.5, and (c) n� 1000; d� 20; ϵ� 1.
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Figure 2: Continued.
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Figure 2: Estimation error of GMM w.r.t. privacy budget ϵ, data dimension (lower) d, data size n, and iteration t. (a) n� 2000; d� 10,
(b) n� 2000; ϵ � 0.5, and (c) d� 10, ϵ� 0.5.
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Figure 3: Continued.
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4.1. Baseline Methods. In this part, we will compare the
two methods primarily. For convenience, we will refer to
the gradient EM algorithm as EM, which will serve as a
nonprivate baseline method. +e other is the clipped
differential private EM algorithm, which we still refer to
as clipped [20], which will serve as our privacy baseline
approach.

4.2. Experimental Settings. In this experiment, we generate
the synthetic data of the mixed distribution of two com-
ponents. To generate each of the algorithm, we consider the
random initialization method for the selection of initial
parameter values. In the results, we used to measure the
resulting estimation error. We set signal-to-noise ratio
(‖θ∗‖/σ) � 3. For the privacy parameter ϵ, we set
ϵ � 0.5, 0.8, 1{ }, and then the parameter δ � Pr(Y> (ϵσ2/
Δ) + (Δ/2)) needs to calculate because it is the function of ϵ.

4.3. Experimental Results. As can be seen from Figure 1, we
fixed n � 1000, d � 20.When the budget of our method is set
at different values, the estimation error decreases signifi-
cantly with the increase of iteration time.When the budget is
0.2, 0.5, and 1, the optimal value is 1, 2, and 2, respectively. It
is difficult for us to determine the optimal value C.

In Figure 2, under the lower dimension case, we test how
the data dimension d, privacy budget ϵ, and data size n affect

the estimation error ‖θ − θ∗‖2 of algorithms on the Gaussian
mixture model over iteration t. We can see that the esti-
mation error of Algorithm 1 in GMM decreases when ϵ
increases, n increases, or d decreases. However, we can see
that when the budget ϵ is small, the effect of our algorithm is
performed badly, and the estimation error declines unstably
with the increase of the number of iterations.

In Figure 3, we can see that, in the face of high-di-
mensional data, the effect of estimation error ‖θ − θ∗‖2 needs
a relatively large sample to be guaranteed. We conducted
experiments with higher dimensions d � 40, 80, 160 and
different sample sizes of 2000, 5000, and 10 000, respectively.
It can be seen that when the sample size n is large enough, the
estimation error can be guaranteed to decrease significantly
with the number of iterations t. As shown in Figure 3, with
the increase of sample size, our algorithm is equally effective
in high-dimensional space, which is not comparable with
Wang et al.’s [2] algorithm.

5. Conclusions

In this paper, we study the differential privacy model with
discrete Gaussian mechanism noise. +rough the process of
data scaling and truncation, the model effectively solves the
influence of high-dimensional data on the model. +rough
the experimental part and theoretical proof, we can see that
the estimation error of the model adding discrete Gaussian
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Figure 3: Estimation error of GMM w.r.t. privacy budget ϵ, data dimension (higher) d, data size n, and iteration t. (a) n� 2000; d� 100,
(b) n� 2000; ϵ� 0.5, and (c) d� 100, ϵ� 0.5.
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noise is faster than that of the model adding continuous
Gaussian noise in the low dimension than that of the clipped
model.+e effect is much better than that of [2] in the case of
high dimension. At the same time, in the previous lemma
section, we can see that our model has more compact
bounds, because of the smaller variance of discrete Gaussian
noise.

Appendix

A

Proof of Lemma 1

Proof. In order to make the conclusion universal, we make
some necessary assumptions. Firstly, let P(R) denote all
probability measures on R, and we assumed it has an ap-
propriate σ-field. Consider any two measures v, v′ ∈ P(R),
and f0: R⟶ R is a v′-measurable function. We take the
form of a cumulative generating function as

sup
v

􏽚 f0(u)dv(u) − Dα v v′
����􏼐 􏼑􏼒 􏼓 � log 􏽚 exp f0(u)( 􏼁dv′(u)􏼒 􏼓,

(A.1)

through a Legendre transform of the mapping
v⟶ Dα(v‖v′) like [16], where Dα(v‖v′) denotes the Renyi
divergence between v and v′.

Because h(xi(1 + oi)/ω), i ∈ [n] is depend on two ran-
dom quantities xi and the noise oi, we write
f(o, x)≜ h(x(1 + o)/ω), o, x ∈ R.

By the definition of function h(·) before, the function
f: R⟶ R is measurable and bounded with (2

�
2

√
/3).

Next, we let

f0(o) � 􏽘
n

i�1
f o, xi( 􏼁 − c(o), (A.2)

where c(o) is a term needs to be determined later. Inserting
f0(o) to (A.1), we have

B ≜ sup
v

􏽚 f0(o)dv(o) − Dα v v′
����􏼐 􏼑􏼒 􏼓

� log 􏽚 exp 􏽘
n

i�1
f o, xi( 􏼁 − c(o)⎛⎝ ⎞⎠dv(o)⎛⎝ ⎞⎠.

(A.3)

Furthermore, we have

Eμ(exp(B)) � Eμ 􏽚
exp 􏽐

n
i�1 f o, xi( 􏼁( 􏼁

exp(c(o))dv(o)
􏼠 􏼡

� 􏽚 􏽙
n

i�1
Eμ

exp f o, xi( 􏼁( 􏼁􏼁

exp(c(o))dv(o)
.

(A.4)

If

c(o) � n log Eμ exp(f(o, x))􏼐 􏼑, (A.5)

we have

Eμ(exp(B)) � 􏽚 􏽙
n

i�1

Eμ exp f o, xi( 􏼁( 􏼁

Eμ exp(f(o, x))􏽨 􏽩
n

⎛⎝ ⎞⎠dv(o) � 1.

(A.6)

So,

Pr B≥ log c
− 1

􏼐 􏼑􏼐 􏼑 � Pr exp(B)≥ c
− 1

􏼐 􏼑

� EμI c exp(B)≥ 1􏼈 􏼉

≤Eμ(c exp(B))

� c.

(A.7)

Because c(o) is v-measurable, the f0(o) is v-measurable.
We have

sup
v

􏽚 f0(o)dv(o) − Dα v v′
����􏼐 􏼑􏼒 􏼓 � log c

− 1
􏼐 􏼑, (A.8)

with probability at least 1 − c. We have the following
inequality:

1
n

􏽘

n

i�1
􏽚 f o, xi( 􏼁dv(o)≤ 􏽚 log Eμ exp(f(o, x))􏼐 􏼑dv(o)

+
Dα v v′

����􏼐 􏼑 + log c
− 1

􏼐 􏼑

n
.

(A.9)

Since the noise terms o1, . . . , on are independent and
follow distribution o ∼ v, we can get

􏽢x �
s

n
􏽘

n

i�1
􏽚 h

xi 1 + oi( 􏼁

ω
􏼠 􏼡dv oi( 􏼁

�
s

n
􏽘

n

i�1
􏽚 f o, xi( 􏼁dv oi( 􏼁.

(A.10)

+us, we have the bound from equation (A.9) as follows:

􏽢x≤ s 􏽚 log Eμ exp h
x(1 + o)

ω
􏼠 􏼡􏼠 􏼡􏼠 􏼡dv(o)

+
s

n
Dα v v′

����􏼐 􏼑 + log c
− 1

􏼐 􏼑􏽨 􏽩,

(A.11)

and then we need to analyse the first term and the second
term on the right-hand side of the top inequality (A.11).

For the first term, from the definition of the truncation
function h(·), by (A.11), we have
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􏽚 log Eμ exp h
x(1 + o)

ω
􏼠 􏼡􏼠 􏼡􏼠 􏼡dv(o)

≤ 􏽚 log
(1 + o)Eμ(x)

s
+

(1 + o)
2
Eμ x

2
􏼐 􏼑

s
2

⎡⎣ ⎤⎦dv(o)

�
Ev(1 + o)Eμ(x)

s
+
Ev(1 + o)

2
Eμ x

2
􏼐 􏼑

s
2

�
Eμ(x)

s
+
Eμ x

2
􏼐 􏼑

s
2 1 +

1
θ

􏼒 􏼓.

(A.12)

Since o ∼ v � N(0, (1/θ)), the expectation and variance
of the 1 + o are as follows:

Ev(1 + o) � 1,Ev(1 + o)
2

�
1
θ

+ Ev(1 + o)􏼂 􏼃
2

�
1
θ

+ 1.

(A.13)

For the second term in (A.11), we need to evaluate
Dα(v‖v′). We take v′ � N(0, (1/θ)); through simple com-
putations, we can get

Dα v v′
����􏼐 􏼑 ��

1
α − 1

log 􏽚 (dv)
α dv′( 􏼁

1− αdu􏼒 􏼓

�
(1 − 0)

2

2θ− 1 α

�
θα
2

.

(A.14)

+us, we can take the upper bound form as

􏽢x≤Eμ(x) +
Eμ x

2
􏼐 􏼑

2s
1 +

1
θ

􏼒 􏼓 +
s

n

θα
2

+ log c
− 1

􏼐 􏼑􏼠 􏼡. (A.15)

We take the differential for the variable s; we have

s
2

� 1 +
1
θ

􏼒 􏼓Eμ x
2

􏼐 􏼑
θα
2

+ log c
− 1

􏼐 􏼑􏼠 􏼡

− 1

, (A.16)

and with respect to θ, we have

θ2 �
nEμ x

2
􏼐 􏼑

αs
2 . (A.17)

Plugging equation (A.17) into the setting of s, we can get

s
2

�
nEμ x

2
􏼐 􏼑

2 log c
− 1

􏼐 􏼑
. (A.18)

We can get the setting of s from equation (A.18);
equation (A.15) has upper bound with form as follows:

􏽢x≤Eμ(x) +

��������������

2Eμ x
2

􏼐 􏼑log c
− 1

􏼐 􏼑

n

􏽳

+

������

Eμ x
2

􏼐 􏼑

n

􏽳

. (A.19)

To get lower bounds on 􏽢x − Eμ(x), we need to get the
upper bounds on − 􏽢x − Eμ(x). Similar to the analysis above,
we get the upper bound of − 􏽢x through

− 􏽢x≤ s 􏽚 log Eμ exp − h
x(1 + o)

ω
􏼠 􏼡􏼠 􏼡dv(o) +

s

n
Dα v v′

����􏼐 􏼑 + log c
− 1

􏼐 􏼑􏽨 􏽩􏼠 (A.20)

By the fact

− log
1 − x + x

2

2
􏼠 􏼡≤ψ(x)≤ log

1 − x + x
2

2
􏼠 􏼡, (A.21)

we have

􏽚 log Eμ exp − h
x(1 + o)

ω
􏼠 􏼡􏼠 􏼡dv(o)􏼠

≤ 􏽚 log 1 +
− (1 + o)Eμ(x)

s
+

(1 + o)
2
Eμ x

2
􏼐 􏼑

s
2

⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦dv(o),

(A.22)

􏽢x≤ − Eμ(x) +

��������������

2Eμ x
2

􏼐 􏼑log c
− 1

􏼐 􏼑

n

􏽳

+

������

Eμ x
2

􏼐 􏼑

n

􏽳

. (A.23)

Putting the above analysis together, we have
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􏽢x − Eμ(x)≥

��������������

2Eμ x
2

􏼐 􏼑log c
− 1

􏼐 􏼑

n

􏽳

+

������

Eμ x
2

􏼐 􏼑

n

􏽳

. (A.24)

+en, with probability at least 1 − c, the following holds

􏽢x − Eμ(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤

��������������

2Eμ x
2

􏼐 􏼑log c
− 1

􏼐 􏼑

n

􏽳

+

������

Eμ x
2

􏼐 􏼑

n

􏽳

. (A.25)

□

B

Proof of Lemma 2
+e proof process of Lemma 2 needs the next propo-

sition [5]:

Proposition 1. Let σ, α ∈ R with σ > 0 and α≥ 1. Let
μ1, μ2 ∈ Z. *en,

Dα NZ μ1, σ
2

􏼐 􏼑 NZ μ2, σ
2

􏼐 􏼑
�����􏼒 􏼓 �

μ1 − μ2( 􏼁
2

2σ2
α. (B.1)

Furthermore, this inequality is an equality whenever
α(μ1 − μ2) is an integer.

Proof of Lemma 2: we can get Lemma 2 easily though
Proposition 1 and Definition 3.
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