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In the Panax notoginseng quality intelligent management system, the big roots and fibrous roots cannot be cut automatically
because the machine cannot distinguish the taproot, big roots, and fibrous roots of Panax notoginseng, resulting in the automatic
cutting mechanism unable to obtain the control trajectory coordinate reference of the tool feed. To solve this problem, this paper
proposes a visual optimal network model detection method, which uses the image detection method of marking anchor frames to
improve the detection accuracy. A variety of deep learning network models are modified by the TensorFlow framework, and the
best training model is optimized by comparing the results of training, testing, and verification data. .is model is used to
automatically identify the taproots and provide the control trajectory coordinate reference for the actuator that cuts big roots and
fibrous roots automatically. .e experimental results show that the optimal network model studied in this paper is effective and
accurate in identifying the taproots of Panax notoginseng.

1. Introduction

.e Panax notoginseng industry is an important component
of Yunnan province in China. .e Yunnan Panax noto-
ginseng processing plant needs to process a big amount of
Panax notoginseng raw materials in harvest season. .ese
raw materials will be powdered or sliced to prepare them for
use in subsequent pharmaceuticals. However, there is an
important and critical step in the process of making Panax
notoginseng powder or slicing is to cut big roots and fibrous
roots. .e harvested Panax notoginseng is divided into three
parts: the taproot, the big roots, and the fibrous roots; Panax
notoginseng is shown in Figure 1. Although the effective
ingredients contained in the three parts are the same, the
saponin content of each part is quite different. .erefore,
adding a big proportion of big roots and fibrous roots will
reduce the effective content of saponin and affect the sub-
sequent pharmaceuticals. At present, the big roots and fi-
brous roots of Panax notoginseng are cut by manual visual
inspection. Due to the different shapes and sizes of Panax

notoginseng, human visual inspection will have different
results because everyone has different criteria for judging the
big roots and fibrous roots of Panax notoginseng, so the
standards for cutting are different. Because long hours of
manual work will cause visual fatigue, there will be different
judgment standards at different times. .ese different
judgment standards will cause differences in shearing, which
will affect the subsequent pharmaceuticals made form,
Panax notoginseng.

Target detection aims to find all objects of interest through
the computer, including classifying the objects and determining
the location of the objects [1]. It could not only effectively reduce
the interference of human factors but also realize stable iden-
tification and high-precision detection. .erefore, target de-
tection is widely used in industry and agriculture [2]. Common
target detection is divided into traditional target detection and
target detection based on deep learning [3].

Traditional target detection mainly uses artificial selec-
tion of features to detect objects [4]. Detection is usually
divided into three stages. First, a certain part of the image is
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determined as a candidate area through a multiscale sliding
window, then the features of the candidate area are extracted
by the constructed features, and the classifier is used for
classification [5–8]. Traditional target detection could better
realize target recognition in which the image was in specific
scenes and fewer categories [9]. However, if the external
environment, such as the lighting changes, it is difficult to
achieve a good detection effect, since it is easy to miss or
incorrectly detect. At the same time, traditional target de-
tection will also generate a large number of candidate boxes,
which increases the computational overhead, and the ac-
curacy and speed of detection cannot meet the requirements
of practical industrial applications [10, 11].

Viola et al. [12, 13] used the Viola Jones detector to
achieve real-time face detection for the first time by a direct
detection method without any constraints at the time, but it
required more computational ability than available at that
time. Dalal and Triggs [14] used a directional gradient
histogram feature descriptor that had a superior recognition
ability for pedestrian detection, However, this algorithm is
prone tomissed detection when dealing with occlusion, large
posture changes, and target angle change [15]. Felzenszwalb
et al. [16] proposed a model based on variable parts to detect
the target object through the ideas of an improved histogram
of gradient (HOG) feature and support vector machine
(SVM) classifier. .is detection method has a certain ro-
bustness for deformed targets, but the method has poor
stability for large-scale rotating targets and requires an ar-
tificial design of different excitation templates for detection.

Target detection based on deep learning has achieved
great success in the field of detection [17]. Compared with
traditional target detection, this algorithm based on deep
learning could not only use fewer data sets to obtain high-
precision detection results but also greatly improve the speed
of target detection [18]. .erefore, it is widely used in in-
dustry and agriculture.

Aiming at the fact that currently the big roots and fibrous
roots of Panax notoginseng are cut manually, this article
proposed a visual inspection method for developing an
optimal model of identifying Panax notoginseng taproots.
.is method could improve the accuracy and stably identify
the taproots of Panax notoginseng and be prepared for the
subsequent cutting of the big roots and fibrous roots of
Panax notoginseng bymachines. To improve the stability and
reliability of target detection and to meet the need for rapid
detection in industry, this paper uses the bounding box

method to mark the anchor frame to detect the target. To
reduce the number of training samples, this article applies
LabelImg mapping software to mark the target features of
limited samples and rely on the TensorFlow framework to
modify a variety of different deep learning network models.
By comparing the training, testing, and verification per-
formance of different network models, this article selects the
optimal network model to detect the taproots of Panax
notoginseng.

2. Detection of the Taproot Target of
Panax notoginseng

Visual detection of the Panax notoginseng taproots involved
five steps: image acquisition of Panax notoginseng, database
construction, network model training, model performance
comparison, and Panax notoginseng taproot detection. .e
specific implementation process is shown in Figure 2.

2.1. Image Acquisition of Panax notoginseng. .e taproot
detection of Panax notoginseng requires the collection of
Panax notoginseng images. .e acquisition tool used was
CMOS industrial camera (Basler ace-acA2500-14gc, F1.4-
F16), which has a higher acquisition frequency and acqui-
sition speed. .e use of a vision and motion module in
LabVIEW to collect images of Panax notoginseng can fully
meet the requirements of industrial collection [19]. .e
flowchart of image acquisition is shown in Figure 3..rough
the collection results, this paper found that although the use
of higher resolution provided a wider field of view in the
image, it required a larger storage space and took more time
for image collection and processing. .e low image reso-
lution reduced the field of view of the image, but it saved the
storage space of the image and reduced the image collection
and processing time. Because the detection of the taproot of
Panax notoginseng was a large target detection, the recog-
nition of Panax notoginseng taproots does not require higher
acquisition speed and higher resolution in actual industrial
applications, so this article sets the acquisition resolution of
the industrial camera at 1156× 868 and sets the rate of image
acquisition to 1 frame/sec.

2.2. Dataset Construction. It was necessary to construct a
dataset of Panax notoginseng images before using detection
on the taproot. In this paper, we selected Panax notoginseng
images that contained only big root and fibrous root images
from the collected images to construct the entire image
dataset. .e taproots of Panax notoginseng images have
different directions, positions, shapes, and backgrounds..e
big root and fibrous root images also had different shapes
and backgrounds. .is article used a random sampling
method to divide the Panax notoginseng image dataset into a
training set, test set, and validation set according to a
certain proportion so that the samples were more random
and extensive. .is article also used the LabelImg plotting
tool to anchor the taproot in the training set and test set of
Panax notoginseng. We integrated the files generated after
the anchor frame with the corresponding image files to
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Figure 1: Panax notoginseng.
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jointly construct the dataset. .e process of constructing the
dataset is shown in Figure 4.

2.3. Network Model Training. At present, the big roots and
fibrous roots of Panax notoginseng are still mainly done by
manual cutting. .e shape of the roots are complicated, dif-
ferent workers have different standards for judging big roots
during cutting, and the same workers also have different

standards for cutting in different time periods during the day.
Target detection based on deep learning can solve the problem
of inconsistent manual detection standards, and at the same
time, it can avoid the situation of incorrect detection or missed
detection of traditional target detection in a complex back-
ground with multiple features. Considering the practical ap-
plications of engineering, this article used the bounding box
method to mark the anchor box to identify the taproot of
Panax notoginseng, wrote the entire deep learning model

Image acquisition Data set construction Model training 

Performance evaluation Taproot detection

Figure 2: Determination of the taproot of Panax notoginseng.
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Figure 3: Image acquisition flowchart.
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framework in Python, and used the constructed Panax noto-
ginseng dataset. A public deep learning model downloaded
from the Internet was used as a pretraining model, and the
taproot recognition of Panax notoginseng was realized by
modifying the parameters of the training model. .e selected
network model includes single-stage SSD [20] and two-stage
faster-RCNN [21] as the network pretrainingmodel. Under the
TensorFlow framework, different network models were trained
and tested, the average test accuracy between different optimal
models was verified, and the optimal network that meets the
taproot detection requirements was selected. .e verification
formula used in this article is shown in formulas (1) and (2),
and the SSD model skeleton [22] used to train detection of the
Panax notoginseng taproot is shown in Figure 5, whereN is the
total number of sheets in the training set and test set, N∈ (1, 2,
. . ., N), PN is the detection accuracy of the model, AVPE is the
average detection accuracy of the model, TPN is the number of
Panax notoginseng taproots correctly detected, and FPN is the
number of background detections as the taproot of Panax
notoginseng:

PN �
TPN

TPN + FPN

, (1)

AVPE �
1
N



N

1
P1, P2, , , PN( . (2)

2.4. Model Performance Comparison. .is paper used dif-
ferent deep learning network models to detect the taproot
of Panax notoginseng. However, there are obvious differ-
ences in the detection effects of different network models,
and the average detection accuracy could not effectively
select the optimal network model. To better realize the
comparison of various network models and select the
optimal network model, this paper proposed a compre-
hensive performance verification formula that combines
average accuracy, accuracy, missed detection rate, and false
detection rate for deep learning model performance
evaluation and comparison. .e verification formula is
shown in (6), where Hp is the number of the taproots of
Panax notoginseng predicted by the deep learning model,
Ht is the sample size of the real Panax notoginseng taproot,
Hl is the number of missed detections of the taproot of
Panax notoginseng, and Hf is the number of errors during
the detection. In this paper, the determined deep learning
model was verified, and the performance of different
models was evaluated on the validation results until the
optimal network model was selected:

Pa �
Hp

Ht

, (3)

Pl �
Hl

Ht

, (4)

Pf �
Hf

Ht

, (5)

CPE �
1
N



N

1
mean AVPE + Pa(  − Pl − Pf . (6)

2.5. 4e Taproot Detection of Panax notoginseng. Panax
notoginseng taproot detection was to perform image de-
tection on the verification set according to the optimal
model trained in deep learning..e hardware 3D diagram of
detection is shown in Figure 6. .e physical platform dia-
gram is shown in Figure 7. .e hardware mainly includes
industrial cameras, industrial tablet computers, racks, and
test platforms. Among them, the test platform was used, and
the industrial tablet computer was used to embed the op-
timal network model to realize the detection and result
display of the images collected by the industrial camera. .e
detection flowchart is shown in Figure 8, and the detection
result is shown in Figure 9.

3. Recognition Results and Analysis of the
Taproot of Panax Notoginseng

3.1. Experimental Environment and Configuration. For the
effectiveness of the visual inspection of the taproot of
Panax notoginseng, 175 images with multiple back-
grounds and multiple shapes containing the taproot and
25 images with only big roots and fibrous roots were
selected from the 1685 collected images. .e 200 images
were divided into a training set, test set, and validation set
at a ratio of 7 : 2:1 by random sampling. .e experimental
platform environment is 2(Intel (R) Core(TM)i7-9700F
CPU@3.00 GHz, GPU GeForce RTX 2070S, 32 GB
memory, Windows7-64bit. .e deep learning network
model used two frameworks: SSD and Faster-RCNN
under TensorFlow. .e 4 network models included
SSD_inception_v2_coco, SSD _ Lite _ mobile-
net_v2_coco, Faster-RCNN-Resnet50, and Faster-RCNN-
Resnet101. We modified and trained the pretraining
models of these 4 network models; the results of training
used loss, AVPE, CPE, Pa, Pl, and Pf to compare the
qualitative and quantitative analysis of the entire model.

3.2.Model Training andVerification. .e results of training
and verification of the four network models were
batchSize � 4, learningRate � 0.0001, the number of iter-
ations was 20,000, and the other parameters were
defaulted. .e generated iteration number and loss value
curve are shown in Figure 10. It can be seen from the
figure that the loss value of SSD_inception_v2_coco was
the largest at the beginning, and the loss values of RCNN-
Resnet101 and Faster-RCNN-Resnet50 were the smallest.
However, after 1000 iterations of SSD_ inception_
v2_coco, the loss value decreased, but the model loss
function curve was in a state of nonconvergence. At the
same time, the loss function curve of the SSD _ Lite _
mobilenet _ v2 _coco model was also in a state of non-
convergence, and the loss functions of SSD _ Lite _
mobilenet _ v2 _ coco and SSD_ inception _v2_coco were
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Figure 6: Hardware 3D diagram of taproot detection.
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always higher than the function value of Faster-RCNN.
.e two model networks of Faster-RCNN had relatively
small loss values at the beginning, as shown in Figure 11.
However, compared with Faster-RCNN-Resnet50, the
loss value of Faster-RCNN-Resnet101 was generally lower
than that of Faster-RCNN-Resnet50. Although the loss
value of Faster-RCNN-Resnet50 was lower than Faster-
RCNN-Resnet101 when the number of iterations was
18000 times, the loss value of Faster-RCNN-Resnet101
was lower afterward. .erefore, compared with the four
network models, Faster-RCNN-Resnet101 had a better
modification effect. .e comparison and verification of
the optimal model among the four training models is
shown in Figure 12. When the number of iterations was
19,811, the Faster-RCNN-Resnet101 model could detect
the optimal verification result with an average detection
rate of 99.99% for the taproot. .e Faster-RCNN-
Resnet50 model could detect the taproot with an average

detection accuracy of 99.90% when the number of iter-
ations was 17,795. When the number of iterations of SSD _
Lite _ mobilenet_v2_coco was 17987, the average detec-
tion accuracy of the taproot of the optimal model was
98.36%. .e optimal model of SSD _ inception _v2 _coco
had a poor average detection rate for the taproot, which
was only 90.25%. .e comprehensive results show that
using the Panax notoginseng dataset, Faster-RCNN-
Resnet101 was more suitable for target detection than the
other models [23].

3.3.Model Testing andComparison. To effectively verify the
universality of the four deep learning models for the
detection of the taproot of Panax notoginseng, in this
paper, 18 images from the Panax notoginseng validation
set were used to compare and analyze the performance of
the four optimal performance models. Part of the

Figure 7: Physical detection platform.
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Figure 8: Flowchart of taproot detection of Panax notoginseng.
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qualitative analysis is shown in Figure 13. By comparing
and analyzing the results, it could be seen that the four
network models of SSD_inception_v2_coco, SSD _ Lite _
mobilenet _ v2 _coco, Faster-RCNN-Resnet50, and
Faster-RCNN-Resnet101 can detect the taproot of Panax
notoginseng, but the detection of SSD_inception_v2_coco
was unstable, and the detection of some complex multi-
root images would be missed. We listed all of the model
detection results in the first row in Figure 13 and observed
the categories and detection frame positions of the Panax

notoginseng taproots by the four models. .e enumeration
diagram is shown in Figure 14. .rough observation, it
was found that Faster-RCNN-Resnet101 can stably detect
the taproot target. .e SSD_Lite_mobilenet_v2_coco and
Faster-RCNN-Resnet50 models can also detect all taproot
images. However, for complex Panax notoginseng images,
there would be a problem of detecting multiple frames.
Further qualitative comparison of some of the verification
images in the Panax notoginseng verification set was
carried out to achieve the accuracy comparison of the
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(1032, 258)

Figure 9: An example of taproot detection of Panax notoginseng.
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bounding box. Figure 15 shows the comparison result of a
certain area randomly selected in this paper. .e frame
selection accuracy of the four models would have certain
differences. Taking the second row in Figure 13 as an
example, Faster-RCNN-Resnet101 could detect sur-
rounding targets other than the taproot of Panax noto-
ginseng, and the detection confidence was 100%. Faster-
RCNN-Resnet50 could also detect the taproot target, but
it could not be detected correctly, and the detection ac-
curacy rate was also lower than that of Faster-RCNN-

Resnet101. .e two models SSD_Lite_mobilenet_v2_coco
and SSD _ inception _ v2_coco could be detected cor-
rectly, but the detection confidence was lower than that of
Faster-RCNN-Resnet101. .e quantitative comparison
results in Table 1 also show that Faster-RCNN-Resnet101
had a stable and good detection effect on the taproot of
Panax notoginseng. .erefore, by comparing the results, it
is concluded that Faster-RCNN-Resnet101 was more
suitable for the visual inspection of the taproot of Panax
notoginseng.
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Figure 11: Faster-RCNN loss function curve.
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Figure 13: Comparison results of partial qualitative results of the validation of the four optimal models. From left to right, raw image, GT,
Faster-RCNN-Resnet50, Faster-RCNN-Resnet101, SSD_INCPTION_V2_COCO, and SSD_LITE_MOBILEET_V2_COCO.
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Figure 14: Comparison result of row 1 in Figure 13.

Figure 15: Confidence comparison of row 2 in Figure 13.
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4. Conclusion

To avoid the defects of manual visual inspection and realize
the taproot target recognition of Panax notoginseng. .is
article constructed an optimal model based on deep learning
to detect the taproot target, relying on TensorFlow various
deep learning network models for modification and training,
and used the proposed optimization strategy to compare the
training, testing, and verification of different network
models to select the optimal network model, realizing the
detection of the taproot target of Panax notoginseng. .e
experimental results showed that, by modifying and training
different network models and selecting the optimal network
model, the detection efficiency and accuracy of the target
could be effectively improved, and the detection accuracy of
the optimal model could reach 99.99%. However, this article
does not give the identified taproot position parameters to
the controller. .erefore, in future work, we can continue to
modify the parameters of the optimal network model and
transmit the taproot coordinates to the controller so that the
actuator can accurately cut the big roots and fibrous roots of
Panax notoginseng.
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