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-e butterfly optimization algorithm (BOA) is a swarm-based metaheuristic algorithm inspired by the foraging behaviour and
information sharing of butterflies. BOA has been applied to various fields of optimization problems due to its performance.
However, BOA also suffers from drawbacks such as diminished population diversity and the tendency to get trapped in local
optimum. In this paper, a hybrid butterfly optimization algorithm based on a Gaussian distribution estimation strategy, called
GDEBOA, is proposed. A Gaussian distribution estimation strategy is used to sample dominant population information and thus
modify the evolutionary direction of butterfly populations, improving the exploitation and exploration capabilities of the al-
gorithm. To evaluate the superiority of the proposed algorithm, GDEBOA was compared with six state-of-the-art algorithms in
CEC2017. In addition, GDEBOA was employed to solve the UAV path planning problem. -e simulation results show that
GDEBOA is highly competitive.

1. Introduction

Optimization problems exist in all aspects of our society,
including business, engineering, and science. An optimi-
zation problem is the process of finding the best value of
decision variables that satisfy the maximum or minimum
objective value without violating the constraints. With the
development of science and technology in these days, the
optimization problems we encounter have become in-
creasingly complex.-ese real-world optimization problems
often involve many decision variables, complex nonlinear
constraints and nonconvexity, dynamic objective functions,
and expensive computational costs [1, 2]. -erefore, when
we solve these problems using traditional gradient-based
methods, we encounter many difficulties in achieving a
satisfactory solution [3]. As the field of optimization has
developed, metaheuristic algorithms have become increas-
ingly popular. It has the property of achieving an optimal or
near-optimal solution in a reasonable time and does not rely
on problem-specific gradient information [4]. It is therefore

widely used to solve various types of optimization problems,
such as task planning [5–7], feature selection [8, 9], pa-
rameter optimization [10, 11], and image segmentation
[12, 13].

In the last decades, many metaheuristic algorithms have
been proposed and successfully applied to different domains.
-ese algorithms can be divided into three categories:
evolutionary-based algorithms, physical-based algorithms,
and swarm-based algorithms. Evolution-based algorithms
are a class of algorithms that simulate the laws of evolution
in nature. -e genetic algorithm (GA) [14] is a widely used
evolutionary-based algorithm proposed by Holland. It up-
dates populations by simulating the natural law of survival of
the fittest. With the popularity of GA and GA variants, more
and more evolutionary-based algorithms are continuously
being proposed, including differential evolution (DE) [15],
genetic programming (GP) [16], evolutionary strategies (ES)
[17], and evolutionary programming (EP) [18]. Besides these
evolutionary algorithms, some novel evolutionary-based
algorithms have been proposed recently, such as artificial
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algae algorithm (AAA) [19], biogeography-based optimi-
zation (BBO) [20], and monkey king evolutionary (MKE)
[21]. Physical-based algorithms simulate the laws of physics
in nature or in the universe. Simulated annealing (SA) [22]
inspired by annealing phenomena in metallurgy is one of the
best-known physical-based algorithms. -ere are other
physical-based algorithms proposed, including gravitational
search algorithm (GSA) [23], nuclear reaction optimization
(NRO) [24], water cycle algorithm (WCA) [25], and sine
cosine algorithm (SCA) [26]. Swarm-based algorithms
simulate social behaviour such as self-organization and
division of labour in species. -e particle swarm optimi-
zation (PSO) [27]and ant colony optimization (ACO) [28]
are two classic swarm-based algorithms. Inspired by these
two algorithms, more and more scholars are conducting
research on this subject and proposing different swarm-
based algorithms. -e popularity of PSO and ACO has
prompted more researchers to propose new swarm-based
metaheuristics. Mirjalili et al. proposed grey wolf optimizer
based on the collaborative foraging of grey wolves [29].
Wang et al. proposed monarch butterfly optimization in-
spired by the migratory activity of monarch butterflies [30].
Inspired by the spiral foraging and parabolic foraging of
tuna, Xie et al. proposed the tuna swarm optimization [31].
In addition to the above three types of algorithms, a class of
human-based metaheuristics is beginning to emerge. -ese
algorithms are inspired by the characteristics of human
activity. Teaching-learning-based optimization (TLBO) [32],
inspired by traditional teaching methods, is a typical ex-
ample of this category of metaheuristic algorithms. Other
human-based metaheuristics include social evolution and
learning optimization (SELO) [33], heap-based optimizers
(HBO) [34], political optimizers (PO) [35], andmany others.
-e butterfly optimization algorithm (BOA) is a swarm-
based metaheuristic algorithm proposed by Arora and Singh
[36]. BOA establishes an exploitation and exploration
process based on the foraging behaviour and information-
sharing strategies of butterflies. Although the BOA can
perform exploitation and exploration operations, the basic
BOA suffers from diminished population diversity and a
tendency to fall into local optimum. Meanwhile, the No free
lunch theory (NFL) [37] states that no single algorithm can
solve all optimization problems perfectly. -ese factors
encourage us to further enhance and improve the perfor-
mance of BOA.

Metaheuristics have a common property: they find
optimal solutions by exploiting and exploring the search
space. Exploitation dominates and will weaken exploration.
But when exploration is enhanced, exploitation is weak-
ened. So, we need to improve algorithm performance by
balancing exploitation and exploration. -e improvements
to the algorithm focus on three main areas. -e first one is
the optimization of the algorithm’s parameter settings. Fan
et al. [38] adjusted the fragrance factor of BOA and pro-
posed an adaptive fragrance factor update method to en-
hance the convergence of BOA. Tang et al. [39] proposed
the use of chaotic mapping operators to replace the alert
value of the sparrow search algorithm for the purpose of
balancing exploitation and exploration. Fan et al. [32]

presented a new nonlinear step-factor control parameter
strategy to further enhance the global search capability of
the marine predator algorithm. -e second is to use some
techniques from other fields to improve performance. -e
fractional order is an effective tool that has been used in
other areas [33, 40]. Yousri et al. [34] proposed an en-
hanced Harris hawk optimization based on fractional-or-
der calculus memory. Elaziz et al. [35] improved the initial
population of the Harris hawk optimizer using fractional-
order Gaussians and 2 ×mod1 chaotic mappings. -e third
is to use other operators to improve the original algorithm.
Wang et al. [41] proposed a hybrid metaheuristic algorithm
for butterfly and flower pollination based on a reciprocal
mechanism. Houssein et al. [42] proposed a variant of the
slime mould algorithm with hybrid adaptive guided dif-
ferential evolution in order to overcome the disadvantages
of unbalanced exploitation and exploration. Inspired by
these hybrid variants, this paper proposes a BOA variant
with hybrid distribution estimation strategy, GDEBOA.
GDEBOA uses a Gaussian probability model to describe
the distribution of dominant populations and to guide the
direction of evolution, improving the performance of the
basic BOA.-e performance of GDEBOAwas evaluated on
the CEC2017 test suite and compared with seven state-of-
the-art algorithms. -e superiority of the proposed algo-
rithm is verified by numerical analysis, convergence
analysis, stability analysis, and statistical analysis. In ad-
dition, GDEBOA is applied to the UAV route planning
problem to further validate the algorithm’s ability to solve
real-world optimization problems.

-e remainder of this paper is organized as follows. A
review of the basic BOA is presented in Section 2. Section 3
provides a detailed description of the proposed GDEBOA. In
Section 4, the effectiveness of the proposed improvement
strategy is verified using CEC 2017 test suite. Furthermore,
GDEBOA is applied to solve the UAV route planning
problem in Section 5. Finally, we summarize this work in
Section 6 and offer directions for future research.

2. Butterfly Optimization Algorithm

-e butterfly optimization algorithm is a swarm-based
metaheuristic algorithm proposed by Arora et al. -e al-
gorithm builds a model of butterfly foraging and mating.
BOA proposes three hypotheses: (1) all butterflies emit
fragrance and are attracted to each other; (2) each butterfly
moves randomly or towards the butterfly with the most
scent; and (3) the stimulus intensity of the butterfly is de-
termined by the landscape of the fitness function. As the
butterflies move, the fragrance changes with them. All
butterflies form a fragrance network, and when they do not
feel the fragrance network, they fly randomly, which is called
the global search phase. As the butterflies approach the
butterfly with the greatest concentration of fragrance, this
phase is called the local search phase. BOA solves the op-
timization problem through global and local search with the
following mathematical model.

-e fragrance of the butterfly is expressed as a function
of the physical intensity of the stimulus, described as follows:
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fi � cI
a
, i � 1, 2, . . . , NP. (1)

where fi represents the butterfly fragrance, c represents the
sensory modality, I represents the stimulus intensity, a is a
power exponent with a value from 0 to 1, and NP denotes
the number of butterflies. -e mathematical model of the
global and local search phases of BOA is represented as
follows:
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where Xt
i denotes the position of the ith butterfly in the tth

iteration, Xt
best denotes the global optimal individual,

r ∈ (0, 1) is a random number, and Xt
j and Xt

k are the jth

individual and the kth individual selected randomly. BOA
constantly executes two search strategies during the search
process.-erefore, a switching probability p is introduced to
control the switching of the two strategies. -e pseudocode
for BOA is given in Algorithm 1.

3. Proposed GDEBOA

To overcome the shortcomings of the basic butterfly opti-
mization algorithm, a modified butterfly optimization al-
gorithm, called GDEBOA, is proposed in this paper. -e
combination of the Gaussian distribution estimation algo-
rithm and BOA provides a solution to the problem of un-
balanced exploitation and exploration capabilities that exist
in BOA. Here, this paper employs a Gaussian distribution
estimation strategy as an alternative to the global search
strategy in BOA. -e GDE is used to sample the dominant
population and guide the evolutionary direction of the al-
gorithm while increasing population diversity. -e im-
proved strategies and GDEBOA are described in detail
below.

3.1. Gaussian Distribution Estimation. -e Gaussian distri-
bution estimation strategy represents inter-individual rela-
tionships through a probabilistic model. -e strategy uses
the current dominant population to calculate the probability
distribution model and generates new offspring populations
based on the probability distribution model sampling,
eventually obtaining the optimal solution by continuous
iteration. In this paper, the distribution model is estimated
using a weighted maximum likelihood estimation method,
and the top one-half population that performs better is taken
as the dominant population.-emathematical model of this
strategy is described as follows:

X
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where Xt
mean denotes the weighted position of the dominant

population and ω denotes the weight coefficient in the
dominant population in descending order of fitness values.
Cov is the weighted covariance matrix of the dominant
populations. -e pseudocode and flowchart of the proposed
GDEBOA are shown in Algorithm 2 and Figure 1.

4. Numerical Experiment and Analysis

In order to fully validate the superior performance of the
proposed GDEBOA, the algorithmwas tested using the IEEE
CEC2017 single-objective test function. -e CEC2017 test
suite consists of 28 test functions. F1 is a unimodal function
with only one global optimum solution and is used to verify
the local search capability of the algorithm. F2–F8 are
multimodal functions and are primarily used to test the
ability of an algorithm to get outside of a local optimum.
F9–F17 and F18–F28 are hybrid and composite functions,
respectively, and can be used to test the potential of an
algorithm to solve complex optimization problems in the
real world.-e definition of functions and optima is given in
Table 1.

Seven state-of-the-art metaheuristics were used for
comparison with GDEBOA, including artificial ecosystem-
based optimization (AEO) [43], grey wolf optimizer (GWO)
[29], Harris hawks optimization (HHO) [44], arithmetic
optimization algorithm (AOA) [45], slime mould algorithm
(SMA) [46], Manta ray foraging optimization (MRFO) [47],
and pathfinder algorithm (PFA) [48]. In the CEC2017 test,
the maximum number of iterations is 600, and the pop-
ulation size is 500. All the algorithm parameters were set to
be the same as in the original literature, as shown in Table 2.
All algorithms were run 51 times independently, and the
experimental results were recorded as shown in Table 3. In
this paper, the performance of GDEBOA was evaluated
comprehensively by numerical analysis, convergence anal-
ysis, stability analysis, Wilcoxon test, and Friedman test. -e
experiments in this paper were conducted on a computer
with an AMD R7 4800U processor and 16GB RAM. Pro-
gramming was performed using MATLAB R2016b.

-e results in Table 3 show that GDEBOA performs best
on the unimodal function F1. Although GDEBOA does not
consistently achieve the optimal solution, it provides the best
solution among the nine algorithms. Compared to BOA, the
performance of GDEBOA is significantly improved, indi-
cating that the improvement strategy is effective in en-
hancing the exploitation capability. In the multimodal
functions F2–F8, each algorithm performs differently.
GDEBOA performs best on F2, F4, and F7. GWO provides
the best solution on F3, F6, and F8. SMA achieves the
optimal solution on F5. Significantly, GDEBOA outperforms
BOA in all multimodal functions, which indicates that
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GDEBOA has a strong global search capability. -e im-
proved strategy can effectively enhance BOA’s ability to
explore the solution space. -e GDEBOA performs best in
most hybrid and composite functions. Specifically, GDE-
BOA achieved satisfactory results in 7 of the 10 hybrid
functions. -e GDEBOA achieved optimal solutions on 5 of
the 10 composite functions. Compared to BOA, GDEBOA
only performed worse on F19. -e analysis of the results for
the hybrid and composite functions shows that GDEBOA

has a good balance of exploitation and exploration capa-
bilities and is able to solve complex optimization problems
effectively.

Convergence speed and convergence accuracy are im-
portant indicators of an algorithm’s performance. Conver-
gence analysis provides information on how the algorithm
has changed over a process of iterations. Figure 2 shows the
average fitness convergence curves for F1–F28 based on the
results of all algorithms solving the test suite 51 times. -e

Generate initial population of NP butterflies
Initialize parameters c, a, p
While t< tmax

For each butterfly do
Calculate the fragrance using equation (1)

End for
Find the best butterfly
For each butterfly Xi do
Generate a random number r from [0,1]
If p< r
Calculate the position Xnew

i using equation (2)
Else
Calculate the position Xnew

i using equation (3)
End if
Calculate the fitness and select the better one from [Xnew

i , Xi]
End for
Update parameter c

End while
Output the best position and fitness

ALGORITHM 1: Butterfly optimization algorithm.

Start

Initialize parameters

Generate initial population of 
NP butterflies

Calculate the mean and Cov
using Eq. (5) and Eq. (6)

Calculate the fragrance using 
Eq. (1)

Generate a random number r
from [0,1]

If p < r 

Calculate the position
Xi

new using Eq. (4)
Calculate the position

Xi
new using Eq. (3)

Calculate the fitness and select the 
better one from [Xi

new, Xi]

Update parameter c

t < tmax

end

NoYes

Yes

No

Figure 1: Flowchart of GEDBOA.

4 Computational Intelligence and Neuroscience



results in Figure 2 show that GDEBOA has a faster con-
vergence speed and better convergence accuracy compared
to other algorithms. Specifically, GDEBOA outperformed all

comparison algorithms in terms of convergence accuracy
and convergence speed on 16 functions. Notably, although
GDEBOA did not perform best on all functions, GDEBOA

Generate initial population of NP butterflies
Initialize parameters c, a, p
While t< tmax

Calculate the mean and Cov using equations (5) and (6)
For each butterfly do
Calculate the fragrance using equation (1)

End for
Find the best butterfly
For each butterfly Xi do
Generate a random number r from [0,1]
If p< r
Calculate the position Xnew

i using equation (4)
Else
Calculate the position Xnew

i using equation (3)
End if
Calculate the fitness and select the better one from [Xnew

i , Xi]
End for
Update parameter c

End while
Output the best position and fitness

ALGORITHM 2: GDEBOA.

Table 1: Descriptions of CEC 2017 test suite.

Type No. Description Fi∗

Unimodal functions 1 Shifted and rotated bent Cigar function 300

Unimodal functions

2 Shifted and rotated Rosenbrock’s function 400
3 Shifted and rotated Rastrigin’s function 500
4 Shifted and rotated expanded Scaffer’s F6 function 600
5 Shifted and rotated Lunacek bi-Rastrigin function 700
6 Shifted and rotated noncontinuous Rastrigin’s function 800
7 Shifted and rotated Levy function 900
8 Shifted and rotated Schwefel’s function 1000

Hybrid functions

9 Hybrid function 1 (N� 3) 1100
10 Hybrid function 2 (N� 3) 1200
11 Hybrid function 3 (N� 3) 1300
12 Hybrid function 4 (N� 4) 1400
13 Hybrid function 5 (N� 4) 1500
14 Hybrid function 6 (N� 4) 1600
15 Hybrid function 6 (N� 5) 1700
16 Hybrid function 6 (N� 5) 1800
17 Hybrid function 6 (N� 5) 1900
18 Hybrid function 6 (N� 6) 2000

Composite functions

19 Composition function 1 (N� 3) 2100
20 Composition function 2 (N� 3) 2200
21 Composition function 3 (N� 4) 2300
22 Composition function 4 (N� 4) 2400
23 Composition function 5 (N� 5) 2500
24 Composition function 6 (N� 5) 2600
25 Composition function 7 (N� 6) 2700
26 Composition function 8 (N� 6) 2800
27 Composition function 9 (N� 3) 2900
28 Composition function 10 (N� 3) 3000
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Table 2: Algorithms used for comparative analysis and their parameter settings.

Algorithm Parameters
AEO No parameters
GWO a � 2 (linearly decreased over iterations)
HHO β � 1.5, E0 ∈ [−1, 1]

AOA Mopmax � 1,Mopmin � 0.2, C � 1, α � 5,Mu � 0.499
SMA z � 0.03
MRFO S � 2
PFA u1 � −1 + 2rand, u2 � −1 + 2rand

Table 3: Statistical results of the nine comparison algorithms for CEC2017.

No. Index AEO GWO HHO AOA SMA MRFO PFA BOA GDEBOA

F1
Mean 9.01E− 04 1.74E+ 04 1.68E+ 03 6.91E+ 04 4.94E− 01 6.61E+ 00 4.66E+ 04 3.82 E+04 7.70E− 06
Std. 1.89E− 03 7.95E+ 03 7.95E+ 02 1.15E+ 04 3.18E− 01 4.23E+ 00 1.22E+ 04 6.97E+ 03 9.81E− 07
Rank 2 6 5 9 3 4 8 7 1

F2
Mean 6.65E+ 01 1.35E+ 02 1.23E+ 02 7.61E+ 03 8.99E+ 01 6.70E+ 01 9.80E+ 01 9.33E+ 03 5.49E+ 01
Std. 3.72E+ 01 2.53E+ 01 3.33E+ 01 2.45E+ 03 5.12E+ 00 4.09E+ 01 1.77E+ 01 1.29E+ 03 2.08E+ 01
Rank 2 7 6 8 4 3 5 9 1

F3
Mean 1.34E+ 02 7.12E+ 01 2.05E+ 02 2.95E+ 02 8.17E+ 01 1.46E+ 02 1.14E+ 02 3.49E+ 02 1.86E+ 02
Std. 3.17E+ 01 2.25E+ 01 3.62E+ 01 3.20E+ 01 1.99E+ 01 4.09E+ 01 3.11E+ 01 2.16E+ 01 1.18E+ 01
Rank 4 1 7 8 2 5 3 9 6

F4
Mean 1.67E+ 01 2.28E+ 00 5.62E+ 01 6.21E+ 01 7.35E− 01 1.05E+ 01 1.47E+ 01 6.63E+ 01 4.03E− 02
Std. 5.63E+ 00 1.21E+ 00 5.92E+ 00 6.71E+ 00 3.21E− 01 1.21E+ 01 4.99E+ 00 5.76E+ 00 2.51E− 01
Rank 6 3 7 8 2 4 5 9 1

F5
Mean 2.75E+ 02 1.31E+ 02 4.98E+ 02 6.00E+ 02 1.18E+ 02 2.12E+ 02 1.34E+ 02 5.57E+ 02 2.09E+ 02
Std. 6.77E+ 01 4.45E+ 01 6.57E+ 01 5.66E+ 01 2.40E+ 01 6.09E+ 01 3.12E+ 01 3.17E+ 01 1.14E+ 01
Rank 6 2 7 9 1 5 3 8 4

F6
Mean 1.13E+ 02 7.52E+ 01 1.40E+ 02 2.25E+ 02 9.39E+ 01 1.27E+ 02 9.97E+ 01 2.93E+ 02 1.83E+ 02
Std. 2.33E+ 01 3.07E+ 01 2.13E+ 01 2.67E+ 01 2.03E+ 01 3.29E+ 01 2.66E+ 01 1.54E+ 01 1.11E+ 01
Rank 4 1 6 8 2 5 3 9 7

F7
Mean 2.49E+ 03 2.05E+ 02 4.69E+ 03 4.50E+ 03 9.95E+ 02 1.77E+ 03 2.28E+ 02 6.82E+ 03 5.35E− 02
Std. 9.16E+ 02 1.62E+ 02 8.28E+ 02 7.24E+ 02 1.22E+ 03 1.02E+ 03 1.83E+ 02 8.69E+ 02 1.74E− 01
Rank 6 2 8 7 4 5 3 9 1

F8
Mean 3.37E+ 03 2.64E+ 03 4.35E+ 03 5.51E+ 03 3.04E+ 03 3.41E+ 03 4.98E+ 03 7.33E+ 03 6.94E+ 03
Std. 5.42E+ 02 5.39E+ 02 7.25E+ 02 5.83E+ 02 5.06E+ 02 6.00E+ 02 9.01E+ 02 2.85E+ 02 2.87E+ 02
Rank 3 1 5 7 2 4 6 9 8

F9
Mean 1.09E+ 02 1.96E+ 02 1.61E+ 02 1.72E+ 03 1.16E+ 02 9.20E+ 01 1.91E+ 02 2.19E+ 03 7.09E+ 01
Std. 3.10E+ 01 4.04E+ 01 4.86E+ 01 9.74E+ 02 4.33E+ 01 3.46E+ 01 5.28E+ 01 6.72E+ 02 2.60E+ 01
Rank 3 7 5 8 4 2 6 9 1

F10
Mean 3.74E+ 04 2.18E+ 07 7.61E+ 06 6.27E+ 09 1.31E+ 06 9.00E+ 04 1.88E+ 06 2.08E+ 09 3.49E+ 02
Std. 3.35E+ 04 1.87E+ 07 4.21E+ 06 2.56E+ 09 1.09E+ 06 7.44E+ 04 1.97E+ 06 7.43E+ 08 2.52E+ 02
Rank 2 7 6 9 4 3 5 8 1

F11
Mean 1.51E+ 04 5.50E+ 05 1.51E+ 05 3.80E+ 04 2.71E+ 04 1.36E+ 04 7.54E+ 04 3.15E+ 08 8.30E+ 01
Std. 1.46E+ 04 3.30E+ 06 9.05E+ 04 1.71E+ 04 2.64E+ 04 1.62E+ 04 4.12E+ 04 2.10E+ 08 2.77E+ 01
Rank 3 8 7 5 4 2 6 9 1

F12
Mean 1.40E+ 02 6.15E+ 04 3.82E+ 04 5.72E+ 04 4.71E+ 04 2.01E+ 03 3.00E+ 04 1.19E+ 05 6.29E+ 01
Std. 4.36E+ 01 9.79E+ 04 4.25E+ 04 4.92E+ 04 2.84E+ 04 2.19E+ 03 2.94E+ 04 7.62E+ 04 7.46E+ 00
Rank 2 8 5 7 6 3 4 9 1

F13
Mean 4.10E+ 03 5.46E+ 04 6.86E+ 04 2.35E+ 04 1.99E+ 04 8.64E+ 03 3.35E+ 04 1.82E+ 06 5.54E+ 01
Std. 4.49E+ 03 5.70E+ 04 4.86E+ 04 1.22E+ 04 1.57E+ 04 9.15E+ 03 1.77E+ 04 1.46E+ 06 1.94E+ 01
Rank 2 7 8 5 4 3 6 9 1

F14
Mean 1.03E+ 03 6.98E+ 02 1.55E+ 03 1.98E+ 03 8.18E+ 02 8.93E+ 02 1.00E+ 03 3.18E+ 03 1.30E+ 03
Std. 3.11E+ 02 2.59E+ 02 3.56E+ 02 5.09E+ 02 2.83E+ 02 2.63E+ 02 2.63E+ 02 4.12E+ 02 1.80E+ 02
Rank 5 1 7 8 2 3 4 9 6

F15
Mean 4.06E+ 02 2.17E+ 02 7.48E+ 02 9.12E+ 02 4.34E+ 02 3.36E+ 02 3.77E+ 02 1.22E+ 03 4.31E+ 02
Std. 1.84E+ 02 1.23E+ 02 2.19E+ 02 2.67E+ 02 1.64E+ 02 2.02E+ 02 1.71E+ 02 2.49E+ 02 7.95E+ 01
Rank 4 1 7 8 6 2 3 9 5

F16
Mean 1.70E+ 04 5.57E+ 05 6.90E+ 05 1.29E+ 06 3.75E+ 05 7.66E+ 04 2.75E+ 05 9.60E+ 05 3.68E+ 01
Std. 1.28E+ 04 7.70E+ 05 8.77E+ 05 1.60E+ 06 3.55E+ 05 6.45E+ 04 2.82E+ 05 6.22E+ 05 4.62E+ 00
Rank 2 6 7 9 5 3 4 8 1
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outperformed BOA on the 27 out of 28 functions, indicating
that the improvement strategy proposed in this paper better
balances exploitation and exploration.

In addition, in order to analyse the distribution char-
acteristics of GDEBOA’s solutions when solving the func-
tions, box diagrams are shown in Figure 3 based on the
results of the nine algorithms solving the CEC2017 test set 51
times independently. For most of the test functions, the
minimum, maximum, and median values obtained by
GDEBOA are the same as the optimal solutions, which
indicates that the solutions obtained by GDEBOA are more
centrally distributed and more stable. Compared to BOA,
GDEBOA solves the function with fewer bad values and a
more concentrated distribution of solutions, indicating that
GDEBOA has achieved a balance between exploitation and
exploration.

Although the superiority of GDEBOAwas demonstrated
by comparisons of the mean and standard deviation, the
literature [49, 50] demonstrates that these comparisons are
not adequate. To further verify the differences between
GDEBOA and other algorithms, the Wilcoxon signed-rank
test was employed. Table 4 shows the results of theWilcoxon

signed-rank test with significance level P � 0.05. -e term
R+ indicates the extent to which GDEBOA outperforms the
comparison algorithm, while R− indicates the opposite. -e
symbol “+/�/−” indicates that GDEBOA performs better
than, similar to, and worse than the comparison algorithm.

From Table 4, GDEBOA outperforms the comparison
algorithm on most functions. Numerically, GDEBOA is
superior to MRFO on 14 functions. GDEBOA outperforms
GWO and PFA on 16 functions. Compared to HHO and
AOA, GDEBOA performs better on 27 and 28 functions. In
particular, GDEBOA offers better solutions than BOA on all
functions, except F9. In general, GDEBOA shows a superior
performance.

5. UAV Route Planning

In this section, the application of GDEBOA to UAV route
planning is discussed in detail. -e UAV route planning
problem aims to minimize the cost of carrying out the
mission, which can be considered as a multi-constraint
optimization problem. -e route planning model is de-
scribed in detail in the following section.

Table 3: Continued.

No. Index AEO GWO HHO AOA SMA MRFO PFA BOA GDEBOA

F17
Mean 1.94E+ 03 2.42E+ 05 1.46E+ 05 1.08E+ 06 3.00E+ 04 8.42E+ 03 4.45E+ 04 4.61E+ 06 2.79E+ 01
Std. 3.07E+ 03 2.98E+ 05 1.42E+ 05 1.39E+ 05 2.11E+ 04 1.07E+ 04 3.91E+ 04 4.06E+ 06 2.57E+ 00
Rank 2 7 6 8 4 3 5 9 1

F18
Mean 3.95E+ 02 3.20E+ 02 6.71E+ 02 6.94E+ 02 3.59E+ 02 3.45E+ 02 4.61E+ 02 7.29E+ 02 4.90E+ 02
Std. 1.62E+ 02 1.03E+ 02 2.01E+ 02 1.54E+ 02 1.59E+ 02 1.33E+ 02 1.52E+ 02 9.88E+ 01 9.82E+ 01
Rank 4 1 7 8 3 2 5 9 6

F19
Mean 3.26E+ 02 2.67E+ 02 4.06E+ 02 4.87E+ 02 2.93E+ 02 3.09E+ 02 2.90E+ 02 1.97E+ 02 3.73E+ 02
Std. 3.26E+ 01 2.45E+ 01 3.51E+ 01 5.23E+ 01 2.17E+ 01 2.95E+ 01 2.62E+ 01 3.01E+ 01 1.21E+ 01
Rank 6 2 8 9 4 5 3 1 7

F20
Mean 1.73E+ 02 1.49E+ 03 2.39E+ 03 5.13E+ 03 2.90E+ 03 1.00E+ 02 2.08E+ 02 4.71E+ 02 1.00E+ 02
Std. 5.11E+ 02 1.42E+ 03 2.37E+ 03 1.21E+ 03 1.36E+ 03 7.40E− 01 7.61E+ 02 7.76E+ 01 2.31E− 04
Rank 3 6 7 9 8 2 4 5 1

F21
Mean 5.41E+ 02 4.18E+ 02 7.05E+ 02 9.68E+ 02 4.35E+ 02 4.95E+ 02 4.85E+ 02 6.97E+ 02 5.28E+ 02
Std. 4.86E+ 01 3.60E+ 01 7.35E+ 01 9.10E+ 01 1.95E+ 01 4.15E+ 01 4.09E+ 01 5.59E+ 01 1.59E+ 01
Rank 6 1 8 9 2 4 3 7 5

F22
Mean 6.41E+ 02 5.02E+ 02 8.26E+ 02 1.14E+ 03 5.30E+ 02 5.65E+ 02 5.24E+ 02 1.10E+ 03 5.89E+ 02
Std. 7.63E+ 01 4.93E+ 01 7.42E+ 01 1.09E+ 02 2.95E+ 01 5.19E+ 01 3.72E+ 01 1.68E+ 02 4.38E+ 01
Rank 6 1 7 9 3 4 2 8 5

F23
Mean 3.94E+ 02 4.29E+ 02 4.11E+ 02 1.67E+ 03 3.88E+ 02 3.89E+ 02 3.97E+ 02 1.75E+ 03 3.87E+ 02
Std. 1.47E+ 01 1.79E+ 01 1.87E+ 01 4.55E+ 02 1.69E+ 00 8.17E+ 00 1.72E+ 01 2.01E+ 02 6.50E− 01
Rank 4 7 6 8 2 3 5 9 1

F24
Mean 2.62E+ 03 1.69E+ 03 3.94E+ 03 6.40E+ 03 1.98E+ 03 2.71E+ 03 2.12E+ 03 5.21E+ 03 2.54E+ 03
Std. 1.10E+ 03 2.41E+ 02 1.10E+ 03 7.22E+ 02 3.42E+ 02 1.05E+ 03 7.10E+ 02 1.49E+ 03 3.47E+ 02
Rank 5 1 7 9 2 6 3 8 4

F25
Mean 5.92E+ 02 5.22E+ 02 6.05E+ 02 1.34E+ 03 5.11E+ 02 5.56E+ 02 5.46E+ 02 8.14E+ 02 5.01E+ 02
Std. 3.05E+ 01 9.78E+ 00 4.00E+ 01 2.14E+ 02 1.17E+ 01 2.78E+ 01 2.85E+ 01 9.81E+ 01 1.52E+ 01
Rank 6 3 7 9 2 5 4 8 1

F26
Mean 3.49E+ 02 5.11E+ 02 4.62E+ 02 2.95E+ 03 4.46E+ 02 3.42E+ 02 4.31E+ 02 3.28E+ 03 3.39E+ 02
Std. 5.89E+ 01 4.00E+ 01 2.60E+ 01 6.15E+ 02 2.89E+ 01 5.27E+ 01 1.90E+ 01 3.99E+ 02 5.28E+ 01
Rank 3 7 6 8 5 2 4 9 1

F27
Mean 9.30E+ 02 6.85E+ 02 1.32E+ 03 2.43E+ 03 7.75E+ 02 8.27E+ 02 1.03E+ 03 3.04E+ 03 9.73E+ 02
Std. 2.09E+ 02 1.14E+ 02 2.56E+ 02 5.22E+ 02 1.83E+ 02 2.09E+ 02 2.35E+ 02 4.72E+ 02 1.13E+ 02
Rank 4 1 7 8 2 3 6 9 5

F28
Mean 9.26E+ 03 3.77E+ 06 1.01E+ 06 1.47E+ 07 1.27E+ 04 7.34E+ 03 4.09E+ 05 3.98E+ 07 2.08E+ 03
Std. 4.95E+ 03 2.70E+ 06 6.08E+ 05 1.01E+ 07 5.29E+ 03 3.49E+ 03 4.56E+ 05 2.31E+ 07 1.46E+ 02
Rank 3 7 6 8 4 2 5 9 1
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5.1. Cost Function. Considering the actual UAV flight sce-
nario, we think that the UAV should reach the target as fast
as possible while being free from threats during the flight.
-e cost function is described as the total of two functions
and two constraints.

min J � ω1 · Costp + ω2 · Costh + η · Penalty,

Penalty � 
n

i�1
ci, n � 1, 2,

ci �
0, Satisfing constraints,

1, No satisfing constraints,

⎧⎨

⎩

(9)

where J is the total cost function, Costp denotes the flight
distance cost, Costh denotes the height cost, ω1 and ω2 are
the weighting factors of two costs that satisfy ω1 + ω2 � 1,
Penalty denotes the number of constraint violations, and η is
the penalty function factor for converting the constrained
optimization problem into an unconstrained optimization
problem.

-e faster the UAV reaches the target, the better it is for
the mission, so the path cost is represented by the sum of the
route segments.

Costp � 
NP−1

i�1
Disi, (10)
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Figure 2: Convergence curves of the GDEBOA and other algorithms for CEC2017.
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where Disi is the length of the ith route segment.
Besides, it is not beneficial for UAV to fly too high to

avoid the threat. -erefore, the UAV needs to maintain low
height flight. -e corresponding height cost function is
described as follows:

Costh � 

NP

i�1
zi, (11)

where zi is the height corresponding to the ith route point.

Due to the limitation of UAV’s maneuverability, the turn
angle and climb angle of the actual flight should be less than
the theoretical maximum.

Constraint1 � max φij



 − φmax ≤ 0,

Constraint2 � max θij



 − θmax ≤ 0,
(12)

where φij and θij are the turn angle and climb angle between
each track segment, respectively, and φmax and θmax are the
corresponding theoretical maximum values.
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Figure 3: Boxplots analysis for CEC2017.
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Table 4: Statistical results of Wilcoxon signed-rank test for CEC2017.
AEO GWO HHO AOA

P-value R+ R− Win P value R+ R− Win P-value R+ R− Win P value R+ R− Win
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
0.071907 855 471 � 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
3.94E− 09 35 1291 − 5.46E – 10 1 1325 − 0.001534 1001 325 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.43E− 08 1243 83 + 3.94E – 09 35 1291 − 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 7.35E – 10 6 1320 − 5.46E− 10 1 1325 − 6.93E− 10 1321 5 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 5.15E – 10 0 1326 − 5.15E− 10 0 1326 − 5.15E− 10 0 1326 −

3.96E− 07 1204 122 + 5.15E – 10 1326 0 + 1.40E− 09 1309 17 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
7.35E− 10 1320 6 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
6.52E− 05 237 1089 − 1.05E – 09 12 1314 − 0.000153 1067 259 + 1.42E− 08 1268 58 +
0.276894 547 779 � 2.65E – 09 28 1298 − 2.97E− 09 1296 30 + 6.93E− 10 1321 5 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
0.004923 363 963 − 5.53E – 09 41 1285 − 2.11E− 06 1169 157 + 9.14E− 09 1276 50 +
1.27E− 08 56 1270 − 5.15E – 10 0 1326 − 8.61E− 07 1188 138 + 5.15E− 10 1326 0 +
0.205722 798 528 � 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
0.264661 782 544 � 6.15E – 10 3 1323 − 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
0.000331 1046 280 + 3.37E – 08 74 1252 − 5.15−10 1326 0 + 5.15E− 10 1326 0 +
0.006378 954 372 + 5.15E – 10 1326 0 + 6.93E− 10 1321 5 + 5.15E− 10 1326 0 +
0.035759 887 439 + 4.94E – 09 39 1287 − 1.53E− 07 1223 103 + 5.15E− 10 1326 0 +
5.15E−10 1326 0 + 3.03E – 08 1254 72 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
0.285261 777 549 � 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15 E− 10 1326 0 +
0.205722 528 798 � 8.77E – 10 9 1317 − 9.66E− 09 1275 51 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +

16/6/6 16/0/12 26/0/2 27/0/1
SMA MRFO PFA BOA

P-value R+ R− Win P value R+ R− Win P value R+ R− Win P value R+ R− Win
5.15E− 10 1326 0 + 5.15E−10 1326 0 + 5.15E−10 1326 0 + 5.15E−10 1326 0 +
5.15E− 10 1326 0 + 0.100931 838 488 + 5.15E−10 1326 0 + 5.15E−10 1326 0 +
5.15E− 10 0 1326 − 3.25E – 07 118 1208 − 5.46E− 10 1 1325 − 5.15E− 10 1326 0 +
7.74E− 09 1279 47 + 8.77E – 10 1317 9 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 0.880784 679 647 � 6.93E− 10 5 1321 − 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 1.18E – 09 14 1312 − 5.15E− 10 0 1326 − 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 5.15E – 10 0 1326 − 5.15E− 10 0 1326 − 8.25E− 08 1235 91 +
1.26E− 06 1180 146 + 0.006562 953 373 + 5.46E− 10 1325 1 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 6.15E – 10 1323 3 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.80E – 10 1324 2 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
2.23E− 09 25 1301 − 4.42E – 09 37 1289 − 1.69E− 07 105 1221 − 5.15E− 10 1326 0 +
0.785752 692 634 � 0.004378 359 967 − 0.052342 456 870 � 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.46E – 10 1325 1 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +
1.49E− 05 201 1125 − 8.49E – 06 188 1138 − 0.174098 518 808 � 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 1.05E – 09 12 1314 − 5.15E− 10 0 1326 − 5.15E− 10 0 1326 −

5.15E− 10 1326 0 + 1.31E – 05 198 1128 − 7.32E− 09 1280 46 + 5.15E− 10 1326 0 +
5.15E− 10 0 1326 − 3.87E – 05 224 1102 − 1.25E− 07 99 1227 − 6.93E− 10 1321 5 +
1.86E− 08 63 1263 − 0.002316 338 988 − 4.64E− 08 80 1246 − 5.15E− 10 1326 0 +
9.93E− 07 1185 141 + 0.004509 966 360 + 2.94E− 07 1210 116 + 5.15E− 10 1326 0 +
1.08E− 08 53 1273 − 0.055852 867 459 � 4.37E− 05 227 1099 − 8.77E− 10 1317 9 +
0.00044 1038 288 + 6.53E – 10 1322 4 + 9.87E− 10 1315 11 + 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 0.425599 748 578 � 3.52E− 09 1293 33 + 5.15E− 10 1326 0 +
7.43E− 08 89 1237 − 7.63E – 05 241 1085 − 0.119709 829 497 � 5.15E− 10 1326 0 +
5.15E− 10 1326 0 + 5.15E – 10 1326 0 + 5.15E− 10 1326 0 + 5.15E− 10 1326 0 +

16/1/11 14/3/11 16/3/9 27/0/1
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Table 5: -reat source settings.

-reat Type Position (km) Radius (km) Height
-reat 1 Rader (35, 20) 13 2.8
-reat 2 Missile (35, 52) 8 2.9
-reat 3 Artillery (52, 72) 8 3.0
-reat 4 Missile (63, 45) 10.7 2.9
-reat 5 Rader (78, 78) 9 3.1
-reat 6 Artillery (87, 45) 7 3.0
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Figure 4: -e best path of each algorithm: (a) path in three-dimensional space; (b) path in two-dimensional space.

Table 6: Statistical results of the Friedman test.

Algorithm Mean Bset Worst Std. Success (%)
BOA 9.25E+ 03 2.11E+ 02 4.03E+ 04 1.03E+ 04 43.33
MRFO 6.59E+ 03 2.20E+ 02 3.03E+ 04 8.51E+ 03 56.67
SMA 2.91E+ 03 2.17E+ 02 2.03E+ 04 6.41E+ 03 83.33
GDEBOA 2.22E+ 02 1.94E+ 02 2.25E+ 02 5.41E+ 00 100.00
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Figure 5: Convergence curves for four algorithms.
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5.2. Simulation Experiment. In this subsection, we will solve
the route planning model using GDEBOA and compare the
results with BOA, MRFO, and SMA. All the programs were
written using MATLAB R2016b and run on a Windows 10
platform with AMD R7 4700U 16GB. For fair comparison,
the parameters of each algorithm are set according to the
original literature. -e maximum iteration is 300, the
number of populations is 50, and each algorithm is executed
30 times independently. -e location of the threat is shown
in Table 5. -e best paths generated by MRFO, HHO, BOA,
and GDEBOA are shown in Figure 4. -e best values, mean,
standard deviation, and success rate for 30 independent runs
are shown in Table 6.

It is clear from analyzing the test results that all algo-
rithms can give a safe flight route. -is shows that the route
planning model proposed in this paper is feasible. -e path
found by these algorithms is different as can be seen in
Figure 4. Obviously, GDEBOA can find a safe path at lower
cost. Also, GDEBOA can consistently find safe flight paths in
30 tests, while there are failures in the other algorithms. -is
indicates that GDEBOA is superior to the other three al-
gorithms. -e average cost convergence curve is plotted
according to the statistical results, as shown in Figure 5.
GDEBOA has faster convergence speed and better con-
vergence accuracy.

6. Conclusions

In this paper, we propose a variant of BOA using a distri-
bution estimation strategy, called GDEBOA, to solve the
global optimization problem. -e performance of BOA is
enhanced by using the distribution estimation strategy to
sample the evolutionary information of the dominant
population and to guide the direction of individual evolu-
tion. To evaluate the effectiveness of the improved strategy
and the superiority of GDEBOA, it was validated using the
CEC2017 test suite. It was also compared with seven ad-
vanced algorithms through numerical analysis, convergence
analysis, stability analysis, and statistical tests. -e simula-
tion results show that GDEBOA balances exploitation and
exploration and is competitive with other algorithms. In
addition, GDEBOA is applied to solve the UAV route
planning problem. Simulation results show that GDEBOA
can stably find paths with better quality, demonstrating the
ability of GDEBOA to solve real-world optimization
problems. Of course, there is still potential for enhancement
of GDEBOA. -e calculation of the covariance matrix leads
to an increase in the computational cost of the algorithm.
-erefore, how to reduce the cost of computing while
maintaining performance is something we need to inves-
tigate further.

In future work, we plan to further apply GDEBOA to
cooperative multi-UAV route planning and real-time route
planning. Moreover, we plan to develop the multi-objective
and binary versions of GDEBOA to solve optimization
problems in other fields.
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[50] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 Special
Session on Real Parameter Optimization,” Journal of Heu-
ristics, vol. 15, no. 6, 2009.

14 Computational Intelligence and Neuroscience


