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Colorectal cancer originates from adenomatous polyps. Adenomatous polyps start out as benign, but over time they can becomemalignant
and even lead to complications and death which will spread to adherent and surrounding organs over time, such as lymph nodes, liver, or
lungs, eventually leading to complications and death. Factors such as operator’s experience shortage and visual fatiguewill directly affect the
diagnostic accuracy of colonoscopy. To relieve the pressure onmedical imaging personnel, this paper proposed a networkmodel for colonic
polyp detection using colonoscopy images. Considering the unnoticeable surface texture of colonic polyps, this paper designed a channel
information interaction perception (CIIP) module. Based on this module, an information interaction perception network (IIP-Net) is
proposed. In order to improve the accuracy of classification and reduce the cost of calculation, the network used three classifiers for
classification: fully connected (FC) structure, global average pooling fully connected (GAP-FC) structure, and convolution global average
pooling (C-GAP) structure. We evaluated the performance of IIP-Net by randomly selecting colonoscopy images from a gastroscopy
database..e experimental results showed that the overall accuracy of IIP-NET54-GAP-FCmodule is 99.59%, and the accuracy of colonic
polyp is 99.40%. By contrast, our IIP-NET54-GAP-FC performed extremely well.

1. Introduction

Along with a rapid development of artificial intelligence (AI)
in the medical industry, its powerful capability in compu-
tation and deep learning ability have successfully attracted
the attention of medical experts around the world. As an
important field of AI medical image recognition application,
digestive endoscopy has progressively received more at-
tention as well. .e incidence rate of colorectal cancer ranks
the third among malignancies in the world [1], and the
mortality rate ranks the second [2]. .e research shows that
the risk of cancer can be greatly reduced if pathological
polyps in colon are found and removed in time before
cancerization. .erefore, computer-aided diagnosis (CAD)
of colonoscopy has always been one of hotspots in AI
research.

As artificial intelligence is developing rapidly, the ap-
plication range of deep convolutional neural networks
(CNN) is broadening. CNNs have made huge breakthroughs

in image classification [3, 4], semantic segmentation [5], and
super-resolution reconstruction [6]. For example, Wang
et al. [7] introduced the application and development of
CNNs. Benefited from a rapid growth of graphics processing
unit, the performance of computer-aided inspection systems
has also been further improved. Based on the image clas-
sification algorithms using CNNs, the diagnostic efficiency
of colonic polyps can be further improved. Wang et al. [8]
proposed an improved deep neural network to detect colonic
polyp images. .e DNN-CAD model constructed by Byrne
et al. [9] can output the histological prediction results almost
in real time. Mesejo et al. [10] designed and developed a
framework that combined machine learning and computer
vision algorithms to perform virtual biopsies of proliferative
polyps, serrated adenomas, and adenomas. Renner et al. [11]
used deep learning combined with transfer learning to train
and verify the DNN-CAD model, achieving a high accuracy
rate. Komeda et al. [12] designed the CNN-CAD system to
identify the nature of polyps in vitro, achieving a high
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accuracy rate. In 2003, in the experiment of polyp image
recognition under white light colonoscopy, the wavelet
transform was used as an image classifier for the first time
[13, 14]. Since then, various design ideas and innovative
techniques were applied to the diagnostic algorithm. Most of
the newly proposed network models used public polyp
databases [15–18], but the categories and numbers of images
in these databases are insufficient. At present, there are three
main types of methods for extracting polyp features:
handcrafted, end-to-end learning, and hybrid approach [19].
.e handcrafted is mainly to obtain the standby boundary
information of polyps by using the low-level image pro-
cessing method and then to define the unique boundary
features of polyps with the obtained information. For ex-
ample, Zhu et al. [20] analyzed the detected boundary
curvature. Kang and Doraiswami [21] looked for elliptical
shapes associated with polyps. Hwang et al. [22] mainly
studied the boundary curvature and related shapes of colonic
polyps. .e end-to-end learning method uses polyp texture
and color information for feature extraction. For example,
Gross et al. [23] proposed the use of local binary patterns
(LBP). Ribeiro et al. [24] used deep learning methods to
detect polyps. .e hybrid integrates the advantages of
handcrafted and rnd-to-end learning. For example, Taj-
bakhsh et al. [25] integrated border, texture, and color in-
formation to further improve the detection efficiency.

.e training of CNN needs a large amount of tagged
data, but the dataset of pathological images is very scarce.
Transfer learning and data enhancement methods can ef-
fectively expand the data scale of colon polyp pathological
images. .e surface texture information of colonic polyps is
not obvious, and complex folds on the colon or food residues
in the intestinal cavity can be misdiagnosed as colonic
polyps. .e above factors require higher sensitivity in the
detection algorithm. In addition, colonic polyps are of
different sizes and their locations are widely distributed.
.ese factors will sabotage the performance of the model
and further increase the difficulty of training the model. To
solve above problems, this paper designed a channel in-
formation interaction perception module (CIIP). Based on
this module, an information interaction perception network
(IIP-Net) was proposed and verified on the 3-class datasets.
On the premise of considering the channel attention
mechanism, CIIP combined the attention features of the
previous module with the currently extracted attention
features. .e operation ensures the attention information
flows in the feedforward way among the various modules.
Compared with other models, the proposed network model
significantly improves the accuracy of classification and
recognition of colonic polyp images.

2. Proposed Network

2.1. CIIP Module and IIP-Nets. In CNN, the features
extracted by each convolutional layer are different. .e
shallow convolution layer extracts abstract features such as
target edges and colors, and the deep convolution layer
extracts specific features such as target contours and shapes.
Although deeper networks can extract richer features, there

will be problems such as information loss and gradient
degradation during feature extraction. Considering the
surface texture information of colonic polyps is not obvious,
it will lead to model deviation and overfitting, resulting in
reduced performance and generalization. .erefore, this
paper designed a channel information interaction percep-
tion (CIIP) module. Its structure is shown in Figure 1, where
“Conv1” and “Conv3” represent 1 × 1 and 3 × 3 convolution
layer, respectively. “GAP” represents the global average
pooling layer. “FC” represents the linear transformation.
“LayerNorm” represents the normalized processing of the
layer. “Att1” represents the weight value of the attention
channel of the previous module. “Att” represents the weight
value of the attention channel of the current module.
“ReLU” and “Sigmoid” both represent the activation
function. “⊕” represents the feature matrix is added by bit.
“⊗ ” represents the feature matrix is multiplied by bit.
“Conv” represents a composite structure including “con-
volution,” “layer normalization,” and “activation function.”

.e CIIP module contains convolution kernels of var-
ious sizes. In the net, whether the “Att1” exists is judged
firstly, which means to determine whether the previous
module feeds back the weight value of the attention channel.
.en, we select the first branch or the second branch
according to the judgment result. .e first branch includes a
convolutional short connection layer and a global average
pooling layer. .e second branch includes a convolutional
short connection layer, a global average pooling layer, a full
connection layer, and a convolutional layer. .e function of
the convolutional short connection layer of the module is to
increase the depth of the network while reducing infor-
mation loss. .e convolution feature map output by the
previous convolution module is input into the convolution
short connection layer to generate feature map X, where
X ∈ RC×H×W. .e first “Conv1” is used to reduce the di-
mensionality and the second “Conv1” is used to increase the
dimensionality..emain purpose of this operation is to save
calculation time and improve the nonlinear learning ability
of the network, without affecting the final model accuracy.

For the first CIIP module, according to the judgment
result, the previous module does not obtain the weight value
of attention channel “Att1.” .e feature map passes through
the first branch. Firstly, the convolution feature map output
by the previous convolution module is input into the
convolutional short connection layer of the CIIP module to
obtain the feature map X. Secondly, the feature map X is
input into the GAP layer. .en, the resulting pooling feature
is activated through Sigmoid. Finally, the “Output” is made
up of two parts:

(1) .e output of the convolutional short connection
layer and the attention map are multiplied by bits,
and the output features obtained can be expressed as

X′ � S[GAP(X)]⊗X. (1)

(2) .e feature extracted through the GAP layer and the
attention map is multiplied by bits, and the attention
channel weight value obtained can be expressed as

2 Computational Intelligence and Neuroscience



Does Att exist?

Input2

Att

Att

NO YES

Input

Input Input

Conv1

Conv3

Conv1

Output

Conv1

Conv3

Conv1

Conv

Output

FC

LayerNorm

ReLU

GAP GAP

Sigmoid

Sigmoid

Input2

Output1

Att1

Output1

Figure 1: .e structure of CIIP module.
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Att � S[GAP(X)]⊗GAP(X). (2)

For the second and third CIIP modules, according to the
judgment result, the forward feedback of the previous
module has obtained the attention channel weight value
“Att1.” .e feature map passes through the second branch.
First, for the feature map X generated by the convolutional
short connection layer, pass it through a GAP layer to obtain
pooling feature. For the attention channel weight value
“Att1” obtained by the feedback of the previous module, pass
it through a FC layer (followed by the “LayerNorm” and
“ReLU”) to match the channel size..en, the pooling feature
that integrates the global spatial information and the at-
tention channel weight value through channel adaptive
matching are stitched bitwise to obtain the convolutional
feature. .en, pass it through the “conv” and “sigmoid.”
Finally, the “Output” is made up of two parts:

(1) .e output of the convolutional short connection
layer and the attention map are multiplied by bits,
and the output features obtained can be expressed as

X′ � S Conv[[δ[LN[ℓ(Att)]]⊕GAP(X)]]{ }⊗X. (3)

(2) .e feature extracted through the GAP layer and the
attention map is multiplied by bits, and the attention
channel weight value obtained can be expressed as

Att � S Conv[[δ[LN[ℓ(Att1)]]⊕GAP(X)]]{ }⊗GAP(X),

(4)

where “ℓ” stands for “FC” linear transformation, “LN”
means “LayerNorm” layer normalization processing, “δ”
stands for the “ReLU” activation function, and “S” stands for
the “Sigmoid” activation function.

In this way, the previous module features and the cur-
rently extracted features are merged. .e operation ensures
that the information flows in a feedforward way between
each module, and we enhance the feature extraction ability
of the network. .is is shown in Figure 2.

Based on the CIIP module, this paper proposed a
convolutional neural network structure with three depths:
information interaction perception network (IIP-Net) 54,
IIP-Net105, and IIP-Net156. Due to the different selection of
branches, the number of layers of the CIIP structure is also
different. .e first CIIP structure has three layers, and the
second and third CIIP structures have five layers. “Conv” is
represented as a composite structure including “convolu-
tion,” “batch normalization,” and “activation function.” .e
network structure is shown in Table 1.

For image classification and for image classification
problems, the classifiers of classic networks such as AlexNet
and VGGNets are all three-layer fully connected layers. .e
three-layer fully connected layer has a huge amount of
parameters, which increases the calculation time and cost.
Moreover, these networks are prone to overfitting, resulting
in low generalization ability. .erefore, the single-layer fully
connected layer “FC” is used as the classifier in this paper.
.is is shown in Figure 3(a).

.is paper introduces the global average pooling (GAP)
method proposed by Lin et al. [26]. Different from tradi-
tional full connection layers, GAP layers can accept images
of any size. First, an average value is calculated for all pixels
of the output feature map of each channel. .en, the average
value is input to a global average pooling layer, a feature
vector of one dimension is obtained, and finally the feature
vector is directly input to the softmax layer. In this way, on
the one hand, the number of parameters can be reduced to
prevent overfitting, and on the other hand, it integrates
global spatial information and achieves better robustness.
.is paper introduces a “GAP-FC” structure, which is
composed of GAP and FC. First, the output feature map of
the last convolutional layer is reduced to 1 × 1 through GAP,
and then, we classify it through a full connection layer. .e
operation greatly reduces the number of network parame-
ters. .e GAP-FC structure is shown in Figure 3(b).

GAP actually calculates the average value of all pixels for
each feature map and outputs a data value. .erefore, this
paper introduces a “C-GAP” structure, which is composed
of point convolution and GAP. First, a 1 × 1 point con-
volutional layer is used to reduce the dimensionality of the
output feature, and then, through the GAP layer, finally, a
Softmax function is connected for classification. In this way,
the classifier does not include a fully connected layer, further
reducing the number of parameters. Compared with “C-
GAP”module, the “GAP-FC”module has a larger amount of
parameters, but its calculation amount is less than that of “C-
GAP” module. .e structure of “C-GAP” is shown in
Figure 3(c).

2.2. Network Complexity. When using different classifiers
and different depths’ networks to recognize colonic polyp
images, the number of parameters and calculations are
different. Taking the 3-class classification task as an example,
we suppose the size of the output feature map of the last layer
of the network is H × W × D. When using the “FC” as the
classifier, the number of parameters in the classifier is
H × W × D × 3 + 3. When using the “GAP-FC” as the
classifier, the number of parameters in the classifier is
D + D × 3 + 3. When using the “C-GAP” as the classifier,
the number of parameters in the classifier is
H × W × 3 + D × 3 + 3.

.e number of IIP-Net parameters of different depths
with different classifiers is shown in Figure 4, and the
amount of calculation of different networks is shown in
Figure 5.

As can be seen from Figure 4, different classifiers will
cause huge differences in the amount of network parameters.
When the depth of IIP-Net is the same, network parameters
using “FC” as a classifier are about 10 million more than
network parameters which use other classifiers..erefore, in
the same experimental environment and limited compu-
tational memory, when ensuring the accuracy, the use of
“FC” as the classifier should be avoided as much as possible.
In addition, the number of parameters of IIP-NET156-FC is
1.04 times that of IIP-NET105-FC, and the number of pa-
rameters of IIP-NET105-FC is 1.06 times that of IIP-NET54-
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FC. It can be seen that when the same classifier is used, the
network depth also has a great influence on the number of
network parameters.

It can be seen from Figure 5 that network depth is the
main factor influencing the amount of calculation. .e
calculation amount of IIP-Net156-FC is 1.46 times that of
IIP-Net105-FC..e calculation amount of IIP-Net105-FC is
1.86 times that of IIP-Net54-FC. .e calculation amount of
IIP-Net156-FC is 2.72 times that of IIP-Net54-FC. With the
increase of network depth, the amount of calculation in-
creases sharply. .erefore, in the same experimental

environment, the IIP-Net105 model has the highest cost
performance when the model accuracy gap is not large.

In summary, by comparing the parameters and calcu-
lations number of the network combining three different
classifiers, it can be found that the number of parameters
using “GAP-FC” and “C-GAP” is about 10 million less than
the number of parameters using “FC,” and the number of
calculations using “GAP-FC” is about 200 million less than
the number of calculations using “GAP-FC” and “FC.”
.erefore, under the premise of guaranteed accuracy, “GAP-
FC” is the optimal classifier.

Input
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Figure 2: .e diagram of forward feedback.

Table 1: .e structure of IIP-Net.
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3. Experimental Results

3.1. Preprocessing and Dataset. At present, the number of
datasets related to colonic polyps and the number of pictures
contained in these datasets are both small. .erefore, our
laboratory randomly selected colonoscopy images taken by
the olympus PCF-H290DI equipment from the gastroin-
testinal endoscopy database. Before labeling, the images
were cropped to remove the white borders around them, and
the size of the images was unified to 256× 256. After the
relevant physicians review the images, then we labeled them;
a dataset Dataset-A containing 22809 images is constructed.
.e dataset includes 4002 colonic polyp images, 14,801
normal images, and 4006 images of other lesions such as
colitis.

In the training experiment, the training set consisted of
3002 images randomly selected from 4002 colon polyp
images, 11001 images randomly selected from 14801 normal
images, and 3006 images randomly selected from 4006 other
lesion images. Train the parameters of the model through
multiple experiments. .en, the remaining 1000 polyp
images, 3800 normal images, and 1000 other lesion images
form a test set to verify the performance of the model. In the
nonpolyposis dataset, there are not only pictures of colon
without lesions but also pictures of colon lesions other than
polyps, such as adenomas and inflammatory polyps. For
most polyp pictures, polyps do not completely appear in the

field of vision; some polyps even only appear in the corners
of the picture. In addition to the influence of light, shooting
angle, etc., these increase the recognition difficulty. .ere-
fore, we expanded the training set and test set images, in-
cluding random horizontal flip, random vertical flip,
random rotation a certain angle between +90° and −90°,
brightness, and contrast changes. .ese operations greatly
increase the amount of data. In fact, the total number of
image samples involved in the experiment is 5 times of the
original data, reaches 114,045. Data enhancement not only
increases the number of samples but also enhances the
generalization ability of the model.

In order to further verify the generalization performance
of CIIP-Net, based on Dataset-A of three categories, a four-
category dataset Dataset-B containing 10660 images is
constructed. .e four categories are colonic polyps, ulcer-
ative colitis, normal, and other lesions. .e training set
consisted of 9693 images, including 2000 colonic polyp
images, 693 ulcerative colitis images, 5000 normal images,
and 2000 other lesions images. .e test set consisted of 967
images, including 200 colonic polyp images, 70 ulcerative
colitis images, 500 normal images, and 197 other lesions
images. .e vegetation growing on the surface of human
mucosa is generally referred to as polyps, so obvious pro-
trusions can be seen in the picture of colonic polyps. Ul-
cerative colitis refers to ulcerative lesions in the intestinal
mucosa, so unevenly distributed ulcers can be seen in the
picture of ulcerative colitis. Other lesions include chronic
specific colitis and amoebic bowel disease. Different path-
ological pictures have different characteristics. .e images
are shown in Figure 6.

3.2. Experiment Setup. .e experiments in this paper are
carried out on the same platform and environment to ensure
the credibility of comparisons between different network
models. Experiments are conducted on Windows 10 with
Intel i7 3.30GHz CPU, GeForce GTX 1080Ti (11G) GPU,
CUDNN 10.0, CUDA 10.0, and CUDA 10.0. .e framework
is Pytorch. .e development tool is PyCharm. .e language
is Python. .e “BatchSize” of the training set and the test set
are both set to 32. .e learning rate is 0.001. .e weight
attenuation is 5E− 4. .e momentum is 0.9. .e training
period is 100 epochs.
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3.3. Evaluation Criteria. Based on the evaluation criteria
adopted by most medical image classification models, this
paper used accuracy, precision, recall, F1-measure, and
specificity as performance indicators.

.e polyp samples are set as positive samples, and the
remaining are set as negative samples. .e negative
samples include normal samples and nonpolyposis
samples. TP refers to the number of pixels belonging to
the polyp and is correctly classified. FP refers to the
number of pixels belonging to the nonpolyposis but
wrongly classified as polyps. FN refers to the number of
pixels belonging to the polyp but wrongly classified as
nonpolyposis. TN refers to the number of pixels belonging
to the nonpolyposis and correctly classified as polyps.
Evaluation parameters are

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 − Measure � 2∗
Recall∗Precision
Recall + Precision

,

Specificity
TN

TN + FP
.

(5)

.e confusion matrix is shown in Table 2.

(a)

(b)

(c)

(d)

Figure 6: Images in Dataset-B: (a) colonic polyps, (b) ulcerative colitis, (c) other lesions, and (d) normal pictures.
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3.4. Experimental Results. In order to study the effect of the
depth and classifier of IIP-NETon the colonic polyp images
classification performance, 9 types of IIP-NET have carried
out classification experiments on colonic polyp datasets with
three categories. .e experimental results are shown in
Table 3. .e optimal experimental results are bolded.

According to Table 3, the performance of the model
using GAP-FC as the classifier is obviously better. .e
overall performance of IIP-NET54-GAP-FC is the best, and
its accuracy, precision, recall, F1-measure, and specificity are
all the highest values in the table, which are 99.59%, 99.40%,
99.40%, 99.70%, and 99.40%, respectively, but its classifi-
cation accuracy of colonic polyps is slightly lower. .e
accuracy of colonic polyps of IIP-Net105-GAP-FC and IIP-
Net158-GAP-FC is the same as 99.50%, and the overall
accuracy is also the same as 99.55%. Compared with IIP-
Net54-GAP-FC, although the overall accuracy of IIP-
Net105-GAP-FC and IIP-Net158-GAP-FC is lower, the gap
is very small. .e phenomenon indicates that, with the
deepening of the network, the network performance does
not change significantly. .e calculation amount of IIP-
Net156 is 1.06 times that of IIP-Net105 and 1.15 times that of
IIP-Net54. .e parameter amount of IIP-Net156 is 1.47
times that of IIP-Net105 and 2.81 times that of IIP-Net54.
After comprehensive consideration, t IIP-NET54-GAP-FC
is selected as the recommended model. .e three categories
confusion matrix of IIP-Net54-GAP-FC is shown in Fig-
ure 7. Table 4 gives more detailed results on the three
categories recognition performance of IIP-Net54-GAP-FC.

According to Table 4, IIP-Net50-GAP-FC has a good
classification performance for polyp images of colonic polyp
positive patients, normal patients, and other colonic disease
patients. Especially, the classification accuracy, recall, and
specificity of colonic polyps are as high as 99%.

We further compare the experimental results of IIP-
Net54-GAP-FC with traditional CNNs ResNet50, VGG16,
DenseNet121, and GoogLeNet. .e experimental results are
shown in Table 5, and the optimal experimental results are
shown in bold.

ResNet50 solves problems of network degradation and
gradient explosion with the deepening of network depth by
using skip connections, but the accuracy rate is the lowest in
the comparison experiment, only 97.07%. .e accuracy rate
of VGG16 is about 2.5% lower than that of IIP-Net54-GAP-
FC because of its shallow network depth and insufficient
image feature extraction, resulting in low image classifica-
tion accuracy. Moreover, VGG16 uses a three-layer fully
connected layer as a classifier, and the amount of parameters
and calculations are very large, which greatly increase the
calculation time and cost. DenseNet121 realizes the reuse of
features by introducing dense connections and further

deepens the network depth. Although DenseNet121 achieves
good classification accuracy on colonic polyp images, its
accuracy is still lower than IIP-Net54-GAP-FC. Dense-
Net121 also uses a three-layer fully connected layer as a
classifier, which makes the amount of calculation and pa-
rameter increase dramatically. GoogLeNet achieves good
accuracy on colonic polyp datasets, but its performance
indicators are all lower than IIP-Net54-GAP-FC. .e CIIP
module can merge the previous module features with the
current extracted features, which further improves the
learning ability of the module.

We further compare IIP-Net50-GAP-FC with the
methods proposed by Tan et al. [31], Han et al. [32], Wang
et al. [9], etc. .ese methods have achieved good accuracy in
colonic polyp classification experiments. .e results are
shown in Table 6. .e optimal experimental results are
bolded.

GhostNet has achieved good accuracy on colonoscopy
image datasets, but its performance indicators are all lower
than IIP-Net54-GAP-FC. Although the overall accuracy rate
of VGG19-GAP is up to 98.93%, its accuracy for colonic
polyp is only 87.90%, so the clinical utility of this network is
not strong. .e overall accuracy of other methods is gen-
erally lower than the IIP-Net54-GAP-FC. According to
Table 6, the overall accuracy and the colonic polyp classi-
fication accuracy of the proposed IIP-Net have reached a
very high level, which shows that IIP-Net54-GAP-FC per-
formance is better and more targeted for colonic polyp
image classification tasks.

We use the IIP-Net54-GAP-FC model to perform
classification experiments on the Dataset-B with four cat-
egories, which improves the difficulty of the classification
and recognition task and further verifies the generalization
ability of the model in colonoscopy images classification and
recognition tasks. .e “BatchSize” of the training set and the
test set are both set to 16. .e learning rate is 0.001. .e
weight attenuation is 5e− 4. .e momentum is 0.9. And the
training period is 200 epochs. Figure 8 shows the four
categories confusion matrix of IIP-Net54-GAP-FC. Table 7
gives more detailed results for the four categories recogni-
tion performance of IIP-Net54-GAP-FC.

According to Table 7, IIP-Net54-GAP-FC has good
classification performance on colonoscopy images of colonic
polyp positive patients, ulcerative colitis patients, normal
patients, and other colonic disease patients. Especially, the
classification accuracy, recall, and specificity of colon polyp
are as high as 100%.

We further compare IIP-Net50-GAP-FC with the
methods proposed by Tan et al. [31], Han et al. [32], Wang
et al. [9], etc. .e results are shown in Table 8. .e optimal
experimental results are shown in bold.

Table 2: Confusion matrix.

Confusion matrix Actual class
Positive sample (polyp) Negative sample (nonpolyp)

Predicted class Positive sample (polyp) TP FP
Negative sample (nonpolyp) FN TN

8 Computational Intelligence and Neuroscience



According to Table 8, in the four categories experiment
of colonic polyps, the overall accuracies of other methods
have reached more than 90%, but the accuracy of colonic
polyp is low. Although the overall accuracy of VGG19-GAP
is up to 95.35%, its accuracy for colonic polyp is only 88.32%,
which is 11.68% lower than IIP-Net54-GAP-FC. In sum-
mary, the proposed IIP-Net54-GAP-FC is better, and it has

excellent performance in colonic polyp image classification
experiments.

3.5. Experiments’ Analysis. According to the experimental
results, in the three categories experiments of colonoscopy
images, IIP-Net54-GAP-FC has the highest overall

Table 3: Performance of different depth IIP-Net (%).

Model Accuracy Precision Recall Specificity F1-measure Polyp Acc
IIP-Net54-GAP-FC 99.59 99.40 99.40 99.70 99.40 99.40
IIP-Net54-FC 94.98 94.88 94.60 98.94 94.74 94.20
IIP-Net54-C-GAP 95.48 96.68 96.10 99.31 96.39 95.90
IIP-Net105-GAP-FC 99.55 99.31 99.31 99.65 99.31 99.50
IIP-Net105-FC 95.24 97.24 95.00 99.44 96.11 94.30
IIP-Net105-C-GAP 95.98 97.25 95.40 99.44 96.32 95.40
IIP-Net156-GAP-FC 99.55 99.28 99.28 99.64 99.28 99.50
IIP-Net156-FC 93.81 92.34 94.00 98.38 93.16 94.40
IIP-Net156-C-GAP 95.28 97.25 93.80 99.13 95.49 94.40

Pr
ed

ic
te

d 
La

be
l

3-Class Confusion Matrix for IIP-NET54-GAP-FC

POLPY 994 2 2

NORMAL 0 3792 8

OTHERS 6 6 990

POLPY NORMAL OTHERS
Ground Truth Label

Figure 7: .ree categories confusion matrix of IIP-Net50-GAP-FC.

Table 4: Accuracy, recall, and specificity of 3-class IIP-Net54-GAP-FC (%).

Class Accuracy Recall Specificity
Polyp 99.40 99.40 99.87
Normal 99.79 99.79 99.60
Others 99.00 99.00 99.62
Average 99.40 99.40 99.70

Table 5: Performance of other CNNs (%).

Model Accuracy Precision Recall Specificity F1-measure Polyp Acc
ResNet50 [27] 97.07 95.84 95.66 97.83 95.65 98.40
VGG16 [28] 97.08 95.33 95.11 97.55 95.09 96.30
DenseNet121 [29] 97.26 96.22 96.15 98.07 96.15 97.10
GoogleNet [30] 98.26 97.34 97.30 98.65 97.29 98.50
IIP-Net54-GAP-FC 99.59 99.40 99.40 99.70 99.40 99.40
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recognition accuracy (99.59%). Although the classification
accuracy of colonic polyp is slightly higher (99.40%), it is
comparable to IIP-Net105-GAP-FC; IIP-Net158-GAP-FC

only differs by 0.1%, and the number of parameters and
calculations of network classifier are reduced. In order to
further evaluate the generalization ability of the model, IIP-
Net54-GAP-FC conducted experiments on the four-cate-
gory dataset. Comparing the above experimental results with
other methods, the overall accuracy and the classification
accuracy of colonic polyp are 96.59% and 100%, respectively.
.e overall performance is better than other methods.

.rough experimental analysis, it can be seen that, in the
colonoscopy images’ classification task, the network depth
should be kept moderate. If the network is too shallow, it is
difficult to fully extract the features. Although deepening the
network can make the model have better nonlinear ex-
pression ability, deep networks will cause problems such as
gradient instability and network degradation. Batch nor-
malization can effectively solve the instability problems such
as gradient dispersion and explosion. .e convolutional
short connection layer can effectively solve the problem of
network degradation. .e introduction of GAP into the
classifier can effectively reduce the amount of network
parameters and calculations. .e surface texture informa-
tion of colonic polyps is not obvious; it will lead to model
deviation and overfitting, resulting in reduced performance
and generalization. .erefore, this paper designed a CIIP
module consists of two branches. In the module, whether the
previous module has generated the attention channel weight
value is judged firstly, and then, different branches are se-
lected according to the judgment result. .e first branch
contains Conv1, Conv3, and GAP structures. .e second
branch contains Conv1, Conv3, GAP, and FC structures.
Conv1 is used to control the dimension and reduce the
number of parameters. Short connections are used to pre-
vent information loss, increase network depth, and solve the
problem of network degradation to a certain extent. .e
input feature map is input to the CIIP module. Because the
module can merge the previous module features with the
current extracted features, it ensures the information flow in
the feedforward way among the modules and enhances the
feature extraction ability of the network.

4. Conclusions

.is paper designed a CIIP module based on the charac-
teristics of colonic polyp images and proposed an IIP-Net to
classify colonic images. Colonoscopy images were selected to
annotate two colonic polyp image datasets: three-category
dataset Dataset-A and four-category dataset Dataset-B.
Analyzing and comparing the experimental results, IIP-
Net54-GAP-FC has the highest application value..e overall
accuracy of the three-category experiment and colonic polyp
category accuracy have reached 99.59% and 99.40%, re-
spectively. .e overall accuracy of the four-category ex-
periment and colonic polyp category accuracy have reached
96.59% and 100%, respectively. IIP-Net has extremely high
accuracy and recall for colonic polyp cases and can effec-
tively help medical imaging physicians detect colonic polyp
cases. Despite the good results, IIP-Net still needs clinical
research and testing. Moreover, the colonoscopy image
datasets’ collection and processing process is very difficult.

Table 6: Comparison of the proposed method with other existing
deep learning method.

Name Class Method Accuracy Polyp
Acc

Tan et al. [31] 3 MnasNet0_5 94.57 94.30
Han et al. [32] 3 GhostNet 98.07 97.00
Wang et al. [8] 3 VGG19-GAP 98.93 97.10
Wang et al. [8] 3 ResNet101-GAP 96.43 87.90
Proposed
method 3 IIP-Net54-GAP-

FC 99.59 99.40

Table 7: Accuracy, recall, and specificity of 4 class IIP-Net54-GAP-
FC (%).

Class Accuracy Recall Specificity
Polyp 100 100 100
Normal 98.60 98.60 98.14
Others 88.83 88.83 95.25
Ulcerative colitis 87.14 93.64 97.88
Average 93.64 95.27 97.82

Pr
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4-Class Confusion Matrix for IIP-NET54-GAP-FC

POLPY 200 0 0

NORMAL
493 11 0

OTHERS 0 7 175 9

Ulcerative
Colitis 0 11 61

POLPY NORMAL OTHERS Ulcerative
Colitis 

Ground Truth Label

0

0

0

Figure 8: Four-category confusion matrix of IIP-Net54-GAP-FC.

Table 8: Accuracy comparison of our proposed method with other
existing deep learning method.

Name Class Method Accuracy Polyp
Acc

Tan et al. [31] 4 MnasNet0_5 91.93 78.17
Han et al. [32] 4 GhostNet 93.18 79.70
Wang et al. [8] 4 VGG19-GAP 95.35 88.32
Wang et al. [8] 4 ResNet101-GAP 93.38 86.29
Proposed
method 4 IIP-Net54-GAP-

FC 96.59 100
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Not only children’s colonic polyp image data but also more
colonic polyp image data of different ages can be obtained.
.rough these enhanced image data, the accuracy of CIIP-
net can be further improved.
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