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Early detection of Alzheimer’s disease (AD) progression is crucial for proper disease management. Most studies concentrate on
neuroimaging data analysis of baseline visits only.*ey ignore the fact that AD is a chronic disease and patient’s data are naturally
longitudinal. In addition, there are no studies that examine the effect of dementia medicines on the behavior of the disease. In this
paper, we propose a machine learning-based architecture for early progression detection of AD based on multimodal data of AD
drugs and cognitive scores data. We compare the performance of five popular machine learning techniques including support
vector machine, random forest, logistic regression, decision tree, and K-nearest neighbor to predict AD progression after 2.5 years.
Extensive experiments are performed using an ADNI dataset of 1036 subjects. *e cross-validation performance of most al-
gorithms has been improved by fusing the drugs and cognitive scores data. *e results indicate the important role of patient’s
taken drugs on the progression of AD disease.

1. Introduction

Alzheimer’s disease (AD) is considered as one of the most
severe diseases that destroy the brain (Zheng and Xu [1]).
According to the Alzheimer’s Association report by Huber-
Carol et al. [2], more than sixty million people around the
globe would suffer fromAD in the next fifty years. Moreover,
based on the report estimation, one person is affected by
dementia every three seconds. Consequently, by 2050, the
potential number is 152 million internationally [3]. As
dementia has several stages, there is a stage called mild
cognitive impairment (MCI) between healthy aging and AD.
Most people with MCI are gradually advance to dementia
within five years (Ye et al. [4]). In addition, MCI patients

who are ranged between d 10% to 20% convert to AD per
year as estimated by Qiu et al. [5]. *erefore, the early-stage
discovery of AD could provide an opportunity for a treat-
ment that slows down AD symptoms and improve the
patient’s life (Gray et al. [6]). *e early identification of
patients in whom AD and progressive MCI (pMCI) is
converted from stable MCI (sMCI) is a complex problem
because patients always have similar signs (Lee et al. [7]).
Machine learning (ML) techniques is playing an essential
role in many areas such as engineering, physics, mathe-
matics, marketing, and computer science (Liu et al. [8, 9]).
ML techniques have great potential to adopt with this
medical challenge (Liu et al. [10]). As AD is considered as
chronic disease, the collected patients’ data are considered to
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be time-series and multimodal data. Furthermore, the AD
patients’ data is considered as heterogeneous based on the
patients’ profiles. Recently, several ML models such as
K-nearest neighbor (KNN), support vector machine (SVM),
multilayer perceptron (MLP), and logistic regression (LR)
have been employed to classify a patient as cognitive normal
(CN), MCI, or AD (Moradi et al. [11]; Park et al. [12]). *ese
studies focus primarily on using single modalities including
magnetic resonance imaging (MRI) (Liu et al. [10]), fluoro-
deoxyglucose positron emission tomography (FDGPET)
(Hinrichs et al. [13]), diffusion tensor imaging (DTI), and
cerebrospinal fluid (CSF). However, using single modalities
negatively affects models’ performance because some useful
additional information from various biomarker modalities is
omitted (Ye et al. [4]). Some studies have investigated the
combination of multiple modalities for AD classification,
and they achieved better performance compared to methods
based on single modalities (Gray et al. [6], Zhang et al. [14]).
In this context, Wee et al. [15] used both DTI and MRI to
identify ten patients with MCI from 17 matched CN pa-
tients. *e accuracy is increased by 7.4% better than using
the single-modality-based method. Bouwman et al. [16]
diagnosed CN patients fromMCI using twomodalities: MRI
and CSF. For predicting cognitive loss in MCI, Fellgiebel
et al. [17] used PETand CSF to predict cognitive loss in MCI.
Zhang et al. [14] classified AD and MCI from CN using
integration between three modalities: MRI, FDGPET, and
CSF. Gray et al. [6] applied a random forest (RF) algorithm
to four modalities: genetics, MRI, CSF, and FDGPET to
classify AD versus MCI versus CN. In the other hand, there
are some works that used time-series approaches to detect
AD progression. *e authors in Moradi et al. [11] used
semisupervised learning to predict MCI-to-AD conversion
between one to three years using MRI modality.

*e authors in El-Sappagh et al. [18] used ensemble
machine learning classifiers based on RF for the two layers,
utilizing multimodal AD datasets. Venugopalan et al. [19]
used different models including, SVM, DT, RF, and KNN, to
early detect the AD stage. In addition, they demonstrated
multimodality data and single-modality models. Moore et al.
[20] studied the relationship between pairs of data points at
various time separations using RF. In addition, they used
three modalities: demographic, physical, and cognitive data.

Model performance is improved using time-series data
with multimodel consideration for AD progression detec-
tion.*e resultingmodels are expected to bemore stable and
medically acceptable because they mimic the real procedures
followed by medical experts. In addition to MRI, PET, and
CSF, there is a crucial data source, which has not been
studied in the literature of AD. *is data source is dementia
medications, which are taken during patient’s observation
period.*e drugs contains of chemical substances which are
accumulated in the body in some forms, which increases the
probability of disease progression, or the drugs could help to
improve the patient conditions, which decreases the prob-
ability of disease progression. *us, it is necessary to study
the impact of these drugs on the disease’s progression
(Zimmerman [21]). Furthermore, there is no study in the
literature that discussed this issue. In this work, we have

provided an ML-based model to predict AD progression
after 2.5 years. In doing so, we have implemented and tested
a set of ML techniques according to the patient multimodal
time-series data. *e study is based on the cognitive score
and Alzheimer’s medication (AM) data. For every patient,
these modalities are collected for 1.5 years (baseline, month-
6, month-12, and month-18) and used to predict the pa-
tient’s state at month 48. We used the ADNI dataset. ADNI
is real clinical data, so our results have potential practical
applications. Extensive experiments have been performed,
and AM data showed the superiority of improving the CV
performance of most algorithms. All models have been
optimized using the grid search technique. Furthermore, the
effect of the feature selection process on the model’s per-
formance has been studied.

*e rest of this paper is structured as follows: Section 2
presents the architecture of the proposed system of pre-
dicting Alzheimer’s progression. Section 3 describes the
experimental results. Finally, the paper is concluded in
Section 4.

2. The Proposed System of Predicting
Alzheimer’s Progression

*e proposed system of predicting Alzheimer’s progression
is described in Figure 1. It consists of the following steps:
data collection, data preprocessing, data fusion and splitting,
data balancing, classifiers optimization and training, and
models evaluation. Each step of the proposed system is
described in detail in the following subsections.

2.1. Data Collection. Data used in this work was collected
from the Alzheimer’s disease neuroimaging initiative
(ADNI) database disease neuroimaging initiative [22]. Over
57 sites in the United States and Canada have enrolled
subjects El-Sappagh et al. [18]. *e study was carried out in
accordance with GCP principles, the Declaration of Hel-
sinki, and US 21 CFR part 50 —Protection of Human
Subjects—and part 56 —Institutional Review Boards. Sub-
jects were willing and able to participate in test procedures
such as neuroimaging and follow-up, and they gave written
informed consent. All data are open to the public at disease
neuroimaging initiative [22]. *e collected dataset has 1036
subjects categorized into four groups, as shown in Table 1.
*e study is based on two time-series modalities of the
cognitive score (CS) and Alzheimer’s medication (AM). *e
CS dataset includes eight features: CDRSB, GDTOTAL,
FAQ, ADAS 13, CDG, MMSE, MOCA, and NPISCORE.
Based on the ADNI dataset, we designed a drug dataset that
includes nine features: antidepressant, Cognex, Aricept,
Namenda, Exelon, Razadyne, Other, and None. *ese drugs
are sorted according to their popularity in our dataset as
Aricept, Namenda, antidepression, Exelon, and Cognex
(42.18%, 25.77%, 23.84%, 6.18%, and 0.09%, respectively).
Mostly the CN (85.94%) patients did not take any drugs. As a
result, we removed this class from the dataset. All datasets
have 787 patients and three classes (sMCI, pMCI, and AD).
Table 1 shows the patients’ demographics.
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2.1.1. Data Preprocessing. We prepare both the drugs and
cognitive scores datasets that we collected from the ADNI
dataset, as shown in Figure 2. *e drug dataset has several
preprocessing steps:

Time filtering: In this phase, we filtered data of four
visits, that is, the first four visits (bl, M06, M12, M18)
denoted to baseline, month 6, month 12, and month 18,
respectively. *ese visits data are exploited with and
without drug data to explore the effects of drugs on
predicting an AD patient’s progression after 2.5 years
(at month 48).
Code separation: *e drug dataset includes a column
containing multiple values and delimiter “:” that
separates values. We separate the row into two
multirows using “:” delimiter. *e Cognex feature
has been removed because only 0.09% of the patients
used it.
Data encoding: *e dataset includes a column with
names of patients’ drugs; we split each drug’s name and

create a new dataset that includes nine columns. *e
names of the drugs are listed in these columns. Each
column has a binary value (i.e., 0 or 1) indicating
whether or not the patient is taking the drug.

Aggregation: *e last dataset includes multiple rows of
each patient. We convert multiple rows of each patient
into one row by grouping rows using the RID column
and get max value for each column.

*e preprocessing of the CS dataset has been done as
follows:

*e randomness of the data has been checked, and the
data are missing at random.

To minimize the negative effect of missing data on our
dataset, any case with missing baseline scores or features
with missing values of more than 30% was deleted. We
used the forward filling technique to handle missing
time-series data, where the previous values were used if
the diagnosis was not changed for a time step.

ADNI
dataset

Alzheimer’s
Drugs

Cognitive
Scores

2. Data Preprocessing1. Data Collection

Drug codes
separation Data encodingTime Filtering

Handling missing
values

Data
Normalization

Time series
feature extraction

3. Data fusion and Splitting

Testing data

4. Data Balancing

Cross-validation
data
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Training
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Support Vector
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Testing results
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Figure 1: *e architecture of the proposed system of predicting Alzheimer’s progression.

Table 1: Patients’ statistics at baseline.

sMCI (n� 363) pMCI (n� 106) AD (n� 318) Combined (n� 1036)
Sex (M/F) 210/153 44/62 142/176 483/553
Age (years) 72.92 ± 07.76 73.89 ± 06.84 75.01 ± 07.81 73.82 ± 07.18
Education 15.80 ± 02.97 16.13 ± 02.71 15.13 ± 02.98 15.85 ± 02.90
FAQ 02.64 ± 03.31 07.63 ± 04.49 16.42 ± 06.59 06.81 ± 08.01
MMSE 27.62 ± 01.95 25.46 ± 01.84 20.95 ± 03.95 25.66 ± 04.17
MoCA 22.96 ± 02.21 20.69 ± 01.84 17.11 ± 03.43 21.56 ± 04.14
APOE4 00.51 ± 00.66 00.85 ± 00.71 00.85 ± 00.71 00.56 ± 00.67
ADAS 13 14.69 ± 06.71 22.69 ± 05.29 33.59 ± 09.39 19.73 ± 12.24
ADAS 11 09.18 ± 04.47 14.25 ± 03.90 22.82 ± 08.09 12.96 ± 08.88
CDRSB 01.42 ± 00.79 02.99 ± 01.19 05.99 ± 02.49 02.67 ± 02.79
∗ Data are mean ± standard deviation.
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Data normalization for CS data has been done using the
z-score method. Fourth, aggregated features from the
four historical time steps were collected to summarize
time-series data. We took the average of each CS for
each patient.

2.1.2. Dataset Splitting. Given the two collected features sets
(i.e., CS, AM), three datasets are created: (1) CS features only
dataset, (2) AM features dataset, and (3) CS-AM dataset,
where the CS and AM modalities are fused. *e stratified
method is used to split each dataset into 90% of the dataset as
the training set, and 10% of the dataset as the unseen test set.
*e Ml models were trained and optimized using the
training set; the ML models were evaluated using the unseen
test set.

2.1.3. Dataset Balancing. Biased models are always the
outcome of unbalanced datasets. *e synthetic minority
oversampling approach (SMOTE) proposed by Chawla et al.
[23] was used to handle the class imbalance to avoid the
biased models. *e SMOTE is applied to only the training
set.

2.1.4. Classifiers Optimization and Training. *e optimal
values of hyperparameters of the ML models were selected
using the grid search approach with stratified 10-fold CV.
*e five were applied to each dataset:

Support vector machine (SVM) is a supervised learning
approach that analyzes data for classification or re-
gression. *e SVM is a discriminative algorithm that is
formalized by an optimum hyperplane. It generates an
optimal hyperplane result, which classifies unknown
instances, and datasets that support the hyperplane are
referred to as support vectors. However, selecting the
optimum hyperplane is tough since it must be noise-
free and accurate in its generalization of data sets. SVM
is attempting to discover an optimum hyperplane that
delivers a significant minimum distance to the trained
data set.
Decision tree (DT) by Sweety and Jiji [24] is one of the
most widely used machine learning classifiers. It is
pretty trendy because it can be customized to nearly all
kinds of data types. It is a supervised learning technique

that partitions training data into smaller chunks to
extract patterns for classification. *e knowledge is
then shown as a tree, which is easy to understand. *e
decisionmodel is constructed from the top-down of the
tree structure, beginning with the (top) root node. *e
root nodes are significant predictors, while the leaf
nodes have a final classification.
K-nearest neighbor (KNN) is a type of supervised al-
gorithm. A KNN algorithm attempts to locate the
pattern space for the k instances of training that are
similar in new instances when analyzing testing data.
KNN classifier may be appropriate for the dependent
variable, covering two principles: low risk, medium
risk, and high risk. Moreover, the KNN classification
needs the same number of bad and good sample ex-
amples for better performance. *e selection of k also
fulfills the KNN process performance.
Random forest (RF) by Alickovic et al. [25] is a machine
learning classifier based on trees that leverages the
power of multiple decision trees for making decisions.
RF is made up of several decision trees, each of which
chooses its separation features from a bootstrap
training set. RF offers several advantages: the approach
of classification is exact, quick, and noise-resistant. In
RF, random selection and bagging features are merged.
*e values of independently sampled random vectors
are influenced by every tree in the forest and have the
same distribution as every other tree.
Logistic regression (LR) Mirzaei et al. [26] is a su-
pervised machine learning classifier that predicts the
likelihood of a target variable. It is a multivariate
technique that seeks to create functional relationships
between numerous predictor variables and a single
output. In most situations, the LR output variable is
categorical because it can only be assigned to a limited
number of classes. LR is a powerful ML algorithm
because it can generate probabilities and categorize new
data using discrete and continuous datasets.

2.1.5. Evaluation Metrics. Models are evaluated using four
standard metrics: accuracy, precision, recall, and F1-score,
where TP stands for true positive, TN for true negative, FP
for false positive, and FN for false negative, as shown in
equations (1)–(4).
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Figure 2: Data fusion steps.
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Accuracy �
TP + TN

TP + FP + TN + FN
, (1)

Precision �
TP

TP + FP
, (2)

Recall �
TP

TP + FN
, (3)

F1 �
2 · precision · recall
precision + recall

. (4)

3. Results

*ePython 3.7.3 distributed in Anaconda 4.7.7 (64-bit) were
used to run the experiment. *e models were implemented
using the Scikit-Scikit-learn 0.20.0 library Pedregosa et al.
[27] *e performance of ML models: SVM, LR, KNN, DT,
and RF were registered to three datasets: CS, AM, and AM-
CS. *ree experiments were conducted to obtain the results.
Each conducted experiment has been repeated 6 times, and
the average of accuracy, precision, recall, and F1-score was
registered (where A: Accuracy, P: Precision, R: Recall, and
F1: F1-score). In the first experiment, we initially aimed to
evaluate the capability of the ML models to distinguish
patients of AD, pMCI, and sMCI classes based on either
cognitive scores or Alzheimer’s medication. *en, we tried
to answer the question: to what extent does the features
infusion of the CS and AM affect the performance of the ML
models? Table 2 presents the first experimental results. In the
second experiment, we evaluated the effect of AM on
detecting pMCI within MCI patients. *e experiment tries
to answer the question: to what extent does the AM-CS
fusion con-tribute to the overall performance of the ML
models within the MCI patients? Table 3 presents the second
experimental results. *e third experiment is similar to
experiment 2; however, this experiment answers the ques-
tion: to what extent does the AM-CS fusion con-tribute to

the overall performance of the ML models between the MCI
and AD patients? Table 4 presents the third experimental
results. For the last two experiments, we try to evaluate the
performance of the ML models for MCI patients, who have
similar cognitive scores and Alzheimer’s medication, and
sMCI vs. AD patients, who have medically different cog-
nitive scores and Alzheimer’s medication.

3.1. Experiment 1: sMCI vs. pMCI vs. AD. Table 2 shows that
the ML models achieved the best CV performance for the
fused dataset. For example, the RF, DT, LR, SVM, and KNN
models achieved an accuracy of 92.74%, 84.96%, 88.4%,
82.89%, and 82.43%, respectively. RF is an ensemble clas-
sifier, which could be the main reason for its high perfor-
mance. For the testing performance, three out of the five ML
models achieved the highest performance using the fused
dataset with accuracies 88.54%, 85.42%, and 74.22% for RF,
LR, and KNN models, respectively. *is indicates the im-
portance of the AM data for the AD progression detection
task. Table 2 also shows that the AM features alone are
insufficient and CS-based models can be improved by AM-
CS fusion.

3.2. Experiment 2: sMCI vs. pMCI. *e results of this ex-
periment as shown in Table 3 assert the crucial role of AM-
CS fusion to enhance the ML model’s performance. For the
CV results, the RF, DT, LR, and SVMmodels with the AM-
CS dataset outperformed other models with accuracies
87.90%, 89.54%, 87.07%, and 87.10%, respectively. Besides,
testing results of these four ML models show an im-
provement using the AM-CS dataset with accuracies
85.11%, 89.36%, 87.23%, and 86.57% for RF, DT, LR, and
SVM models, respectively. *ese models achieved testing
AUC of 0.878, 0.815, 0.910, and 0.897 for RF, DT, LR, and
SVM models, respectively. *e results of ML models based
on AM dataset alone achieved better performance than
recent studies such as Ye et al. [4]. For example, the KNN
and SVM models achieved testing accuracies 75.69% and

Table 2: *e performance for the AD vs. pMCI vs sMCI task.

Testing performance Cross-validation performance
Model Dataset A P R F1 A P R F1

RF
CS 87.76 87.76 87.79 87.76 90.35 ± 2.9 90.49 ± 2.8 90.47 ± 2.7 90.28 ± 2.5
AM 68.05 67.47 68.82 68.05 58.39 ± 4.1 58.3 ± 4.26 60.74 ± 4.3 58.27 ± 4.2

AM-CS 88.54 88.51 88.92 88.54 92.74 ± 3.1 92.87 ± 3.1 93.03 ± 2.6 93.21 ± 3.3

DT
CS 90.89 90.94 91.15 90.89 83.08 ± 4.9 83.08 ± 4.9 83.49 ± 4.9 83.13 ± 4.8
AM 64.81 64.64 69.15 64.81 53.23 ± 4.3 53.23 ± 4.6 55.27 ± 4.7 53.21 ± 4.2

AM-CS 89.32 89.30 89.74 89.32 84.96 ± 3.7 84.95 ± 3.7 85.61 ± 3.5 85.15 ± 3.7

LR
CS 76.85 77.15 78.34 76.85 79.85 ± 4.4 79.96 ± 4.3 80.61 ± 4.2 79.85 ± 4.4
AM 53.24 51.32 52.76 53.24 55.39 ± 4.6 54.64 ± 4.6 54.7 ± 4.71 55.39 ± 4.6

AM-CS 85.42 85.40 85.64 85.42 88.40 ± 3.3 88.36 ± 3.3 88.91 ± 3.1 88.4 ± 3.28

SVM
CS 81.02 81.11 81.40 81.02 79.95 ± 3.9 79.93 ± 4.0 80.7 ± 3.96 79.95 ± 3.9
AM 58.33 57.05 58.85 58.33 55.35 ± 4.5 55.52 ± 4.4 56.54 ± 4.3 55.35 ± 4.5

AM-CS 76.39 76.55 77.04 76.39 82.89 ± 3.1 82.78 ± 3.1 83.18 ± 3.1 82.89 ± 3.1

KNN
CS 73.61 74.31 76.53 73.61 76.32 ± 3.7 76.8 ± 3.68 80.52 ± 3.4 76.32 ± 3.7
AM 48.00 42.67 45.20 48.00 52.31 ± 3.2 43.13 ± 3.4 39.62 ± 7.5 52.31 ± 3.2

AM-CS 74.22 72.37 82.99 74.22 82.43 ± 4.2 82.11 ± 4.4 84.62 ± 3.8 82.43 ± 4.2
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69.68%. *ese results are better than the Yao et al. model,
which achieved an accuracy of 68.98% based on neuro-
imaging data.

3.3. Experiment 3: sMCI vs. AD. Similar to experiment 2, the
results of this experiment assert the importance of AM-CS
fusion to improve the detection of AD patients from MCI
cases. Moreover, the performance of this experiment is
better than the previous two experiments because all ML
models can easily separate both sMCI and AD cases. For
the CV results, the RF, DT, LR, and SVMmodels with AM-
CS dataset outperformed other models with accuracies
94.96%, 93.66%, 94.12%, and 94.50%, respectively. Besides,
testing results of these four ML models show an im-
provement using the AM-CS dataset with accuracies
94.82%, 95.95%, 90.09%, and 94.82% for RF, LR, SVM, and
KNN models, respectively. *ese models achieved testing
AUC of 0.941, 0.955, 0.897, and 0.941 for RF, LR, SVM, and

KNN models, respectively. All the experiments confirmed
our hypothesis that AM-CS fusion has a positive effect on
the performance of progression detection problem in
Alzheimer’s disease.

4. Conclusion

*is paper studies the role of dementia drugs in improving
the progression detection for AD patients based on multi-
modal time-series data. *e algorithm is based on the pa-
tient’s four-time-step time-series data and can predict AD
within 2.5 years of M18. *e model is based on the early
merging of time-series modalities from CS and AM. We
have optimized and tested five ML models using the real-
world ADNI dataset. *e results showed the crucial role of
drugs features to enhance the performance of these ML
models. In the future, we will extend this work by studying
the interpretability features of these models.

Table 4: *e performance for the AD vs sMCI task.

Testing performance Cross-validation performance
Model Dataset A P R F1 A P R F1

RF
CS 94.14 94.14 94.24 94.14 94.76 ± 2.7 94.66 ± 2.9 95.1 ± 2.65 94.71 ± 2.8
AM 77.48 77.43 77.76 77.48 77.12 ± 4.9 76.8 ± 5.11 78.59 ± 4.8 77.46 ± 5.1

AM-CS 94.82 94.82 94.83 94.82 94.96 ± 2.4 94.96 ± 2.5 95.20 ± 2.3 94.91 ± 2.4

DT
CS 88.52 88.50 88.66 88.52 93.02 ± 2.7 93.01 ± 2.7 93.36 ± 2.5 93.08 ± 2.7
AM 73.42 73.22 74.18 73.42 75.76 ± 5.1 75.18 ± 5.2 78.42 ± 5.4 75.76 ± 5.1

AM-CS 84.91 84.90 85.05 84.91 93.66 ± 3.0 93.76 ± 2.8 93.83 ± 2.7 93.69 ± 2.9

LR
CS 92.34 92.34 92.40 92.34 94.05 ± 2.4 94.5 ± 2.39 94.64 ± 2.3 94.05 ± 2.4
AM 72.30 71.92 73.54 72.30 78.99 ± 4.2 78.8 ± 4.32 80.02 ± 4.1 78.99 ± 4.2

AM-CS 95.95 95.95 95.98 95.95 94.12 ± 2.8 94.11 ± 2.8 94.27 ± 2.7 94.12 ± 2.8

SVM
CS 89.86 89.86 89.89 89.86 94.19 ± 3.3 94.18 ± 3.3 94.36 ± 3.2 94.19 ± 3.3
AM 75.23 75.22 75.24 75.23 77.82 ± 5.9 77.44 ± 6.1 79.5 ± 5.77 77.82 ± 5.9

AM-CS 90.09 90.09 90.14 90.09 94.50 ± 2.6 94.5 ± 2.61 94.64 ± 2.5 94.5 ± 2.6

KNN
CS 92.79 92.79 92.81 92.79 94.17 ± 2.9 94.16 ± 2.9 94.29 ± 2.9 94.17 ± 2.9
AM 70.27 70.04 70.94 70.27 78.10 ± 4.0 77.82 ± 4.1 79.46 ± 3.8 78.10 ± 4.0

AM-CS 94.82 94.82 94.94 94.82 94.00 ± 2.8 93.99 ± 2.8 94.14 ± 2.8 94.0 ± 2.86

Table 3: *e performance for the sMCI vs pMCI task.

Testing performance Cross-validation performance
Model Dataset A P R F1 A P R F1

RF
CS 82.98 63.64 63.64 63.64 87.76 ± 4.0 88.56 ± 5.3 87.14 ± 6.3 87.66 ± 4.0
AM 59.57 33.33 72.73 45.71 73.56 ± 5.2 70.70 ± 5.1 81.05 ± 7.9 75.37 ± 4.8

AM-CS 85.11 66.67 72.73 69.57 87.90 ± 4.1 87.47 ± 4.8 88.68 ± 6.7 87.96 ± 4.2

DT
CS 87.16 75.00 81.82 78.26 89.30 ± 3.7 88.37 ± 4.7 88.97 ± 4.7 88.58 ± 3.6
AM 55.32 40.77 72.73 52.25 72.79 ± 5.4 69.71 ± 4.4 81.03 ± 8.8 74.79 ± 5.2

AM-CS 89.36 80.00 72.73 76.19 89.54 ± 3.6 89.34 ± 5.1 89.58 ± 6.9 89.27 ± 3.9

LR
CS 80.85 58.33 63.64 60.87 84.86 ± 4.0 86.86 ± 6.1 82.55 ± 4.6 84.53 ± 3.9
AM 61.70 46.78 72.73 56.93 67.59 ± 4.6 67.68 ± 4.6 67.93 ± 5.4 67.68 ± 4.4

AM-CS 87.23 76.47 77.47 76.96 87.07 ± 4.1 87.42 ± 4.9 86.90 ± 6.6 86.99 ± 4.3

SVM
CS 83.56 83.52 84.01 83.56 83.95 ± 4.5 83.86 ± 4.6 84.61 ± 4.4 83.95 ± 4.5
AM 69.68 69.47 70.21 69.68 67.51 ± 4.0 67.07 ± 4.1 68.55 ± 4.5 67.51 ± 4.0

AM-CS 86.57 86.57 86.65 86.57 87.10 ± 4.7 87.06 ± 4.7 87.48 ± 4.6 87.1 ± 4.72

KNN
CS 81.94 81.51 85.23 81.94 83.41 ± 3.6 82.99 ± 3.9 86.66 ± 3.0 83.41 ± 3.6
AM 75.69 74.90 79.45 75.69 66.39 ± 6.7 65.46 ± 7.8 67.71 ± 6.6 66.39 ± 6.7

AM-CS 75.23 74.92 76.50 75.23 79.62 ± 4.4 79.44 ± 4.5 80.59 ± 4.4 79.62 ± 4.9
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Data Availability

*e data were collected from the ADNI (http://adni.loni.usc.
edu/). *e ADNI data had previously been gathered from 50
different study sites. Requests for data access should be made
to http://adni.loni.usc.edu/data-sampl es/access-data/.

Ethical Approval

All procedures used in the study involving human partici-
pants complied with the institutional and/or national re-
search committee’s ethical requirements and the 1964
Helsinki statement and its subsequent revisions or com-
parable ethical standards. *e ethics committees/institu-
tional review boards that approved the ADNI study are listed
within the Supplementary file.

Consent

To participate in the study, each study subject gave written
informed consent at the time of enrollment for imaging and
genetic sample collection and completed questionnaires
approved by each participating sites’ Institutional Review
Board (IRB).

Conflicts of Interest

All authors declare that they have no conflicts of interest.
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*e Supplementary file shows the ethics committees/insti-
tutional review boards that approved the ADNI study ()
(Supplementary Materials)
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